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Abstract

This paper exploits the notion of ∂D-regularity of a matrix pencil to
propose insights for the robustness analysis of descriptor models of
the form Eẋ = Ax (or Exk+1 = Axk for the discrete case) subject to
norm-bounded LFT (Linear Fractional Transform)-based uncertainties
on both matrices A and E. The property to be studied is the robust
D-admissibility (robust D-stability togeteher with robust regularity and
robust impulse freeness). All the proposed conditions are expressed in
terms of strict LMI (Linear Matrix Inequalities). Two techniques are
proposed and numerically compared.

Index Terms

Descriptor systems, ∂D-regularity, Robust D-stability, Robust D-admissibility, strict LMI.

1 Introduction

It is now well admitted that systems of the form Eẋ = Ax (or Exk+1 = Axk for the discrete case),
that are called singular systems, descriptor systems, generalized systems or implicit systems, and so
on, are of great interest for the modelling of many practical devices (interconnected systems, electrical
networks, robotics). For conciseness, rather than to quote many references, we urge the interested
reader to examine [1, 2] and some references therein.

As for conventional models for which E = I (or at least E is non singular), the D-stability, i.e. the
clustering of the eigenvalues of (E,A) in some region D of the complex plane, is of high importance to
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analyze the transient behaviour of the system, particularly to assess asymptotic stability. But it does
not suffice in the singular case. Two other properties have to hold, namely the regularity (existence
of a unique solution to the generalized state-space equation) and impulse freeness (meaning that the
infinite eigenvalues of the pencil induce no impulsive terms in the response even when the control
signals are not smooth [2]). When these three properties hold, the model is said to be D-admissible.

It is important to derive some simple tools that enable the designer to test whether an exactly
known pencil is D-admissible. For admissibility test, a big focus has been put on the generalized Lya-
punov equations [3, 4, 5]. Though very interesting, some of those approaches require the systems to be
transformed into equivalent forms, which is not desirable in an uncertain context. In the presence of
uncertainties, the use of strict LMI (Linear Matrix Inequalities [6]) might be prefered. In that sense,
one of the first steps was made in [7]. The advantage of LMI is also that they can easily enable ones
to extend the results to various clustering regions D.

Many contributions deal with robust analysis or control of descriptor models, particularly through
(unfortunately not necessarily strict) LMI approach: see [8], the seminal work of Masubuchi ([9, 10]
and the references therein), and many others. But very few really consider uncertainty on E. Let us
quote [11] where A is however precisely known or [12] for interval matrices. But the best insights can
actually be found in [13, 14].

In this paper, we make an extensive use of the notion of ∂D-regularity [15, 16] and of some
versions of the so-called S-procedure (see [6, 17, 18, 19] and the references therein) to derive strict
LMI (sufficient) conditions for a descriptor model subject to norm-bounded LFT (Linear Fractional
Transform)-based uncertainties on both matrices A and E. Our purpose is to propose a tool, useful
at once, as simple as possible, that can be a basis for many other future works.

The paper is organized as follows. The next section is dedicated to the mathematical problem
statement, including basic definitions, the description of the uncertain matrix pencil, the formulation
of the considered regions and the actual condition to be checked by LMI. Section 3 proposes a first
reasoning to derive a sufficient LMI condition. Another reasoning is followed in Section 4 and yields
another condition. In section 5, a discussion is led about singular systems and their properties (reg-
ularity, impulse freenees) to analyse our conditions through the lens of those fundamental properties.
The two conditions are numerically compared on an example in Section 6 before to conclude.

Notations: M ′ is the transpose conjugate of M . σ̄(M) is the maximum singular value of M . I and
0 are identity and zero matrices of appropriate dimensions respectively. In matrix inequalities, < 0,
> 0, ≤ 0 and ≥ 0 must be understood in the sense of Löwner (sign definition of matrices). i is the
imaginary unit and ⊗ denotes the Kronecker product.

2 Preliminaries and Problem statement

2.1 Basic definitions

In this section, we propose various definitions of properties for matrix pencils. The reasonings in the
paper are mainly followed on matrix pencils whereas the descriptor models are only considered in
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Section 5.

