
Une couche indépendante des FTL pour
améliorer les performances des écritures

aléatoires sur mémoires flash

Brice Chardin1,2, Olivier Pasteur1, Jean-Marc Petit2
1 EDF R&D, 6 Quai Watier, Chatou, France

2 Université de Lyon, CNRS, INSA-Lyon, LIRIS UMR5205,
7 avenue Jean Capelle, F-69621 Villeurbanne, France

<brice.chardin, jean-marc.petit>@liris.cnrs.fr
olivier.pasteur@edf.fr

Résumé

Les mémoires flash deviennent une alternative compétitive aux
disques durs comme support de stockage non-volatile pour les sys-
tèmes de gestion de base de données. Cependant, des adaptations spé-
cifiques sont nécessaires pour exploiter au mieux cette nouvelle catégo-
rie de stockage. Pour cela, la définition des modèles d’accès préconisés
est un problème complexe car les mémoires flash sont très hétérogènes
et difficiles à caractériser, à cause de la Flash Translation Layer – ou
FTL – qui leur est intégrée. Dans cet article nous identifions une cor-
rélation forte entre les performances des écritures et leur proximité
spatiale pour un sous-ensemble des mémoires flash ; puis définissons
une distance pour quantifier cet effet. À partir de cette propriété, nous
proposons un algorithme de placement des données permettant d’amé-
liorer les performances en écriture aléatoire en contrepartie d’une di-
minution de la capacité de la mémoire. L’efficacité de cette technique
est validée par une formalisation avec un modèle mathématique et des
résultats expérimentaux. Avec cette optimisation, les écritures aléa-
toires deviennent potentiellement aussi efficaces que les écritures sé-
quentielles, allant jusqu’à améliorer leurs performances de deux ordres
de grandeur.

Mots clés Mémoires flash, SSD, FTL, Optimisation, Écritures aléatoires

1

1 Introduction
For the sake of interchangeability, many flash memories include a Flash

Translation Layer – abbreviated as FTL – to comply with the block interface,
a rotating disk legacy. In addition to providing block write and read oper-
ations, the FTL manages flash chips complex writing mechanism [5]. How-
ever, this layer is implemented with proprietary and undocumented software,
which makes flash devices appear as “black boxes” from a system’s point of
view [2].

Advantageously, this FTL allows a straightforward substitution between
both storage technologies. Yet, most database management systems include
rotating disks-oriented optimizations, which are not relevant for flash mem-
ories. Even if both technologies use the same block interface, they have dif-
ferent preferred access patterns. Database management systems could poten-
tially benefit from flash memories as they provide fast random access for read
operations. Still, for FTL-based devices, random writes are generally not as
efficient as sequential writes [4] and most optimization techniques for flash
memories relate to this specific issue.

In this paper, we identify for a subset of FTL-based devices a strong
correlation between write performances and their spatial locality; and define
a distance to quantify this effect. From this property, we propose a simple
data placement algorithm, which trades flash memory space for random write
performances. Its efficiency is validated by a formalization with a mathemat-
ical model, along with experimental results. With this optimization, random
write potentially become as efficient as sequential write, improving random
write speed by up to two orders of magnitude.

The rest of this paper is organized as follow. Section 2 introduces NAND
flash memories and different types of mapping used in the FTL. Section 3
emphasizes the importance of locality on these devices for write performances
and defines a distance between consecutive writes to quantify this effect. In
section 4, we derive from this property an optimization technique for random
writes, using an indirection layer to minimize this distance, thus avoiding
scattered writes. In section 5, we present an approximate model for this
algorithm. The results of both our experiments and model are reported
in section 6. Related works are described in section 7. Then, section 8
summarizes the contributions of this paper.

2

2 NAND flash memories
NAND flash memory is a non-volatile storage technology, which allows

three low-level data-access operations: read, write (or program) and erase.
Still, erasing is performed at a different granularity than reading or writing:
NAND flash chips are divided into blocks that can be erased independently,
each block containing a fixed number of pages, each of which being indi-
vidually accessible for reading or writing. As overwrites are not allowed, a
full block must be erased prior to writing on one of its already used page.
Additionally, pages within a block must be written sequentially.

