
BeMoRe: a Repository for Handling Models
Behaviors

Youness Bazhar
LIAS/ISAE-ENSMA

Futuroscope, FRANCE
Email: bazhary@ensma.fr

Yamine Aı̈t-Ameur
IRIT/INP-ENSEEIHT
Toulouse, FRANCE

Email: yamine@enseeiht.fr

Stéphane Jean
LIAS/University of Poitiers

Futuroscope, FRANCE
Email: jean@ensma.fr

Abstract—With the increasing size of models and their in-
stances, the management of models in databases becomes a
necessity. Persistent Model Management Systems (PMMS) aim
at providing a persistent environment for the management of
instances, models and metamodels. They consist of (1) a database
that stores metamodels, models and their instances, and (2) an
associated exploitation language for manipulating these different
abstraction layers. Several PMMS have been proposed in the
literature but they currently mostly focus on the structural
definition of models and metamodels in terms of (meta-)classes
and (meta-)attributes. The behavioral semantics that consists
of associating operations to models and metamodels elements
is currently mostly not supported or only partially supported
(by a set of predefined hard coded operations or by imposing
a single programming language). In this paper, we propose
an extension of PMMS to support the definition of behavioral
semantics of models and metamodels using a wide range of
programming possibilities. Our approach consists of introducing
dynamically user-defined operations that can have multiple and
heterogeneous implementations (e.g., external programs or web
services). As a consequence, this extension enhances PMMS giving
them more coverage and further flexibility. Our proposal has been
implemented in a PMMS called BeMoRe and several experiments
have been run to analyze the scalability of this PMMS.

Keywords—model management; meta-modeling; database

I. INTRODUCTION

Models are widely used in software engineering to design
software components such as database schemes or user inter-
faces. This involves operations on models such as code gener-
ation, transformation, archiving, versioning, etc. Following the
vision of Bernstein [1], several model management systems
(MMS) have been set up during the last decade to manage
instances, models and metamodels and support operations on
them (e.g., [2], [3], [4], [5]).

With the increasing size of data instances and models
in several domains (e.g., in genomics, the Uniprot dataset,
www.uniprot.org, gathers more than 200GB of protein se-
quence resources), the possibility of managing large scale
models and instances in MMS has raised a lot of interest. Two
main approaches have been followed to increase the scalability
of MMS. The first approach consists of connecting a MMS
to a database called model repository (e.g., EMFStore [6],
TERESA model repository [7]). This approach uses a loose
coupling between the MMS and the database and has two main
drawbacks: (1) most model management operations require
loading the whole model and instances in main memory and
(2) the database exploitation language does not support the

definition, manipulation and querying of models and meta-
models (it only supports basic SQL operations). To address
these problems, a second approach, followed in our work,
has been developed. It consists of extending databases for
the management of models and metamodels (e.g., [2]). These
systems called Persistent Model Management Systems (PMMS)
are composed of (1) a database that stores metamodels, models
and instances and (2) an exploitation language for manipulat-
ing models and metamodels.

If PMMS solve the two drawbacks of the loose coupling of
a MMS with a database, they currently do not support the same
flexibility concerning the definition of behavioral semantics
(procedural aspects) of models and metamodels. Indeed PMMS
focus mainly on the definition of the structure of metamodels
and models but provide a limited support for the definition
of operations on models and metamodels. For example, some
PMMS provide hard-encoded operators for model management
(e.g., Match, Merge, Union [8], [1]), or only give access to
the database procedural languages (e.g., PL/SQL) that do not
support the manipulation of models and metamodels (they
only manipulate relational tables). The most advanced PMMS
concerning the definition of metamodels and models behaviors
is ConceptBase [2]. Using this PMMS user-defined operations
can be defined on models and metamodels as deductive rules
implemented with a specific language (PROLOG). However
this PMMS lacks the possibility to integrate operations that
have already been implemented using a given programming
language or provided as an external web service.

