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Exponential stability for 2D systems: the linear case
Nima Yeganefar, Nader Yeganefar, Olivier Bachelier, and Emmanuel Moulay

Abstract—This short paper deals with a 2D discrete linear
Roesser model. The results introduced here are a follow-up of
a paper we proposed recently and where we explained and
motivated the reasons we need to adopt a new definition of
exponential stability for 2D systems. However this previous result
left aside a crucial point that we would like to asses here: is our
new definition of exponential stability coherent with the existing
stability criterion in the linear case? We hereby show that, in
the linear case, 1. our new definition of exponential stability
is equivalent to asymptotic stability and 2. the characteristic
polynomial-based stability criterion is a sufficient and necessary
condition for the exponential stability we have introduced.
keywords: 2D systems, linear discrete systems, exponential sta-
bility.

I. INTRODUCTION

A. Background

Multidimensional systems were first introduced in the mid
1970s. Working on digital filters, several authors proposed to
extend the framework which was mainly based on transfer
functions to the multidimensional case: instead of having one
independent variable, they looked at polynomial functions of
higher dimensions. The notion of stability was also discussed
in the BIBO (bounded input bounded output) sense [1]. This
allowed to extend a well-known stability criterion to the nD
case and it was based on the characteristic polynomial equation
of the studied system.

This famous criterion simply states that the transfer function
is BIBO stable for systems devoid of poles outside the stability
region, which seems natural as it is similar to the 1D case.
However the criterion is not as simple as in the 1D case, the
number of zeros are usually infinite and further techniques
need to be used in order to have a tractable condition (see
for instance [2]). It was quoted as a necessary and sufficient
condition, led to several stability tests [3], [4], and broadened
to include exponential stability in [5]. However Goodman
later showed in [6] that the condition is necessary only if the
transfer function does not present a particular type of point
called nonessential singularity of the second kind.

State-space models for multidimensional systems were
given by different authors around the same time (see [7] and
[8], [9]). Fornasini-Marchesini also introduced a definition
of asymptotic stability which is still in use today in the
field. Introducing state space models allowed a large number
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of researchers to engage in the field of multidimensional
systems as several techniques based on LMIs (linear matrix
inequalities) and Lyapunov techniques were extended from the
1D case to the nD case ([10], [11]).

Exponential stability, on the other hand, has been seldom
studied directly in the 2D systems literature. In the linear case,
one of the only works dealing with this problem is given
by Pandolfi in [5]. Pandolfi proved that asymptotic stability
and exponential stability are equivalent, similarly to what
happens in the 1D case. This equivalence could explain why
exponential stability has not been very much investigated in the
2D field. Later in [12], the authors extended this definition to
repetitive systems but we are not discussing this special type
of multidimensional systems in this paper; this work could
however impact the results given in [12]. In the continuous
case, we also have proposed a definition in [13]. However, in
a recently published paper [14] we have carefully explained
the shortcomings of these definitions and strongly motivated
the introduction of a new one (for the discrete case only).

B. Goal of the paper

As pointed out above, in [14], we have shown that the exist-
ing definition of exponential stability [5] used in the literature
of 2D systems is not correct. We have therefore introduced
and motivated the use of a new definition that allowed us to
investigate the exponential stability of nonlinear 2D systems
and to propose the first converse Lyapunov theorem for 2D
systems under certain assumptions. By doing so, we have left
unanswered several questions, especially in the linear case.
This paper therefore tries to fill the gap introduced by our
work.

The questions we would like to answer in this short paper
are the following:

1) Do we still have equivalence between our newly defined
exponential stability and asymptotic stability in the
linear case?

2) There is a well-known characteristic polynomial-based
stability criterion from which a lot stability results are
derived. Is this stability criterion still valid (ie. necessary
and sufficient) if one uses our newly proposed defini-
tion?

The answers to both of these questions are positive and the
proofs of these answers are the main results of this article.

Let us now recall the results we are talking about.