Definition 1 Let (E,A) be a matrix pencil where {A;E} ∈ lC n×n. We denote by λ(E,A) the gener-
alized spectrum of the pencil (E,A) defined by

λ(E,A) = {λ ∈ lC : det(
�
(λ)) = 0}, (1)

with A(λ) = Eλ−A, and the elements of λ(E,A) are referred to as the eigenvalues of (E,A).

Definition 2 (inspired from [15]) Let (E,A) be a matrix pencil where {A;E} ∈ lC n×n. Also let ∂D
be any subset of the complex plane. The pencil (E,A) is said to be

• ∂D-regular if λ(E,A) ∩ ∂D = ∅,

• ∂D-singular otherwise.

Definition 3 Let (E,A) be a matrix pencil where {A;E} ∈ lC n×n. The pencil (E,A) is said to be

• regular if there exists ∂D 6= ∅ such that (E,A) is ∂D-regular,

• singular otherwise.

It has to be noticed that in the remaining part of the paper, rank(E) = r ≤ n, meaning that some
eigenvalues of (E,A) might not be finite.

2.2 Formulation of the uncertain pencil

In our reasonings, the matrices E and A are actually uncertain and comply with


A = DA + CA∆̄ABA,

E = DE + CE∆̄EBE ,
(2)

with 8
<

:

∆̄A = ∆A(I −AA∆A)
−1, ∆ ∈∆A = {∆A : σ̄(∆A) ≤

q

γ−1
A
},

∆̄E = ∆E(I −AE∆E)
−1, ∆ ∈∆E = {∆E : σ̄(∆E) ≤

q

γ−1
E
},

(3)

where γA > 0 and γE > 0 are scalar numbers. The structure of the uncertain matrices A and E is
the so-called LFT (Linear Fractional Transform)-based uncertainty and the matrices ∆A and ∆E are
both norm-bounded i.e. ∆A and ∆E are bounded balls of matrices. It is possible to consider more
sophisticated sets ∆A and ∆E but we here restrict our analysis to balls of matrices for the sake of
conciseness.
We define the uncertainty ∆ as

∆ = {∆A; ∆E} ∈∆ =∆A ×∆E . (4)
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Assumption 4 The uncertainty domain ∆ is assumed to be implicitly well posed:

(i) det(I −AA∆A) 6= 0 and det(I −AE∆E) 6= 0 over ∆;

(ii) rank(E) = r ≤ n ∀∆E ∈∆E .

Assumption (i) is the classical well posedness of LFT forms and the term implicit refers to assump-
tion (ii) which is the only new concept introduced here.

2.3 Formulation of ∂D

In the paper, the set ∂D is defined by

∂D =



s ∈ lC :

»
s

1

–′

R

»
s

1

–

= 0; &

»
s

1

–′

Φh

»
s

1

–

≥ 0, ∀h ∈ {1, . . . , h̄}
ff

, (5)

where R and Φh, h = 1, . . . , h̄ are 2×2 Hermitian matrices. This kind of description is borrowed from
[16] following insights proposed in [17, 19]. Special sets can be emphasized:

• Imaginary axis: h̄ = 0; R =

»
0 1
1 0

–

;

• Unit circle: h̄ = 0; R =

»
1 0
0 −1

–

;

• Right half plane: h̄ = 1;R = 0; Φ1 =

»
0 1
1 0

–

;

• Exterior of the unit disc: h̄ = 1;R = 0; Φ1 =

»
1 0
0 −1

–

.

It is possible to extend the class of sets ∂D by considering matrices R and Φh in lC 2d×2d with d ≥ 1
but, once again, for the sake of conciseness, here, d can only equal 1. Nevertheless, such a descrition
encompasses the boundaries of many so-called EEMI-regions [20], or even some of those regions them-
selves.

2.4 Problem Statement

Considering an uncertain matrix pencil (E,A) that complies with the uncertainty defined in §2.2 and
Assumption 4. Also let a set ∂D be described as in §2.3. This work aims at finding strict LMI
conditions such that (E,A) remains ∂D-regular for any ∆ ∈∆. After having proposed two techniques
to handle this problem in the next two sections, we discuss about their usefulness in the study of
descriptor systems in Section 5.
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3 Some “augmented LFT” solution

In this part, we transform the original problem that consists in analysing the spectrum (E,A) into
another one that consists in analysing the spectrum of an augmented pencil subject to an agumented
LFT-based uncertainty. One has to satisfy

det(
�
(λ,∆)) 6= 0 ∀{λ; ∆} ∈ ∂D ×∆ (6)