In this paper we propose an extension of PMMS to
support the definition of behavioral semantics of models and
metamodels using a wide range of programming capabilities.
This extension has been motivated in a previous paper [9]
by presenting a complete state of the art, and applied in the
specific context of ontology-based databases in [10]. In this
paper we make the following new contributions:
• definition of a set of requirements for a complete PMMS;
• definition of a PMMS including the behavioral aspect;
• implementation of our approach: the BeMoRe PMMS;
• first experiments to study the scalability of BeMore.

The remainder of this paper is organized as follows.
Section II presents a set of requirements for a complete
PMMS justified on a motivating example. Section III gives
an overview of the state of the art by analyzing existing
PMMS using our requirements. Section IV presents the formal
definition of a PMMS handling behavioral semantics of models
and metamodels. Section V overviews the implementation of

our approach and Section VI shows the experiments done to
study its scalability. Finally, section VII concludes this paper
and discusses ongoing works.

II. REQUIREMENTS FOR A COMPLETE PMMSsuperClass0..1 * *1UMLClass-name: String-isAbstract: Boolean UMLProperty-name: String
UMLClass…MetaModelsuperClass0..1 * *1UMLClass-name: String-isAbstract: BooleanUMLClass-name: String-isAbstract: Boolean UMLProperty-name: StringUMLProperty-name: String
UMLClass…MetaModel

<<UMLClass>>Student-firstname: String-lastname: String-birthday: Date<<UMLClass>>Student-firstname: String-lastname: String-birthday: Date <<UMLClass>>University-name: String<<UMLClass>>University-name: String1*Meta-Model layer (M2) <<instanceOf>>
Model layer (M1)

(A)

(B)

Fig. 1: A motivating example

Figure 1 presents a simple class diagram metamodel (A)
and a model (B) conforming to that metamodel. Using this
example, we are capable to define the set of requirements
identified for a complete PMMS. Due to space limitation we
use a very simple example. The interested reader may refer
to [9] and [10] for more complex and real motivating examples.

Requirement 1 (extensible metamodel layer)
PMMS shall offer an extensible metamodel layer so that
multiple modeling formalisms can be defined.

Justification: in our example, we only have the UML class
diagram metamodel defined at the metamodel layer. However
sofware engineering uses a lot of different models (e.g., entity-
relationship, functional, state transition models).

Requirement 2 (structural and descriptive semantics)
PMMS shall support the definition of structural and descrip-
tive semantics of metamodels and models elements. For in-
stance, the PMMS shall provide constructors of classes, at-
tributes, inheritance and association relationships for defin-
ing models and metamodels.

Justification: following the MOF specification, most models
and metamodels (such as the ones of our example) can be
expressed with object-oriented constructors.

Requirement 3 (behavioral semantics)
PMMS shall support introducing operations (functions, pro-
cedures) on metamodels and models elements.

Justification: operations on models and metamodels elements
are important to accomplish advanced model management
tasks such as model transformation, code generation or con-
straints checking. For instance, in our example an operation
could be defined to export the UML models in XML, or to
compute the age of a student.

Requirement 4 (flexible programming environment)
PMMS shall provide an heterogeneous programming envi-
ronment to implement operations. Particularly, it shall be
able to use external programs written in any language (e.g.,
Java, C++) and remote services.

Justification: as it is better to reuse existing pieces of software
instead of rewriting them, a PMMS should be able to inte-
grate existing implementations of operations whatever is the
programming language used. For example, it is easy to find
an existing code that exports an UML model in XML. So a
PMMS should allow users to reuse this piece of software to
implement an operation that exports UML models.

Requirement 5 (hot-plug of implementations)
PMMS shall support an immediate usage of the implemen-
tations for an operation without restarting the system (warm
start).

Justification: restarting a database system must be avoided
for high availability applications. Thus the definition of an
implementation of an operation, even if it is a web service,
should not require restarting the PMMS (warm start).

III. RELATED WORK

Several PMMS have been proposed. This section analyzes
the most relevant PMMS according to our requirements.