C. Previous important results

In order to have a self-contained article, we think it is
important to quickly recall a few of the important results we
published in the previously mentioned work [14]. Moreover,
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to make it easier to follow for the reader, we are going to use
a Fornasini-Marchesini type model [8], [9] contrary to [14]
where the model is a nonlinear version of the well-known
Roesser model [7]. Both models are equivalent and therefore
working with one or the other is the same. That being said,
our system is described as follows:

x(i+ 1, j + 1) = Ax(i, j + 1) +Bx(i+ 1, j) (1)

where x is a real vector of dimension n and matrices A,B
are of appropriate dimensions. i and j are positive integers
so that the initial conditions are taken in the first quadrant
(ϕ(i) = x(i, 0), and ψ(j) = x(0, j) for i, j ∈ N), and we
study the behavior of trajectories in N2 as i+ j → +∞. Note
that the approach adopted by Fornasini-Marchesini ([8], [9])
for 2D systems is different: they consider initial conditions
given on the subset {(i, j) ∈ Z2, i + j = 0}, and they study
the behavior of trajectories as i + j → +∞. This choice of
initial conditions is not without consequence on the stability
definitions as we have pointed out in [14], for further remarks
on the importance of the initial conditions for 2D systems one
can refer to eg. [15], [16].

For such a system, observe that the definition of asymptotic
stability we adopted in [14] is more restrictive than the one
usually found in the literature, as we define the concept of
stability and attractivity (as in the 1D case).

Definition 1.1 ([17], [14]): The point xe = 0 is said to be
asymptotically stable (in the sense of Lyapunov) if:

1) xe = 0 is stable (for all ε > 0, there exists δ(ε) > 0
such that if ‖ϕ(i)‖ < δ, ‖ψ(j)‖ < δ then ‖x(i, j)‖ < ε
for all i, j > 0),

2) limi+j→∞ x(i, j) = 0 when limi→∞ ϕ(i) = 0 and
limj→∞ ψ(j) = 0. This property will be called attrac-
tivity as in the 1D case.

Exponential stability is defined as follows:
Definition 1.2 ([14]): The equilibrium point xe = 0 of

system (1) is said to be exponentially stable if there are
constants q ∈ (0, 1) and M > 0 such that for any initial
conditions ϕ and ψ, and for all (i, j) ∈ N2, we have:

‖x(i, j)‖ ≤M

(
i∑

r=0

‖ϕ(r)‖
qr+1

+

j∑
s=0

‖ψ(s)‖
qs+1

)
qi+j (2)

Remark 1: This definition was mainly supported by two
observations in [14]. First, notice that each term x(i, j) is de-
termined by the knowledge of ϕ(r) and ψ(s), for r = 0, . . . i,
and s = 0, . . . , j respectively, so that it is natural to express
the bound (2) in terms of these quantities (see for instance
(5) which gives the full expression of the solutions). Second,
analyze the following special example of an upper triangular
matrix with a single eigenvalue 0 < q < 1:

x(i+ 1, j+ 1) =

[
q 1
0 0

]
x(i, j+ 1) +

[
0 0
0 q

]
x(i+ 1, j) (3)

As expected, because q ∈ (0, 1), the trajectories are exponen-
tially decreasing. However, the trivial solution of system (3)
is not exponentially stable using the definition introduced in
[5] but it is using Definition 1.2 (for further details, please see
[14]).

II. MAIN RESULTS

Proposition 2.1: Exponential stability implies asymptotic
stability (Definition 1.1).

Proof: Let us first show that exponential stability implies
stability. This comes from the fact that for a given ε > 0,
there exists a δ = ε(1−q)

4M > 0 such that if for all i, j ≥ 0,
‖ϕ(i)‖ ≤ δ and ‖ψ(j)‖ ≤ δ, then

‖x(i, j)‖ ≤M

(
j∑

k=0

‖ψ(k)‖
qk+1

+

i∑
k=0

‖ϕ(k)‖
qk+1

)
qi+j

≤Mδ

(
j∑

k=0

1

qk+1
+

i∑
k=0

1

qk+1

)
qi+j

≤Mδ

(
qj−1 + qi−1 − 2qi+j

1− q

)
≤ ε

Attractivity follows by similar arguments. Note that this proof
is independent of the linearity of the system.

Theorem 2.2: The linear system (1) is exponentially stable
if and only if

det (I − z1A− z2B) 6= 0 (4)

in the closed set
{

(z1, z2) ∈ C2, |z1| ≤ 1, |z2| ≤ 1
}

Proof: The proof is very similar to the one given in [5]
(and inspired by [9]) only the final steps are different. The
idea of the proof can be easily explained following this path:

(ES)⇒ (AS)⇔ (4)⇒ (ES)

Indeed from Proposition 2.1, exponential stability (ES) im-
plies asymptotic stability (AS). From the work of Fornasini-
Marchesini [9], we know that asymptotic stability is equivalent
to the characteristic polynomial condition (4). We still need to
prove that if (4) is verified then the system is exponentially
stable. Note that this will also prove that exponential and
asymptotic stability are equivalent in the linear case.