To handle this complex writing mechanism, most flash memories include
a Flash Translation Layer (FTL) that redirects writes on available (erased)
pages and stores the associations between the logical sector identifier and its
physical location in an address translation table.

In most cases, this translation operates on a page-level basis or on a block-
level basis [5]. With a page mapping FTL, each logical page has its associated
physical page. After an overwrite, the translation table is updated with the
new physical location and the old physical location is marked as obsolete to
be reclaimed by a garbage collection mechanism.

With a block mapping FTL, each logical block has its associated physical
block and an additional logging area, which consists of log blocks. When a
page is overwritten, new data are appended to the last log block. Garbage
collection merges a data block with all its associated log blocks by copying
every valid page on a new (erased) data block and updating the translation
table.

Each mapping granularity has its own drawbacks. Page mapping has a
higher memory overhead because of its larger address translation table; and
has a complex and possibly less efficient garbage collection mechanism [5],
while block mapping performances are highly dependent on empty blocks
availability, to serve as log blocks.

3 Write locality for FTL-based devices
As FTL enclosed in flash devices are usually proprietary and undocu-

mented, studies have been conducted to identify preferred write access pat-
terns for such devices. Wang et al. study in [11] the effectiveness of using
non-in-place update techniques for flash-based DBMS. Their experiments
with log-structured file systems validate potential benefits as they achieve
up to x6.6 performance improvement. However, our experiments – presented
later in this section – show that in-place updates are not an issue for most

3

S Aa Ab

a b
-

D(a, b) = 3

Figure 1: Distance between two sectors a and b

FTL-based devices. In contrast with raw flash chips, constant rewrites at the
same logical address are even faster than sequential writes. Consequently,
we believe log-structured file systems benefits result from sequencing and
localizing writes, considering that scattered writes on flash memories are
inefficient.

uFLIP [2] is a component benchmark designed to quantify the behavior
of flash-memories when confronted to defined I/O patterns. Some of these
patterns relate to locality and increments between consecutive writes. Their
results confirm that localizing random writes greatly improve efficiency and
large increments lead to performances which could be even worse than ran-
dom writes. However, small variations of this increment are not tested, which
we propose to address in our experiments.

These works reveal that most characteristics are heterogeneous and device-
dependent, still, locality has a frequent impact on write performances. While
the causes of this behavior are mostly hidden by the FTL complexity, a pos-
sible explanation is that, with block-mapping, data modifications belonging
to the same logical block are logged on the same log blocks, which reduces
the cost of merging logs with data when garbage collection is performed.
This mechanism results in a strong correlation between logical write spatial
locality and performances.

To quantify this effect on FTL-based devices, we first introduce a notion
of distance between consecutive writes. Its definition relies on the “block
device” abstraction provided by the FTL. We precise the definition of sectors
as non-overlapping, contiguous sequences of S bytes; the address of a sector
being the position of its first byte in the flash memory. As the FTL hides
the erase mechanism, sectors can only be (re)written and read.

Definition 1 Let a and b be two sectors of size S located at addresses Aa

and Ab respectively.
Let D(a, b) be the directed distance between a and b :

D(a, b) = Ab − Aa

S

Figure 1 illustrates this distance between two sectors a and b. In absolute
value, this distance equals the number of sectors between a and b plus 1. This

4

0

1

2

3

4

5

6

7

8

−400 −300 −200 −100 0 100 200 300 400

av
er

ag
e

du
ra

tio
n

of
 w

rit
e

op
er

at
io

ns
 (

in
 m

s)

distance between consecutive writes (in sectors)

(a) SSD

0

5

10

15

20

25

30

−60 −40 −20 0 20 40 60

av
er

ag
e

du
ra

tio
n

of
 w

rit
e

op
er

at
io

ns
 (

in
 m

s)

distance between consecutive writes (in sectors)

(b) USB key

Figure 2: Influence of distance on write duration

metric can be negative to discriminate between increasing and decreasing
address values. For instance, if d is the distance between consecutive writes,
d = 0 refers to in-place updates, d = 1 refers to sequential writes and d = −1
refers to reverse sequential writes.