⇔ det((DE + CE∆̄EBE)λ−DA − CA∆̄ABA) 6= 0

Note that owing to Assumption 4, det(−(I −AE∆E)) 6= 0 which leads to

det((DE + CE∆̄EBE)λ−DA − CA∆̄ABA)det(−(I −AE∆E)) 6= 0

det

»
(DE + CE∆̄EBE)λ−DA − CA∆̄ABA 0

0 −(I −AE∆E)

–

6= 0

⇔ det

„»
I CE∆E(I −AE∆E)

−1

0 I

–

×

»
DEλ−DA − CA∆̄ABA CE∆E

BEλ −(I −AE∆E)

–

×

»
I 0

(I −AE∆E)
−1BEλ I

–«

6= 0

det

„»
DEλ−DA − CA∆̄ABA CE∆E

BEλ −(I −AE∆E)

–«

6= 0

⇔ det(Ã(λ,∆)) 6= 0, ∀{λ; ∆} ∈ ∂D ×∆ (7)

with

Ã(λ,∆) =

Ẽ

z }| {
»

DE 0
BE 0

–

λ−

D
Ã

z }| {
„»

DA 0
0 I

–

+

C
Ã

z }| {
»

CA −CE
0 −AE

–

∆̃
z }| {
»

∆A 0
0 ∆E

–

×

0

B
B
B
B
@

I−

A
Ã

z }| {
»

AA 0
0 0

–

∆̃
z }| {
»

∆A 0
0 ∆E

–

1

C
C
C
C
A

−1
B

Ã

z }| {
»

BA 0
0 I

–

1

C
C
C
C
C
A

. (8)

Let us notice that we recover an LFT-based uncertainty in which ∆̃ is block-diagonal (the bad point)

and Ẽ is not uncertain (the good point). It is clear that det(Ẽλ − DÃ) 6= 0 (the nominal aug-
mented model has to be ∂D-regular otherwise why considering the uncertain case) and therefore (7)
is equivalent to

det(I − (Ẽλ−D
Ã
)−1C

Ã
∆̃(I −A

Ã
∆̃)−1B

Ã
) 6= 0

⇔ det(I −B
Ã
(Ẽλ−D

Ã
)−1C

Ã
∆̃(I −A

Ã
∆̃)−1) 6= 0

⇔ det(I − (A
Ã
+B

Ã
(Ẽλ−D

Ã
)−1C

Ã
)∆̃) 6= 0

(since det(I −AÃ∆̃) 6= 0), that one can write

det(I − G̃(λ)∆̃) 6= 0, ∀{λ; ∆} ∈ ∂D ×∆,

with G̃(λ) = AÃ +BÃ(Ẽλ−DÃ)
−1CÃ. The previous difference holds if and only if

»
∆̃
I

–′

Q̃

»
∆̃
I

–

< 0, ∀{λ; ∆} ∈ ∂D ×∆, (9)
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with

Q̃ =

»
G̃′(λ)

I

–

(−I)

»
G̃′(λ)

I

–′

.

Define ∆̂ as the set of all matrices ∆̂ such that
»

∆̂
I

–′

Ψ̃

»
∆̂
I

–

≥ 0, (10)

where
Ψ̃ = blockdiag(−γAI;−γEI, I) (11)

It is clear that ∆̃ lies in a set ∆̃ that is strictly contained in ∆̂. Then, the S-procedure as proposed
in [6] can be applied to claim that (9) holds if there exists a scalar τ > 0 such that

Q̃+ τΨ̃ < 0, ∀λ ∈ ∂D, (12)

which, by virtue of Finsler’s lemma (that can also be seen as a special case of S-procedure), is equivalent
to »

I

G̃(λ)

–′

Ψ̃

»
I

G̃(λ)

–

< 0, ∀λ ∈ ∂D. (13)

The above inequality can also be written

»
I

(Ẽλ−D
Ã
)−1C

Ã

–′

Θ̃

»
I

(Ẽλ−D
Ã
)−1C

Ã

–

< 0, ∀λ ∈ ∂D, (14)

where
Θ̃ =

»
I 0

A
Ã

B
Ã

–′

Ψ̃

»
I 0

A
Ã

B
Ã

–

. (15)