ConceptBase [2] is a PMMS based on an object-oriented
and deductive database. It is based on the Telos language
that supports the definition of multiple abstraction layers with
a set of constraints, rules and queries using meta-formulas.
Furthermore, ConceptBase provides a set of predefined op-
erators to manipulate simple and complex data types, and
gives the possibility to introduce user-defined functions with
membership constraints and external implementations. Yet,
these implementation can only be done in the Prolog language.
Besides external programs have to be stored in a special and
internal file system, and requires restarting the server (cold
start) in order to support the function newly introduced [11].

GeRoMe [3] is an extension of ConceptBase to define new
operators from other ones by combining existing operators.
However, this extension does not introduce a more flexible
programming environment for these operations.

Rondo [4] is a PMMS that has a fixed and non extensible
metamodel layer. It provides conceptual structures to define
models and specify the behavioral semantics by providing a
set of primitive high-level operators for model management
and model mappings such as Match, Delete or Extract. More-
over, Rondo supports the definition of derived operators by
composing basic and other defined operators.

Clio [5] is a PMMS defined for facilitating the tasks of
heterogeneous data transformation and integration. These tasks
are facilitated by mapping a source schema to a target schema
with SQL statements.

DB-MAIN [12] is a PMMS designed for the management
of database evolution. It is based on a fixed hard-encoded
metamodel and offers a set of built-in high-level operators

for modifying the database structure and contents when an
evolution is required.

OntoDB/OntoQL [13] is a PMMS initially defined for the
management of ontologies and ontology models. It includes
the OntoDB model repository and the OntoQL meta-modeling
language. This PMMS is based on a fixed metametamodel
to define and modify metamodels. Concerning the behavioral
semantics, OntoDB/OntoQL uses only the PgPL/SQL proce-
dural language of its back-end database management system
(PostgreSQL). This language cannot manipulate complex types
(e.g., meta-classes or classes) and consequently cannot define
high-level operators.

As the previous overview of the state of the art shows, each
existing PMMS presents some strengths and some limitations
for the definition of structural and behavioral semantics of
models and metamodels. The identified limitations are pre-
sented in Table I. Hence next section introduces the formal
definition of an extension of PMMS to fulfill these require-
ments.

TABLE I: Synthesis of the state of the art

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5
ConceptBase Yes Yes Yes restricted No

GeRoMe Yes Yes Yes restricted No
Rondo No Yes hard-coded No No

Clio No No restricted No No
DB-MAIN No Yes restricted No No

OntoDB/OntoQL Yes Yes restricted No No

IV. PROPOSED EXTENSION OF PMMS

A PMMS is composed of a database data model and
an exploitation language. The proposed extension of these
two parts of a PMMS are presented in Subsection IV-A and
Subsection IV-B.

A. Proposed Extension of PMMS Data Model

SystemcatalogModel 1 Meta-model layerModel layerData layer
Meta Meta-Model layer (M3)Meta-Model layer (M2)Model layer (M1)Instance layer (M0)

<<instanceOf>><<instanceOf>>
<<instanceOf>>

PersistenceModel 2Instance 1 Instance 2 Model …Instance …
Meta-model …Meta-model 1 Meta-model 2

* *1
1

attrssuperClass **MetaModel- name: StringMetaModel- name: String *1 Class- name: StringClass- name: String Datatype
Attribute- name: StringAttribute- name: String

Operation-name: StringOperation-name: String * ***
classes returnTypeparamTypesrelationship**Implementation- name: StringImplementation- name: StringDescriptor-key: String-value : StringDescriptor-key: String-value : String * 1* 1

Fig. 2: The proposed data model for PMMS

Figure 2 gives an overview of the extended data model
of PMMS that we propose. For conciseness we only detail
the metametamodel layer but a similar extension has been be

done at the metamodel level to be able to define operations
at the different abstraction layers. Our model includes a set
of classes that are described by attributes, and single class
inheritance relationships are allowed. This part of our data
model is usually available in all PMMS that, as we have seen
in the previous section, focuses mainly on the structural and de-
scriptive semantics of metamodels elements. The dashed area
gives an overview of our proposed extension for the definition
of behavioral semantics of metamodels elements. Our model
supports the definition of operations with a list of input and an
output. Furthermore, an operation can be associated to multiple
implementations. Each implementation is itself described by a
set of descriptors (couples of key, value). With these generic set
of descriptors a new programming environment can be easily
integrated in our approach.