From the results of [2, 11], our assumption is that write duration – or cost
– is correlated with this distance, as reducing this distance linearly improves
the probability to be in the same logical block.

To validate this assumption, we measured the effect of distance on a vari-
ety of flash devices. In our experiments, the average write duration for each
distance d is evaluated, with write addresses being incremented – respectively
decremented if d is negative – by S×|d|, that is to say skipping |d|−1 sectors
between consecutive writes. Although individual write durations are erratic,
their average value converge when this access pattern is sustained.

Figure 2 shows that our assumption is verified for a flash-based SSD 1

and a USB key 2. Nevertheless, some flash devices do not have such a strong
correlation between distance and writing speed. Consequently, the optimi-
zation technique presented in section 4 is only applicable to a subset of flash
devices. Because of similar effects of locality, we believe block-mapping FTL
to be characteristic of this behavior. Block-mapping is a widespread mapping
technique for flash memories [5].

From the results of these experiments, we conjecture a usual behavior
where, up to a distance dmax, the average cost of a write operation cost(d) is
approximately proportional to d.

1. SSD Mtron MSD SATA3035-032, sector size S = 4 KiB
2. Flash chip HYNIX HY27UG088G5B with an ALCOR AU6983HL controller, sector

size S = 4 KiB

5

Definition 2 Let cost(d) be the cost of a write operation, given the distance
with the preceding write d.

cost(d) ∝ |d|, |d| ≤ dmax

Scattered writes (ie. d ≥ dmax) are typically 20 to 100 times slower than
sequential writes for these devices [2]. Consequently, and because of this pro-
portional performance pattern, reducing the average distance between con-
secutive writes can significantly improve efficiency, even if strict sequential
access (d=1) is not achieved. Skipping a few sectors when writing sequen-
tially is an access pattern defined as “skip-sequential”. The optimization
described in the following section focuses on this access pattern, skipping as
little sectors as possible.

4 Gathering random writes
Online transaction processing usually have a part of its workload consti-

tuted of small random writes [8]. The optimization described in this section
converts these random writes into skip-sequential writes, which should in-
crease performances on flash memories. With this optimization, sectors con-
taining valid data (used sectors) and unused sectors are mixed on the device.
An additional indirection layer is used to redirect logical writes to unused
sectors by minimizing the distance between consecutive writes.

To allow data retrieval, correspondences between physical and logical lo-
cations are stored in an address translation table, with every logical sector
being associated with a physical sector. Unused sectors – which are not as-
sociated with any logical sectors in the address translation table – do not
contain any useful data, and therefore constitute a pool of free sectors avail-
able for writing.

To overwrite a logical sector, data are assigned to a pool sector adjacent to
the previous write. Then the logical-physical association stored in the address
translation table is updated, the previously associated sector therefore being
freed and added to the pool. Figure 3 illustrates how logical writes are
assigned to physical locations, when writing successively on logical sectors 0,
3 and 0.

This optimization does not require garbage collection, as the size of the
pool remains constant: physical sectors containing obsolete data are imme-
diately added to the pool, and can be overwritten. Yet, as an independent
and internal mechanism, the FTL might still use garbage collection to handle
flash erasures.

6

0 1 2 3 4

1 20 43

0 1 2 3 4

1 2 0 43

next write in sequence

logical sector n

logical-physical association

n free physical sector

physical sector containing
logical sector n datan

0 1 2 3 4

1 2 0 4 3

0 1 2 3 4

1 20 4 3

Figure 3: Optimization overview

f0 f1 f2 f3 f4 f5 f6
-

D1(f5, f2) = 4

Figure 4: Positive distance between sectors f5 and f2

Any logical access pattern will lead to a skip-sequential physical access
pattern. Consequently, the average distance (and thus write efficiency) is
determined exclusively by the proportion of pool sectors. As increasing pool
size requires additional non-volatile memory space, this characteristic can be
adjusted to obtain an expected efficiency.

This indirection layer substitutes skip-sequential writes for random writes.
As a downside, sequential reads are also transformed into random reads.
However, this behavior is not an issue for flash devices, as random reads are
as efficient as sequential reads [2]. Still, read operations induce lookups in
the address translation table, which is a negligible overhead.

