
OntoDBench: Interactively Benchmarking Ontology Storage
in a Database

Stéphane Jean1, Ladjel Bellatreche1, Carlos Ordonez2, Géraud Fokou1, Mickaël Baron1

1 LIAS/ISAE-ENSMA, Futuroscope, France
(jean,bellatreche,fokou,baron)@ensma.fr

2 University of Houston, Houston, U.S.A.
ordonez@cs.uh.edu

1 Introduction

Nowadays, all ingredients are available for developing domain ontologies. This is due to the
presence of various types of methodologies for creating domain ontologies [3]. The adoption of
ontologies by real life applications generates mountains of ontological data that need techniques
and tools to facilitate their storage, management and querying. The database technology was one
of these solutions. Several academic and industrial database management systems (DBMS) have
been extended with features designed to manage and to query this new type of data (e.g., Oracle
[10], IBM Sor [6] or OntoDB [1]). The obtained databases are called semantic databases (SDB).

Five main characteristics differentiate SDB from traditional databases. (i) They store both
ontologies and their instances in the same repository. (ii) Three main storage layouts are candi-
dates for storing ontologies and their instances: vertical (triple table), horizontal (one table by
class), binary (one table by property) [8], where each one has its own advantages and draw-
backs. (iii) SDB have three main architectures. Systems such as Oracle [10] use the traditional
databases architecture with two parts: data schema part and the system catalog part. In systems
such as IBM Sor [6], the ontology is separated from its instances resulting in an architecture
with three parts: the ontology part, the data schema part and the system catalog part. OntoDB
[1] considers an architecture with four parts, where a new part called the meta-schema part is
added as a system catalog for the ontology part. (iv) The ontology referencing SDB instances
may be expressed in various formalisms (RDF, RDFS, OWL, etc.). (v) Ontology instances can be
rather structured like relational data or be completely unstructured. Indeed, some concepts and
properties of an ontology may not be used by a target application. As a consequence, if only a
fragment of the domain ontology is used, ontology instances have a lot of NULL values. On the
contrary, the whole ontology could be used resulting in relational-like ontology instances.

These characteristics make the development ofSDB benchmarks challenging. Several bench-
marks exist for SDB [7, 9, 5]. They present the following drawbacks: (i) they give contradictory
results since they used datasets and queries with different characteristics. (ii) A gap exists be-
tween the generated datasets used by existing benchmarks and the real datasets as shown in [2].
(iii) The absence of an interactive tool to facilitate the use of those benchmarks. (iv) The task of
setting all benchmark parameters is time consuming for the DBA.

Recently, Duan et al. [2] introduced a benchmark generator to overcome the gap between
the generated datasets of existing benchmarks and the real datasets. This benchmark generator
takes has input the structuredness of the dataset to be generated. However, this approach has two
limitations: (i) it is difficult to do experiments for the whole spectrum of structuredness. Thus the
DBA has to do its own experiments generating a dataset with the desired structuredness, loading
it in SDB and executing queries and (ii) the generated dataset is not associated to queries that
are similar to the real workload. Again the DBA has to define queries on the generated dataset
which are similar to her/his real application (same selectivity factors, hierarchies, etc.). Instead

of defining a dataset and workload conform to the target application, we propose an alternative
benchmarking system called OntoDBench to evaluate SDB. The main difference with previous
benchmarking systems is that OntoDBench takes as input the real datasets and workload of the
DBA instead of using a generated dataset and predefined set of queries. OntoDBench has two
main functionalities. Firstly it evaluates the scalability of the real workload on the three main
storage layouts of SDB . Then, according to her/his functionality and scalability requirements,
the DBA may choose the adequate SDB. This functionality is based on a rewriting query mod-
ule that translates input queries according to the different storage layouts and includes ontology
reasoning. Secondly, OntoDBench offers the DBA the possibility to estimate and modify the
characteristics of its input dataset (e.g., structuredness of ontology instances or size of the on-
tology hierarchy) and workload (e.g., number of joins or selectivity factors of selections). This
functionality can be used by the DBA to check whether an existing benchmark (e.g., the DB-
pedia SPARQL benchmark [7]) uses a dataset and workload similar to those present in her/his
application. It can also be used to predict the behavior of storage layouts if ontology data and/or
queries change.