At this stage, it is possible to apply the generalized Kalman-Popov-Yakubovich (KYP) lemma proposed
in [19] (yet another application of a generalized version of the S-procedure), with slight adaptations
as in [16] (in order to encompass the case h̄ > 1), to claim that (14) holds if and only if there exist an
Hermitian matrix P and h̄ Hermitian positive definite matrices Qh, h = 1, . . . , h̄, such that

»
C
Ã

D
Ã

0 Ẽ

–′

(R⊗ P +
h̄X

h=1

Φh ⊗Qh)

»
C
Ã

D
Ã

0 Ẽ

–

+ Θ̃ < 0. (16)

The previous reasoning is summarized by the next theorem.

Theorem 5 Let an uncertain matrix pencil (E,A) comply with the uncertainty described in §2.2 and
Assumption 4. Also let a set ∂D be described as in §2.3. (E,A) is robustly ∂D-regular if there exist an
Hemitian matrix P and h̄ Hermitian positive definite matrices Qh, h = 1, . . . , h̄, such that the strict
LMI (16) holds.

The conservativeness in the above theorem is due to the 2-block diagonal structure of ∆̃ which
makes the S-procedure be pessimistic from (12) to (9) or in other words, it is due to the fact that
∆̃ ⊂ ∆̂ but ∆̃ 6= ∆̂.

4 Some “non-augmented LFT” solution

The term “non-augmented LFT” solution refers to the fact that in this section, we preserve the two
LFT-based uncertainties of §2.2 (the one on E and the other one on A) without augmenting the size

A ∂D-regularity approach to the robust analysis of descriptor models Page 6



Internal Report No 20070707OB v. 2

of the uncertainty matrix.
It is clear that the uncertain pencil (E,A) can be ∂D-regular only if (E,DA) is ∂D-regular (if the
property does not hold for the nominal part of A, it is no use going further). So, necessarily, det(Eλ−
DA) 6= 0 for any {λ;∆E} ∈ ∂D ×∆E and then (6) is equivalent to

det(I − (Eλ−DA)
−1CA∆̄ABA) 6= 0

⇔ det(I −BA(Eλ−DA)
−1CA∆̄A) 6= 0

⇔ det(I −BA(Eλ−DA)
−1CA∆A(I −AA∆A)

−1) 6= 0.

From Assumption 4, it comes det((I −AA∆A)
−1) 6= 0 which enables ones to write

det(I −AA∆A −BA(Eλ−DA)
−1CA∆A)det((I −AA∆A)

−1) 6= 0

⇔ det(I −AA∆A −BA(Eλ−DA)
−1CA∆A) 6= 0

⇔ det(I − [AA +BA(Eλ−DA)
−1CA]∆A) 6= 0

that one can write
det(I −G(λ,∆E)∆A) 6= 0, ∀{λ; ∆} ∈ ∂D ×∆.

Taking the definition of ∆A into account, the previous inequality is equivalent to

inf
λ∈∂D

{ inf
∆A

{σ̄(∆A) : det(I −G(λ,∆E)∆A) = 0}} >

q

γ−1
A

, ∀∆E ∈∆E

⇔ { sup
λ∈∂D

(µ lC (G(λ,∆E))}−1 >

q

γ−1
A

, ∀∆E ∈∆E

where µ lC denotes the structured singular value introduced in [21]. The above inequality is equivalent
to

σ̄(G(λ,∆E)) <
√
γA, ∀∆E ∈∆E ,

which can also be written
»

(Eλ−DA)
−1CA

I

–′

Θ

»
(Eλ−DA)

−1CA
I

–

< 0, ∀∆E ∈∆E , (17)

where
Θ =

»
B′
A

A′
A

–′ »
B′
A

A′
A

–

−
»

0 0
0 γAI

–

.