To do so, we need to explicitly find the solutions of the
linear system (1). Following Pandolfi’s work in [5], we know
that the solutions of system (1) can be explicitly computed
using a (z, ζ)-transform of x(i, j):

x(i, j) =

i∑
r=0

E(i− r, j)Φ(r, 0) +

j∑
s=0

E(i, j − s)Ψ(0, s)

(5)

where E(i, j), Φ(i, j) and Ψ(i, j) are defined by their (z, ζ)-
transform.

E(z, ζ) =

(
I − A

z
− B

ζ

)−1
Φ(z, ζ) =

(
I − A

z

)
ϕ(z)

Ψ(z, ζ) =

(
I − B

ζ

)
ψ(ζ).

Let us also give the expression of Φ (Ψ is analogous, see [5]
for details). Φ(i, j) = Φ1(i, j)−AΦ2(i, j) with

Φ1(i, j) =

{
ϕ(i), i ≥ 0, j = 0
0, otherwise,
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Φ2(i, j) =

{
ϕ(i− 1), i ≥ 1, j = 0
0, otherwise.

From inequality (5) and the definitions of Φ and Ψ, we can
derive the following bound:

‖x(i, j)‖ ≤
i∑

r=0

‖E(i− r, j)‖ ‖ϕ(r)‖

+ ‖A‖
i∑

r=0

‖E(i− r, j)‖ ‖ϕ(r − 1)‖

+

j∑
s=0

‖E(i, j − s)‖ ‖ψ(s)‖

+ ‖B‖
j∑
s=0

‖E(i, j − s)‖ ‖ψ(s− 1)‖ . (6)

As shown in [9], [5], if condition (4) is verified then there
exists a number α ∈ (0, 1) such that the series

∞∑
r=0

∞∑
s=0

z−rζ−sE(r, s)

is absolutely convergent for |z| > α, |ζ| > α.
Choosing α < q < 1, then

∞∑
r=0

∞∑
s=0

q−rq−s ‖E(r, s)‖ < M.

As we are dealing only with positive terms, the following
inequality holds:

q−(i+j) ‖E(i, j)‖ ≤
∞∑
r=0

∞∑
s=0

q−rq−s ‖E(r, s)‖ ,

so that
‖E(i, j)‖ ≤Mqi+j .

Therefore we can bound the different terms in (6) as follows:
i∑

r=0

‖E(i− r, j)‖ ‖ϕ(r)‖ ≤M
i∑

r=0

qi+j−r ‖ϕ(r)‖

i∑
r=0

‖E(i− r, j)‖ ‖ϕ(r − 1)‖ =

i−1∑
r=0

‖E(i− r − 1, j)‖ ‖ϕ(r)‖

≤M
i−1∑
r=0

qi+j−r−1 ‖ϕ(r)‖ = M
1

q

i−1∑
r=0

qi+j−r ‖ϕ(r)‖

and similarly for the other two terms in (6). Playing with the
indices and the constants, we can easily show that there exists
a constant M ′ such that

‖x(i, j)‖ ≤M ′
(

i∑
r=0

‖ϕ(r)‖
qr+1

+

j∑
s=0

‖ψ(s)‖
qs+1

)
qi+j

Thus, (4) implies ES which concludes the proof.
Remark 2: The attentive reader could notice that Pandolfi

in [5] showed that his definition of ES is equivalent to the
criterion (4). We have just proved that using our definition
of ES, we also have equivalence with (4). However we
pointed out earlier that both definitions are not equivalent (see

Remark 1). The problem lies in the fact that Pandolfi wrongly
assumed that his definition of ES implies AS: this is not true;
this means that his proof of equivalence is not complete. But
as indirectly pointed out several times in this paper, he did all
the hard work and his contribution to our paper is invaluable.

III. CONCLUSION

In this short paper, we wanted to complete the results
introduced in a recently published work on exponential sta-
bility [14]. Whereas [14] was focused on nonlinear systems,
this paper deals with linear systems and deals with several
questions left unanswered. Indeed, by introducing a new
definition of exponential stability, it was important to show
that this definition is in coherence with the huge literature in
the linear case. This is done by showing, first, that exponential
stability and asymptotic stability are equivalent in the linear
case, second, that a necessary and sufficient condition for
exponential stability is given by the well-known character-
istic polynomial condition. Whether this work impacts the
definition of exponential stability given for repetitive systems
remains to be investigated.

‖x(i, j)‖ > M

(
qi max

0<j′<j
‖ψ(j)‖+ qj max

0<i′<i
‖ϕ(i)‖

)
.
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