This extension of PMMS can be formally defined by the
following sets: MM , CL, ATT , DT , OP , IMP , DESC that
represent respectively sets of metamodels, classes, attributes,
data types, operations, implementations and implementation
descriptors. Table II gives the definition of these sets as well
as a subset of constraints concerning these sets.

TABLE II: PMMS formal model

A metamodel is described by a set of classes:
classes : MM → P (CL)
∀mmi ∈ MM ⇒ ∃!E ∈ P (CL)/classes(mmi) = E
∀(mmi,mmj) ∈ MM/i ̸= j ⇒ classes(mmi) ∩ classes(mmj) = ∅
A class may have a super class:
superClass : CL → CL
A class may have inherited attributes from its super class:
inheritedAttributes : CL → P (ATT)
∀cli ∈ CL ⇒ ∃!E ∈ P (ATT)/

inheritedAttributes(cli) = attributes(superClass(cli))
A class may be described by additional attributes:
definedAttributes : CL → P (ATT)
∀cli ∈ CL ⇒ ∃!E ∈ P (ATT)/definedAttributes(cli) = E
∀cli ∈ CL ⇒

definedAttributes(cli) ∩ inheritedAttributes(cli) = ∅
∀(cli, clj) ∈ CL/i ̸= j ⇒

definedAttributes(cli) ∩ definedAttributes(clj) = ∅
The set of attributes of a class:
∀cli ∈ CL ⇒ attributes(cli) =

inheritedAttributes(cli) ∪ definedAttributes(cli)
An attribute has a data type:
typeOf : ATT → DT
∀atti ∈ ATT ⇒ ∃!dtj ∈ DT/typeOf(atti) = dtj
An operation parameter has an order:
input : OP x N+ → DT
∀opi ∈ OP ⇒ input(opi) ∈ DT
An operation can return a result:
output : OP → DT ∪ ∅
An operation can have several implementations:
implementations : OP → P (IMP)
∀opi ∈ OP ⇒ ∃!E ∈ P (IMP)/implementations(opi) = E
∀(opi, opj) ∈ OP/i ̸= j ⇒

implementations(opi) ∩ implementations(opj) = ∅
An implementation is described by a set of descriptors:
descriptors : IMP → P (DESC)
∀impi ∈ IMP ⇒ ∃!E ∈ P (DESC)/descriptors(impi) = E
∀(impi, impj) ∈ IMP/i ̸= j ⇒

descriptors(impi) ∩ descriptors(impj) = ∅

B. Proposed Extension of the PMMS Metamodeling Language

The exploitation language of a PMMS is composed of a
model and a metamodel definition, manipulation and query
language. Table III presents a subset of basic actions that a
PMMS definition language should fulfill. These actions are
defined by a signature (SIG), a precondition (PRC) and a

postcondition (POC). We only present in this table the create
operations but the other operations (alter, update and delete)
have been defined as well.