As in the previous section, applying the generalized KYP lemma [19] with adaptations of [16] enables
ones to see that (17) holds if and only if there exist an Hermitian matrix P (∆E) and h̄ Hermitian
positive definite matrices Qh(∆E) (note that these matrices depend on ∆E) such that

Θ+

»
DA CA
E 0

–′

M(∆E)

»
DA CA
E 0

–

< 0, ∀∆E ∈∆E , (18)

where

M(∆E) = R⊗ P (∆E) +

h̄X

h=1

Φh ⊗Qh(∆E). (19)

Recalling that E = DE + CE∆E(I −AE∆E)
−1BE , one can deduce the next LFT:

GE =

»
DA CA
E 0

–

= DE + CE∆E(I −AE∆E)
−1BE =

DE + CE(I −∆EAE)−1∆EBE , (20)

with
»
AE BE
CE DE

–

=

2

4

AE BE 0
0 DA CA

CE DE 0

3

5 . (21)
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Therefore, inequality (18) can be written

»
GE

I

–′ »
M(∆E) 0

0 Θ

– »
GE

I

–

< 0. (22)

At this stage, we introduce “some” degree of conservativeness by noting that (22) holds for some
M(∆E) if it holds for some constant M . In other words, matrices P and Qh are no longer assumed
to depend on ∆E . So (22) holds if

N
′(∆E)

z }| {
»

(I −∆EAE)−1∆EBE
I

–′

Θ

N(∆E)
z }| {
»

(I −∆EAE)−1∆EBE
I

–

< 0. (23)

with

Θ =

»
C′
E

D′
E

–

M

»
C′
E

D′
E

–′

+

»
0 0
0 Θ

–

.

Notice that the columns of N(∆E) span the kernel of of the substitution associated with

ˆ
I −∆E

˜

FE

z }| {
»

I 0
AE BE

–

=
ˆ

(I −∆EAE) −∆EBE
˜

Also notice that ∆E can be defined as

∆E =



∆E :

»
∆E

I

–′

ΨE

»
∆E

I

–

≥ 0

ff

,

with

ΨE =

»
−γEI 0

0 I

–

. (24)

Taking these facts and the compactness of ∆E into account, we apply the full block S-procedure in
the version proposed in [18] to claim that (23) holds if and only if

F ′
E
ΨEFE +Θ < 0, (25)

which can also be written as in (26). Indeed, the previous reasoning is summarized as follows.

Theorem 6 Let an uncertain matrix pencil (E,A) comply with the uncertainty described in §2.2 and
Assumption 4. Also let a set ∂D be described as in §2.3. (E,A) is robustly ∂D-regular if there exist
an Hermitian matrix P and h̄ Hermitian positive definite matrices Qh, h = 1, . . . , h̄, such that

»
I 0 0

AE BE 0

–′

ΨE

»
I 0 0

AE BE 0

–

+

»
0 BA AA
0 0 I

–′

ΨA

»
0 BA AA
0 0 I

–

+

»
0 DA CA

CE DE 0

–′

M

»
0 DA CA

CE DE 0

–

< 0 (26)

where ΨE is given by (24) and

M = R⊗ P +

h̄X

h=1

Φh ⊗Qh, (27)

ΨA =

»
I 0
0 −γAI

–

. (28)
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The conservativeness is clearly due to the fact that the matrices are considered constant whereas
they should depend on ∆E . We conjecture that (26) is less conservative than (16). We will illustrate
it on an example in Section 6 but before, we will discuss about the interest of such results for the
robust analysis of descriptor models.

It also has to be mentioned that Theorem 6 can be reduced, as a special case, when applied to
conventional non descriptor models, to the LMI version of the so-called Bounded Real Lemma [22],
which is used to compute the H∞-norm of a realization.

5 Robust D-admissibility of descriptor models

We are here interested in the robust analysis of descriptor models of the form

Eẋ = Ax (29)

(or
Exk+1 = Axk (30)

for the discrete case) where the matrices E and A comply with (2). It is well known (see [2] and the
references therein) that the poles of such a model are the eigenvalues of the pencil (E,A), including
finite and infinite ones. The system reponse contains a term with modes related to finite poles (as
for conventional models where E = I) and another term with modes associated to infinite poles. As
for usual models, the transient behaviour of the first term is strongly related to the location of the
finite poles in the complex plane. For this reason, D-stability (root-clustering in some region D ⊂ lC )
is of interest. But two other apsects have to be considered. The descriptor model should be regular
(meaning that there is only one solution to the state equation: some kind of well posedness of the
model) and it should be impulse free (meaning that the “infinite term” in the response does not convey
impulses present in the control signals). We recall some classical definitions.