2 OntoDBench: Metrics and Demonstration Description

Metrics play a key role in benchmark systems. Usually they are used to generate data with par-
ticular characteristics. In OntoDBench, they are used both for modifying the real dataset and for
checking if the results of an existing benchmark are relevant to the real dataset/workload that
must be managed. Since SDBs store both ontologies and their instances and execute semantic
queries, three types of metrics must be considered.
Ontology metrics: they include metrics such as the number of classes, the number of properties
by class or the size of class and property hierarchies. The ontology is also characterized by the
fragment of Description Logics used (to characterize the complexity of reasoning).
Instance metrics: they include metrics such as the number of instances by class or the average
number of properties associated with a subject. We also consider the structuredness of a dataset
which is defined in [2] according to the number of NULL values in the dataset. This number can be
computed with the following formula: #NULL = (

∑
C

|P(C)| × |I(C,D)| − Nt(D)), where |P(C)|,

|I(C,D)| and |Nt(D)| represent the number of properties of the class C, the number of instances
of C in the dataset D and the number of triples of the dataset D respectively.
This number of NULL can be computed to evaluate the structuredness of each class. This met-
rics is called coverage of a class C in a dataset D, denoted CV(C,D). It is defined as follows:
CV(C,D) =

∑
p∈P(C) OC(p,I(C,D))
|P(C)| × |I(C,D)| , where OC(p, I(C,D)) is the number of occurrences of a property

p for the C instances of the dataset D.
A class can be more or less important in a dataset. If we denote τ the set of classes in the dataset,
this weight WT is computed by: WT (CV(C,D)) = |P(C)| + |I(C,D)|∑

C′∈τ(|P(C′)| + |I(C′ ,D)|)
This formula gives higher weights to the types with more instances and with a larger number
of properties. The weight of a class combined with the coverage metric can be used to compute
the structuredness of a dataset called coherence. The coherence of a dataset D composed of the
classes τ (denoted CH(τ,D)) is defined by: CH(τ,D) =

∑
C∈τ

WT (CV(C,D)) ×CV(C,D).

Query metrics: the considered semantic queries consist of conjunctive queries composed of se-
lection and join operations. Thus these metrics include characteristics such as the selectivity
factors of predicates or the number of join operations in the query.
DataSet Segmentation: loading a big dataset in the benchmark repository represents a real diffi-
culty, especially when the size of these data exceeds the main memory. To overcome this problem,

Semantic Queries
(e.g. SPARQL)

Dataset

(e.g. RDF Triplets)

Query
Rewriting

Metrics
Computation

Dataset Metrics

SQL

Queries

Benchmark results

Benchmarking

Storage

Storage Layouts

Instances

1 2

Query
Ontology
Instance

Segmentation

Visualization

Segments

Fig. 1. The Components of our System

we add a new component allowing the DBA to segment the input files. We give the possibility to
set the size of segments.
Dataset Storage: this module offers various possibilities to store the incoming dataset segments
according to the three storage layouts. The loading process is executed with a multithreaded
program (one thread for each segment). This process is achieved by (1) converting all the dataset
in the N-Triples format since it maps directly to the vertical storage layout, (2) inserting each
triple in the vertical storage layout and (3) loading the dataset in the binary and horizontal storage
layouts directly from the vertical storage layout (which was more efficient that reading again the
input files). The conversion in the N-Triples format is done with the Jena API.
Metrics Computation: the second step of OntoDBench consists in computing the metrics of the
dataset. This metric can be used to find the relevant benchmarks to the current scenario. Since
the data are already in the database, the computation of most basic metrics is done with an SQL
query. The computation of the coverage and coherence is more complex and is implemented
with stored procedures. The metrics are automatically computed once the dataset is loaded and
exported in a text file.
Query Rewriting Module: once the dataset is loaded in the database, the queries need to be trans-
lated according to the three storage layouts.
Benchmarking: with the previous query rewriting module, the workload under test can be exe-
cuted on the three main storage layouts for ontology instances. The database buffers can have
an influence on the query performance. Indeed, the first execution of a query is usually slower
that the next executions due to the caching of data. As a consequence our benchmarking module
takes as input the number of times the queries have to be executed.
Visualization: The benchmarking results (metrics, query processing, etc.) are stored in a text file.
The DBA may visualize them via charts, histograms, etc. to facilitate their interpretation and
exploitation for reporting and recommending a storage layout. The graphs are generated with the
Java JFreeChart API3.
Reasoning: Our system implements the two main reasoning approaches: (1) database saturation
that consists in performing reasoning before query processing and to materialize all the deduced
facts and (2) query reformulation that consists in performing reasoning during query processing