TABLE III: Main actions of the PMMS definition language

creation of a metamodel:
SIG: addMetaModel(mm) = MM ′

PRC: mm /∈ MM
POC: MM ′ = MM ∪ {mm}
creation of a class:
SIG: addClass : MM x C → MM
PRC: cl /∈ CL
POC: classes(mm) = classes(mm) ∪ {cl}
creation of an attribute:
SIG: addAttribute : CL x ATT → CL
PRC: att /∈ ATT
POC: attributes(cl) = attributes(cl) ∪ {att}
creation of an operation:
SIG: addOperation(op) = OP ′

PRC: op /∈ OP
POC: OP ′ = OP ∪ {op}
creation of an implementation:
SIG: addImplementation : OP x IMP → OP
PRC: imp /∈ IMP
POC: implementations(op) = implementations(op) ∪ {imp}

Concerning querying, most PMMS have a query language
whose algebra includes relational-like operators (e.g., projec-
tion or selection) for models and metamodels. These algebra
should be extended to be able to execute operations that can
be defined with our proposed extension. To fulfill this need,
we define the RUN operator. We only give the signature of
this operator in table IV since its semantics depends on the
processing done in the corresponding operation.

TABLE IV: Formalization of the RUN operator

RUN : OP x INPUT → OUTPUT
INPUT is an expression of input values.
INPUT = (IC ⊕ IIC ⊕ IDT)+ ⊕ ∅
instOf is a function that returns the set of instances of a concept.
IC = instOf(c1) ∪ instOf(c2) ∪ ... ∪ instOf(cn)
IIC = instOf(instOf(c1)) ∪ ... ∪ instOf(instOf(cn))
IDT represents simple types values (string, boolean, integer, etc.).
OUPUT is the output value.
OUTPUT = IC ⊕ IIC ⊕ IDT ⊕ ∅
⊕ is the sum of types operator.

Examples:

If we have an operation UMLClass2Table that trans-
forms an UMLClass to a Table, we can use it for instance
to transform the Student class to the T_Student table.
Thus, in this case, the RUN operator is invoked as follows:

RUN(UMLClass2Table, Student). It returns the table
T Student.

If we want to compute the age of an instance of the Student
class (Student1), the RUN operator is invoked as follows:

RUN(computeAge, Student1). It returns the value 26.

Next section presents the implementation of our approach
on the OntoDB/OntoQL PMMS.

V. PROTOTYPING: THE BEMORE PROPOSAL

Our implementation consists of an extension of the OntoD-
B/OntoQL PMMS. Let us first introduce this PMMS.

A. The OntoDB Model Repository

The architecture of the OntoDB repository consists of four
parts: one part for each abstraction level (data instance, models
and metamodels) and one part for the system catalog of the
database. These four parts consist of relational tables since this
PMMS is based on PostgreSQL. Figure 4 (except the dashed
box part) shows the main tables used to store metamodels,
models and data of our example in OntoDB. The metamodel
layer contains two main tables: Class and Attribute that
store respectively classes and attributes of metamodels. Each
class is associated to a corresponding table at the model level
where class instances are stored; and similarly, each concept
of a model is associated to a table at the data level to store
instances.

B. The OntoQL Meta-Modeling Language

OntoQL is a declarative and object-oriented language used
to create, modify, drop and query metamodels, models and
data. In this section we present the OntoQL statements used
for defining the different abstraction layers in OntoDB. Then,
in the next section we present the extension of this language we
have proposed and implemented for the definition and usage
of operations at these different abstraction layers.

1) Metamodel definition: the metamodel part of OntoDB
can be enriched to support new metamodels using the OntoQL
language. For instance, the metamodel of our example (Figu-
re 1) can be created with the following statements.

Listing 1: Statements for creating the metamodel (A)
CREATE ENTITY #UMLClass (

#name STRING ,
i s A b s t r a c t BOOLEAN,
s u p e r C l a s s REF (# UMLClass)) ;

CREATE ENTITY # UMLProperty (
#name STRING ,
i t s C l a s s REF (# UMLClass)) ;

In this statement the # prefix indicates that this element
definition must be inserted in the metamodel level of OntoDB
(an element of the model level does not have a prefix).