To prevent revisiting regions of the memory recently accessed, where pool
sectors should have been exhausted, only positive distances are considered
in this optimization. Additionally, the addressable space is assumed to be
circular, in order to avoid handling edges differently. Figure 4 illustrates this
metric, and flash sectors naming convention.

Notation 1 Let F be the set of sectors accessible from the device, hereafter

7

referred to as flash sectors. Indices express physical contiguity.

F = {fi}, 0 ≤ i < |F|

Definition 3 Let D1
3 be the restriction of D to positive values, and the

addressable space be circular.

D1(fi, fj) ≡ j − i (mod |F|), 0 ≤ D1(fi, fj) < |F|

Analogously, we use the following notations for the sets of logical and
pool sectors, labeled L and P, respectively.

Notation 2 Let L be the set of logical sectors.

L = {li}, 0 ≤ i < |L|

Notation 3 Let P be the set of flash sectors not associated with a logical
sector, referred to as pool sectors. By definition, |P| = |F|−|L|. T represents
the address translation table, described in definition 4.

P = {fi ∈ F : ∀lj ∈ L, fi 6= T (lj)}

The first data structure used by this algorithm is the address translation
table. This table – named T – binds every logical sector in L to a flash sector
in F.

Definition 4 Let T be the address translation table. T : L 7→ F is an
injective function associating every logical sector with a flash sector.

As this optimization aims at minimizing the average distance between
consecutive writes, the most recent written sector is referred to as fx.

Notation 4 Let fx ∈ F be the previously written flash sector.

A simple version of the redirection algorithm involves the following oper-
ations when writing a logical sector l ∈ L:
1: f ← closest pool sector from fx
2: write data on f
3: T (l)← f {update the translation table}
4: fx ← f

3. D1 is not a distance in a mathematical sense

8

Operation (1) – searching the pool sector closest to the previous write
– has to be implemented carefully with an adequate data structure. In our
implementation, to hasten lookups of this sector, we keep references of every
sector in the pool in an ordered list, where sectors are arranged by increasing
distances from fx.

Definition 5 Let P :
[
0, |P|

[
7→ P be the list of sectors in P ordered by

increasing distances from fx.

i > j ⇔ D1
(
fx, P (i)

)
> D1

(
fx, P (j)

)
Including this ordered list of pool sectors allows efficient retrievals of clos-

est pool sectors. Nevertheless, this list has to be updated with each newly
freed sector, whenever the translation table is altered. With this additional
data structure, writing on a logical sector l ∈ L implies the following opera-
tions:
1: f ← T (l)
2: write data on P (0)
3: T (l)← P (0)
4: remove P (0) from P
5: add f in P

Operations (4) and (5) can be done asynchronously (ie. during the sub-
sequent write in a write-intensive environment), as the list of pool sectors
P can be rebuild from the translation table T . Consequently, P might not
be up-to-date for each write request, which results in a slight increase of the
average distance between consecutive writes if the closest pool sector from
fx is not yet referenced in this list. However, with large values of |P|, this
case appears infrequently (ie. 1 out of |P| times) and can be neglected.

5 Model
To estimate write speed improvement provided by this algorithm, we

propose to model its behavior by evaluating the average cost of a write oper-
ation. This model is based on the simplifying assumption that pool sectors
are uniformly distributed within flash sectors. This state is also supposed to
be stable with occurring writes. Additionally, writing cost is expected to be
determined exclusively by its physical distance from the previous write.

Under these approximations, the overall speed improvement can be eval-
uated given the probability to obtain each possible distance, and their asso-
ciated costs.

9

Definition 6 Let p(d) be the probability that the sector fi ∈ P which min-
imizes D1(fx, fi) also verifies D1(fx, fi) = d, namely having a distance d
between two consecutive writes.

With the uniform distribution assumption, the probability p(d) to get
a distance d between two consecutive writes can be estimated as the ratio
between favorable and possible distributions :

p(d) =

(
|F|−d−1
|P|−1

)
(
|F|−1
|P|

)
The cost of a write operation conditioned by its distance from preceding

write, cost(d), can be approximated but also measured from the device, as
shown in figure 2. For our evaluations, the later is believed to be more
accurate.