3 www.jfree.org/jfreechart/

by reformulating queries to include all virtual deduced facts. OntoDBench offers the DBA the
possibility to test these two approaches. For the moment we have implemented the entailment
rules of RDFS. For the database saturation approach, we use the PL/pgSQL database program-
ming language to implement the 14 rules of RDFS. For the query reformulation approach, we
have implemented the reformulate algorithm proposed in [4]. Figure 1 summarizes the different
components of our system.

To validate our proposal we have done an implementation of OntoDBench (the source code
is available at http://www.lias-lab.fr/forge/projects/ontodbench/files). We have used JAVA for the
graphical user interface and PostgreSQL as a database storage. A demonstration video summariz-
ing the different services offered by our benchmark is available at: http://www.lias-lab.fr/forge/
ontodbench/video.html. The demonstration proposed in this paper consists in using OntoDBench
on the LUBM dataset with a size ranging from 1K to 6 millions triplets and 14 queries. OntoD-
Bench proposes a user friendly interface for the DBA so she/he can choose the size of segments,
the storage layouts, etc. We demonstrate the following:

– the loading of huge amount of data by offering a segmentation mechanism that partition data
in segments of a fixed size;

– the possibility to store the loaded data into the target DBMS according to the three main
storage layouts (horizontal, vertical and binary);

– the computation of the dataset and workload metrics of the LUBM benchmark. The DBA
may easily identify the degree (high, medium and low) of structuredness of the dataset. If the
DBA is not satisfied with the obtained results, OntoDBench offers her/him the possibility to
update the dataset to fit with her/his structuredness requirements;

– the query rewriting module of our system. We show the SQL translation of the LUBM
queries on the three main storage layouts;

– the benchmarking of each query and the visualization of its result using graphs. The DBA
may observe the query processing cost of all queries on the different storage layouts.

References

1. H. Dehainsala, G. Pierra, and L. Bellatreche. OntoDB: An Ontology-Based Database for Data Intensive
Applications. In DASFAA, pages 497–508, 2007.

2. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges: a comparison of rdf
benchmarks and real rdf datasets. In SIGMOD, pages 145–156, 2011.

3. C. Garcia-Alvarado, Z. Chen, and C. Ordonez. Ontocube: efficient ontology extraction using olap
cubes. In CIKM, pages 2429–2432, 2011.

4. F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. View Selection in Semantic Web Databases.
PVLDB Journal, 5(2):97–108, 2011.

5. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems. Journal of
Web Semantics, 3(2-3):158–182, 2005.

6. J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, and Y. Yu. Sor: a practical system for ontology
storage, reasoning and search. In VLDB, pages 1402–1405, 2007.

7. M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo. DBpedia SPARQL Benchmark – Perfor-
mance Assessment with Real Queries on Real Data. In ISWC, pages 454–469, 2011.

8. C. Ordonez and P. Cereghini. Sqlem: Fast clustering in sql using the em algorithm. In SIGMOD, pages
559–570, 2000.

9. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Performance Benchmark.
In ICDE, pages 222–233, 2009.

10. Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, and J. Srinivasan. Implementing an
inference engine for rdfs/owl constructs and user-defined rules in oracle. In ICDE, pages 1239–1248,
2008.