2) Model definition: once a metamodel is defined, we can
create models conforming to that metamodel. For instance,
the model of our example is created using the following
statements:

Listing 2: Statements for creating the model (B)
CREATE #UMLClass U n i v e r s i t y
PROPERTIES (name STRING) ;

CREATE #UMLClass S t u d e n t
PROPERTIES (f i r s t n a m e STRING ,

l a s t n a m e STRING ,
b i r t h d a y DATE,
i t s U n i v e r s i t y REF (U n i v e r s i t y)) ;

3) Instance definition: similarly to the previous step, once
models have been created with OntoQL and stored in OntoDB,
they can be instantiated to create classes instances with a
syntax similar to SQL. Next statements create instances of
our example.

Listing 3: Statements for creating instances
INSERT INTO U n i v e r s i t y VALUES (’ ISAE−ENSMA’) ;

INSERT INTO S t u d e n t
VALUES (’ Dupond ’ , ’ Durand ’ , ’ 0 6 / 2 1 / 1 9 8 6 ’ , 1 2 3) ;

PostgreSQL

RDBMS

JavaprogramsWebservicesOntoDB layer

OntoQL layer

Behavior

API

Java

API

WS

API

Fig. 3: BeMoRe architecture

Now that we have presented the OntoDB/OntoQL, we can
describe the three main steps that we have followed to extend
it with our approach (Figure 3). The first step consists of
extending the model repository with structures and tables to
store operations signatures and implementations descriptions
and their dependencies. The second step consists of extending
the exploitation language to create and to use operations and
implementations. Finally, the third step consists of setting up
an application programming interface (API) to make a bridge
between the PMMS and the external programming environ-
ments. We detail each of these steps in next subsections.

C. Extending the OntoDB Architecture

TableUMLClassUMLClass2Table outputinputname Operation TableUMLClassUMLClass2Table outputinputname Operation
UMLClass2TableUMLClass2TableImp ImplementsnameImplementationUMLClass2TableUMLClass2TableImp ImplementsnameImplementation UMLClass2TableImpfr.ensma.lias.myClassclass UMLClass2TableImphttp://.../programs.jarlocation UMLClass2TableImpUML2RDBMSmethod UMLClass2TableImpjavatype implementationvaluekey Descriptors

UMLClass2TableImpfr.ensma.lias.myClassclass UMLClass2TableImphttp://.../programs.jarlocation UMLClass2TableImpUML2RDBMSmethod UMLClass2TableImpjavatype implementationvaluekey Descriptors

Meta-Model layer (M2) UMLClassBooleanisAbstract UMLClassStringname itsClasstypename Attribute UMLClassBooleanisAbstract UMLClassStringname itsClasstypename Attribute
UniversityStudent superClassnameUMLClassUniversityStudent superClassnameUMLClass UMLClassMetaModelUMLProperty UMLClassMetaModelUMLClass metaModelsuperClassname Class UMLClassMetaModelUMLProperty UMLClassMetaModelUMLClass metaModelsuperClassname Class

StudentLastname StudentFirstname itsClassnameUMLPropertyStudentLastname StudentFirstname itsClassnameUMLProperty
ISAE-ENSMAnameUniversityISAE-ENSMAnameUniversityModel layer (M1)

06/21/0986DurandDupond birthdaylastnamefirstname Student 06/21/0986DurandDupond birthdaylastnamefirstname StudentInstance layer (M0)
Fig. 4: Representing different model layers in OntoDB

The dashed box part of Figure 4 shows the three main
tables resulting from the extension of the metametamodel
layer of the OntoDB model repository. The Operation,
Implementation and Descriptors tables store respec-
tively operations definitions (the operation name, input and
output), their associated implementations, and descriptions of
implementations.

D. Extending the OntoQL Meta-Modeling Language

1) CRUD for Operations and Implementations: firstly, we
have extended the OntoQL exploitation language with CRUD
operations (Create, Retrieve, Update and Delete) to create,
read, delete and update operations and implementations. For
instance, the syntax to create an operation that transforms an
UML class to a table is given below.

Listing 4: Statement for creating an operation
CREATE OPERATION # UMLClass2Table
INPUT (REF (# UMLClass))
OUTPUT (REF (# Tab le)) ;

Once an operation is defined, we can define one or many
associated implementations. The following statement creates
an implementation of the UMLClass2Table operation.