Given these two parameters, p(d) and cost(d), the average cost of a write
operation, named costavg, amounts to :

costavg =
|L|∑

d=1
p(d)× cost(d)

Estimations from this model are reported in section 6, together with
experimental results. In addition to theoretical performance gains, resource
usage can be quantified as this optimization trades CPU, RAM and flash
memory space for writing speed.

CPU overheads occur when handling the translation table and the list of
pool sectors during a write operation. These overheads relate to the following
operations :

– search for the closest pool sector, which is O(1) when pool sectors
references are stored in an ordered list,

– update the translation table, which is O(1),
– update the list of pool sectors, which is O(log |P|) with optimized data
structures, such as skip-lists.

Updating the list of pool sectors is the only operation with significant
CPU cost. However, as stated in section 4, this update might be asyn-
chronous.

For read operations, looking up correspondences between logical and flash
sectors in the address translation table results in constant CPU overhead,
which is negligible compared to a flash sector read duration.

RAM overheads are caused by the translation table and the list of pool
sectors being kept in main memory. These overheads amounts to O(|L| ×

10

0

200

400

600

800

1000

0 20 40 60 80 100 120 140

lo
gi

ca
lr

an
do

m
w

rit
e

io
p

s

pool overhead (%)

Experimental results
Sequential iops

Random iops
Model

Figure 5: Logical random write performance for 100,000 logical sectors

log |F|) for the translation table, and O(|P| × log |F|) for the pool. Total
RAM overhead adds up to O(|F| × log |F|).

As pool sectors are stored on the device, and do not hold any useful data,
flash memory space overhead amounts to |P| sectors.

The last significant trade-off involves sequential writes. Since, with this
algorithm, performances do not depend on the access pattern, logical sequen-
tial writes have the same performances as logical random writes. Existing
attempts to sequentialize accesses would not bring any additional perfor-
mance gain and should be discarded.

6 Results
To validate this optimization together with the model detailed in the

previous section, the data placement algorithm is tested on both devices
mentioned in section 3. These tests consist in evaluating the average cost of
logical random writes for varying sizes of the pool.

Figure 5 shows experimental results and the model expectations for the
USB Key. To compare with conventional access patterns, random write and
sequential write iops (respectively 30 and 1060) are also reported on this
figure.

To obtain performances equivalent to sequential writes, consequent sac-
rifices have to be made in terms of flash memory space. In our experiment,
95% of sequential write efficiency is achieved when the pool is about three
times larger than the logical address space. However, we achieved significant

11

0

1000

2000

3000

4000

5000

6000

7000

0 25 50 75 100

lo
gi

ca
lr

an
do

m
w

rit
e

io
p

s

pool overhead (%)

Experimental results
Sequential iops

Random iops
Model

Figure 6: Logical random write performance for 200,000 logical sectors

improvements over random writes with acceptable trade-offs, as we have a
ten times improvement with 50% flash memory space overhead.

Contrastingly, writing speed on the SSD is improved with distances below
dmax = 256, instead of dmax = 32 for the USB key. As a result, notable
improvements are achieved with relatively lower sacrifices. Experimental
results for this device are reported on figure 6.

Another noticeable difference was suggested by measurements obtained
in section 3: figure 7 focuses on small distance values. Remarkably, a skip-
sequential access pattern with a distance of 4 sectors between consecutive
writes shows relatively good performances. Highest iops are achieved with
a pool size of about 29,000 sectors, which results in an average – but still
random – distance of 4. This property allows optimal performances to be
achieved with much less overhead. Indeed, our optimization reaches 7796
average iops for 4KB logical random writes at a cost of only 687 KB of
RAM, and 14.5% flash overhead for 800 MB of usable data space. Compared
to physical random writes 134 average iops, performances are improved by
×58.

Determining this optimal pool size is not straightforward, and depends on
the sector size. With 16 KiB sectors, experiments give an optimum distance
of 2; and about 1.6 for 32 KiB sectors. A possible explanation for this
behavior is that interleaving favors non-zero sized skips to access multiple
internal flash chips in parallel [12].