Listing 5: Statement for creating an implementation
CREATE IMPLEMENTATION # UMLClass2TableImp
DESCRIPTORS (t y p e = ’ j ava ’ ,

l o c a t i o n = ’ h t t p : / / . . . / p rograms . j a r ’ ,
c l a s s = ’ f r . ensma . l i a s . UMLClassUti ls ’ ,
method = ’ c l a s s 2 T a b l e ’)

IMPLEMENTS # UMLClass2Table ;

This statement creates an implementation of the
UMLClass2Table operation. It provides descriptors
of a Java program stored outside the database. In particular,
these descriptors specify the file location of the external
program, the java class where the method is defined and the
method to run.

2) Exploiting operations in Query: when an operation
and at least one associated implementation are defined, this
operation can be invoked in an OntoQL statement:

Listing 6: Example of an operation invocation
CREATE # Tab le T S tuden t AS

SELECT # UMLClass2Table (c) FROM #UMLClass AS c ;

This statement creates a Table (T_Student) from the
resulting transformation of the Student class. Let us explain
the process to answer this query. When we face an operation
invocation in an OntoQL statement, we look into the repository
to check the existence of the called operation, then we verify
the compatibility of the arguments types with the operation
parameters types. Next, if no implementation is specified
in the statement, we look at the default implementation in
the implementation table. After this process, we transmit the
arguments and the implementation descriptors to the behavior
API (see next subsection) in order to run the program and
return the result.

3) Choosing a default implementation: we have also ex-
tended the OntoQL language with the possibility to define
the default implementation if several implementations are
available for an operation. Next statement defines a default
implementation for an operation.

Listing 7: Specifying the default implementation for an oper-
ation
SET DEFAULT IMPLEMENTATION # UMLClass2TableImp
FOR # UMLClass2Table ;

4) Specifying an implementation: we can also explicit the
implementation that must be executed for an operation directly
in an OntoQL statement. The statement below shows an
example of this behavior.

Listing 8: Specifying the implementation to run in a statement
CREATE # Tab le T S tuden t AS

SELECT # UMLClass2Table (c) FROM #UMLClass AS c
USING IMPLEMENTATION #UMLClass2TableImp−>#UMLClass2Table ;

Our implementation requires to make a bridge between the
PMMS and external programming environments. The solution
we have adopted is presented in next subsection.

E. The Behavior API

An important part of our extension of the OntoDB/OntoQL
PMMS consists of defining a mechanism to make the mapping
between data types of the OntoDB/OntoQL system, and data
types of the external implementations. Thus, we have set up a
behavior API (Figure 3) that serves as an intermediate between
the OntoDB/OntoQL PMMS and the external programming
environments. In particular, it provides generic infrastructures
(1) to specify data types correspondences between the two
environments, (2) to execute remote programs and services,
and (3) to generate a wrap that can be plugged on the top of
the behavior API . For example, to support web services and
Java methods invocation, we have implemented primitives of
the behavior API and plugged on it the resulting wraps.

VI. PERFORMANCE EVALUATION

As stated before in Section I, we have performed multiple
applications of our work (e.g., [10]) in order to validate func-
tionally our approach. In this section, we focus on performance
evaluation only.

As a first step to study the scalability of our implementa-
tion, we compare the execution time of the following model
query (similar results were obtained for a metamodel query).

Listing 9: The query used for our experimentations
SELECT computeAge (s) FROM S t u d e n t AS s

We execute these queries using three types of implementations
of the computeAge function: native stored procedure (NSP),
external Java program (EJP) and local web service (LWS) on
three different sizes of data (1000, 100000 and 300000 in-
stances). These experiments were run on the OntoDB/OntoQL
PMMS based on PostgreSQL 8.2 installed on a standard Intel
Core Duo E6550 2.33 Ghz 3GB of RAM desktop machine.

The performance numbers for the query on the three data
sizes and for the three implementations are shown in Figure 5.
All times presented (in seconds) are the average of three runs
of the queries.

As expected the invocation of NSP performs a factor of 4-5
faster than EJP and largely faster than LWS. As the EJP and
LWS are called one time for each instance, the time of queries
increases nearly linearly with the size of data. To optimize
this process, this result suggests to design a Java method or
a web services that takes as input a set of data instead of
an individual data. A more complete study of the problem of
query optimization for PMMS is part of our future work.

02468
10121416

EJP LWS NSP
1000 Instances

Q
ue

ry
T

im
e

 (
s)

02004006008001 0001 2001 400
EJP LWS NSP

100 000 Instances

01 0002 0003 0004 0005 000
EJP LWS NSP

300 000 Instances

0.17

13.3

0.15 3.99

1208

0.894 13.4 2.9

4230

Fig. 5: Performance comparison

VII. CONCLUSION

In this paper, we have presented an extension of PMMS
with a generic and flexible support of behavioral seman-
tics. Our approach consists of providing the capability to
introduce dynamically user-defined operations with multiple
and heterogeneous implementations (external programs, web
services, etc.). Our proposal has been implemented on the
OntoDB/OntoQL PMMS and we have run several experiments
to study the scalability of this implementation.

This work opens multiple perspectives. One of these per-
spectives consists of studying how derived operations could be
defined using existing ones. Our idea is to be able to combine
operations implemented with programs written in different
languages and stored in different locations while respecting
the order of the execution. Another perspective consists of
choosing automatically the more efficient implementations to
run when several implementations are available for a given
operation. This feature will be especially useful for external
web services that are not always available.

REFERENCES

[1] P. A. Bernstein, A. Y. Halevy, and R. Pottinger, “A vision of manage-
ment of complex models,” SIGMOD Record, pp. 55–63, 2000.

[2] M. Jarke, M. A. Jeusfeld, H. W. Nissen, C. Quix, and M. Staudt,
“Metamodelling with datalog and classes: Conceptbase at the age of
21,” in ICOODB, 2009, pp. 95–112.

[3] D. Kensche, C. Quix, M. A. Chatti, and M. Jarke, “Gerome: A generic
role based metamodel for model management,” J. Data Semantics,
vol. 8, pp. 82–117, 2007.

[4] S. Melnik, E. Rahm, and P. A. Bernstein, “Rondo: A programming
platform for generic model management,” in SIGMOD Conference,
2003, pp. 193–204.

[5] M. A. Hernández, R. J. Miller, and L. M. Haas, “Clio: a semi-automatic
tool for schema mapping,” in SIGMOD Conference, 2001.

[6] M. Koegel and J. Helming, “Emfstore : a model repository for emf
models,” in ICSE (2), 2010, pp. 307–308.

[7] “project teresa.” [Online]. Available: http://www.teresa-project.org/
[8] P. A. Bernstein and E. Rahm, “Data warehouse scenarios for model

management,” in ER, 2000, pp. 1–15.
[9] Y. Bazhar, “Handling behavioral semantics in persistent meta-modeling

systems,” in RCIS, 2012, pp. 1–6.
[10] Y. Bazhar, C. Chakroun, Y. A. Ameur, L. Bellatreche, and S. Jean,

“Extending ontology-based databases with behavioral semantics,” in
OTM Conferences (2), 2012, pp. 879–896.

[11] M. A. Jeusfeld, C. Quix, and M. Jarke, ConceptBase .cc User Manual,
Tilburg University, RWTH Aachen, February 2013.

[12] J.-M. Hick and J.-L. Hainaut, “Strategy for database application evolu-
tion: The db-main approach,” in ER, 2003, pp. 291–306.

[13] H. Dehainsala, G. Pierra, and L. Bellatreche, “Ontodb: An ontology-
based database for data intensive applications,” in DASFAA Conference,
2007.