Unfortunately, this “peak” behavior might not be representative of flash
solid-state drives. Among the twelve SSD with uFLIP results available, only
one (by the same manufacturer as ours) expose the same characteristic. This

12

0

0.05

0.1

0.15

0.2

0.25

0.3

−10 −5 0 5 10

av
er

ag
e

du
ra

tio
n

of
 w

rit
e

op
er

at
io

ns
 (

in
 m

s)

distance between consecutive writes (in sectors)

d
=

1

d
=

4

Figure 7: Skip-sequential vs. sequential write cost

singularity is only a facultative additional benefit as it was not part of our
initial assumptions. Our model might be closer of what we would expect
with a regular SSD, and still shows considerable performances gains, such as
a x40 improvement over random writes with 25% flash memory overhead.

Still, these results reveal some limitations of our model. One of its sim-
plifying assumptions is that writing cost is determined exclusively by its
physical distance from the previous write, which might not be accurate.

Moreover, experiments outperform our model as memory is accessed in
only one direction – increasing physical addresses – to prevent revisiting
regions of the memory where pool sectors should have been exhausted. This
improvement over our theoretical uniform distribution reduces the average
distance between consecutive writes.

7 Related Works
Many optimizations have been conceived with flash chips characteristics

in mind. A frequent design avoids in place updates with log-based methods.
The In-Page Logging Approach [7] allocates a portion of each bloc to write

updates of its pages. This optimization improves writing speed, as updates
are written sequentially inside the erase unit, at the expense of more read
operations. Garbage collection consists in merging data pages with their log
sectors on a new empty block.

Page-Differential Logging [6] uses a similar approach, except page differ-
ential are logged. Writing is improved as differentials of multiple pages can
be combined to fit in a single page. Also, differentials are recomputed from

13

the original page for each overwrite, which implies that reading a logical page
involves at most two physical read (the original page and its last differential).
The garbage collection mechanism is also improved, as merging a page with
its current differential is not required (both can be copied separately).

Log-structured file systems, with a distinction between file systems de-
signed for raw flash chips (without FTL) – like YAFFS, LogFS, JFFS – and
those designed for block devices – like LFS – use methods comparable to the
in-page logging approach, and therefore provide similar benefits and draw-
backs. Additionally, I/O patterns of log-structured file systems for block
devices when accessing multiple files tend to be of small size and scattered.

Regarding more specific use cases, B-File [9] is an abstraction layer for
self-expiring items on flash memories. Depending on their expiration date,
items are written sequentially in appropriate erase units to avoid copying
valid data on deletion. Another approach defines an Append and Pack Layout
[10], which divide the database in two separate datasets, respectively write-
hot and write-cold. These datasets are written sequentially in multiples of
the erase block size, with space reclamation when the memory is full.

The main differences between these approaches and our optimization are
the necessity of a garbage collection mechanism and decreased read perfor-
mances as a logical read rely on multiple physical reads. In contrast with
these works, we optimize data access exclusively over the FTL. As a result,
our approach is not applicable to raw flash chips.

RS-Wrapper [12] is a simple conversion between random writes and se-
quential writes for FTL-based devices. When random writes are adequately
dense, their experiments show that reading the missing pages to overwrite se-
quentially the entire data range outperforms overwriting exclusively modified
pages. However, reorganizing random writes to constitute a skip-sequential
access pattern has not been tested.

FlashLogging [3] is an efficient mechanism for synchronous logging on
multiple low capacity flash devices. While the use case differs from our
proposition, this approach could be used to address the non-volatile issue
of our current optimization. Indeed, data written to the device are volatile,
since the address translation table is stored in RAM, and is needed to rebuild
the database. Logging its modifications on additional flash devices could pro-
vide an efficient solution. This issue could also be managed by writing logical
addresses together with data, similarly to the FTL internal functioning.

On a different but related subject, enterprise class SSD can provide better
random write performance at the cost of additional RAM, processing power
and spare blocks (not accessible from the host) [1, 8]. However, these designs
focus on random write and provide invariably good performances for the en-
tire device. Most database applications mix random and sequential accesses

14

and do not require such homogeneous random write efficiency. By adding
a software layer, our optimization permit using less expensive personal-class
SSD with good, yet spatially limited, random write performances. This is
also applicable to removable flash media, which have lessened hardware ca-
pabilities.

8 Conclusion
In this paper, we first introduced a notion of distance, and described its

impact on flash memories write performances. Based on this property, we
proposed a data placement algorithm, which significantly improves random
write performances. Our contributions emphasize the importance of locality
for these FTL-based devices, and we believe skip-sequential access patterns
to be of use for future data placement optimizations.

Compared to native write operations over the FTL, our optimization ben-
efit from the host available RAM and processing power to improve random
write efficiency on portions of the device. This method support localized per-
formances adjustment, while flash memories offer homogeneous behaviors.

For the SSD used in our experiments, we achieved an improvement of up
to ×58 at a cost of only 14.5% flash overhead. In this best case scenario,
this technique even caused random write to perform slightly better than se-
quential write, by 3.5%. This optimization is, to some extent, also applicable
on flash memories with less capacity, as results with a USB key show a ×10
improvement with 50% flash overhead. Conjointly, we proposed a model to
predict write performances, however, future works are needed to enhance its
accuracy and help tradeoffs adjustments.

Another perspective relate to data volatility, which might be addressed
in future works with solutions proposed in section 7. Still, this optimization
is already applicable for indexation or temporary tables, where volatility is
acceptable.

References
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,

and R. Panigrahy. Design tradeoffs for ssd performance. In ATC’08:
USENIX 2008 Annual Technical Conference on Annual Technical Con-
ference, pages 57–70, 2008.

15

[2] L. Bouganim, B. T. Jónsson, and P. Bonnet. uFLIP: Understanding
Flash IO Patterns. In CIDR ’09: Proceedings of the 4th biennial Con-
ference on Innovative Data Systems Research, 2009.

[3] S. Chen. FlashLogging: Exploiting Flash Devices for Synchronous Log-
ging Performance. In SIGMOD ’09: Proceedings of the 35th interna-
tional conference on Management of data, pages 73–86, 2009.

[4] J. Gray and B. Fitzgerald. Flash Disk Opportunity for Server Applica-
tions. Queue, 6(4):18–23, 2008.

[5] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh. Disk sched-
ulers for solid state drivers. In EMSOFT ’09: Proceedings of the 7th
international conference on Embedded software, pages 295–304, 2009.

[6] Y.-R. Kim, K.-Y. Whang, and I.-Y. Song. Page-differential logging: an
efficient and DBMS-independent approach for storing data into flash
memory. In SIGMOD ’10: Proceedings of the 36th international confer-
ence on Management of data, pages 363–374, 2010.

[7] S.-W. Lee and B. Moon. Design of flash-based DBMS: an in-page log-
ging approach. In SIGMOD ’07: Proceedings of the 33th international
conference on Management of data, pages 55–66, 2007.

[8] S.-W. Lee, B. Moon, and C. Park. Advances in flash memory SSD
technology for enterprise database applications. In SIGMOD ’09: Pro-
ceedings of the 35th international conference on Management of data,
pages 863–870, 2009.

[9] S. Nath and P. B. Gibbons. Online maintenance of very large random
samples on flash storage. Proc. VLDB Endow., 1(1):970–983, 2008.

[10] R. Stoica, M. Athanassoulis, R. Johnson, and A. Ailamaki. Evaluat-
ing and repairing write performance on flash devices. In DaMoN ’09:
Proceedings of the 5th international workshop on Data Management on
New Hardware, pages 9–14, 2009.

[11] Y. Wang, K. Goda, and M. Kitsuregawa. Evaluating Non-In-Place Up-
date Techniques for Flash-Based Transaction Processing Systems. In
DEXA ’09: Proceedings of the 20th International Conference on Data-
base and Expert Systems Applications, pages 777–791, 2009.

[12] D. Zhou and X. Meng. RS-Wrapper: random write optimization for
solid state drive. In CIKM ’09: Proceeding of the 18th conference on
Information and knowledge management, pages 1457–1460, 2009.

16