Definition 7 The model (29) or (30) is said to be D-stable if the finite eigenvalues of (E,A) lie inside
some region D.

Definition 8 The model (29) or (30) is said to be D-admissible if it is D-stable, regular and impulse
free.

For conventional models, D-stability is known to be related to ∂D-regularity [15, 16]. Indeed, when
∂D is the outside of D then D-stability is the same as ∂D-regularity. A more frequent case is when ∂D
is the boundary of D. Then D-stability is a special case of ∂D-regularity for which all the poles are
located on only one side of ∂D. The same reasoning can nearly be followed with descriptor systems.
However, one has to be very careful with infinite poles. When ∂D or D is unbounded, it is possible
that the system be ∂D-singular because of infinite poles although they should not be considered for
D-stability. A solution is then to define D or ∂D not only as a subset of lC but as a subset of C where
C is disc centred around the origin and of radius ω possibly very large. In this case, ∂D might be only
part of the boundary of D, the remaining part being bounded by the frontier of C. The finite poles
necessarily lie inside C provided that ω is large enough and that Assumption 4.(ii) holds. The reason
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is that if the generalized order r = rank(E) remains constant, a finite pole cannot become infinite (or
the other way around) unless under infinite uncertainty (which shall reasonably not be considered)
so it remains inside C. This is of special interest when one considers Hurwitz stability for which the
boundary ∂D is the imaginary axis (thus unbounded). Roughly speaking, ∂D-regularity tests fail just
because of infinite poles that can belong to ∂D (actually, it is a bit more complicated: see [19]). In
this case, it is possible to rather consider a long segment on the imaginary axis [−iω; iω]. Such a
descritpion is allowed by (5) with the choice

h̄ = 1; R =

»
0 1
1 0

–

; Φ1 =

»
−1 0
0 ω2

–

. (31)

This is exactly the idea of the finite frequency KYP lemma [17] and the connection with descriptor
models is well highlighted in [19]. This case will be presented in the numerical illustration.

For a bounded D (e.g. a disc: then ∂D is a circle), the problem is simpler. The finite poles lie
inside D and the infinite poles outside. C is not required. Schur stability is then handled with ∂D
equaling the unit circle.

From the above discussion, it is clear that D-stability can be tackled. The only additional assump-
tion is that the nominal pencil (DE , DA) should be D-stable.

Regularity is actually not a real problem. The regularity of a descriptor model is the regularity of
the associated pencil as introduced in Defintion 3. So if ∂D-regularity is assessed for some non empty
∂D, regularity is proven.

Impulse freeness is completely related to Assumption 4.(ii). Actually, this property holds when
the number of finite poles equals r [2, 1]. Since the number of finite poles does not change, it is clear
that Assumption 4.(ii) preserves the impulse freeness (provided (DE , DA) is impulse free of course).
This assumption is then fundamental. But, in practice, it is not a drastic contraint because the rank
deficiency of E is often due to structural properties of the model that are still valid in the presence of
uncertainties. The only exception might be when the descriptor model results from the idealization
of a “singularly perturbed” system.

As a conclusion of the above discussion, when (DE , DA) is D-admissible, Theorems 5 and 6 can
be used to analyze the robust D-admissibility of (E,A).

6 Numerical illustration

The uncertain model is as follows:

»
AA BA
CA DA

–

=

2

6
6
6
6
6
6
6
4

0.2140 0.3200 0.7266
0.6435 0.9601 0.4120
0.2259 0.2091 0.5678
0.5798 0.3798 0.7942
0.7604 0.7833 0.0592
0.5298 0.6808 0.6029
0.6405 0.4611 0.0503

. . .
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0.4154 0.8744 0.7680 0.9901 0.4387
0.3050 0.0150 0.9708 0.7889 0.4983
5.8413 13.4301 30.1742 27.2534 17.8494
5.0562 −0.2859 15.8285 12.2772 7.0206

−6.5957 −6.863 −24.2345 −15.9162 −9.7204
10.3767 11.4091 30.2249 20.4394 15.8384

−16.0828 −18.9503 −47.4443 −40.9319 −30.7603

3

7
7
7
7
7
7
7
5

(32)

»
AE BE
CE DE

–

=

2

6
6
6
6
6
6
6
6
6
6
6
4

0.3295 0.6649 0.3830 0.6992
0.3090 0.6973 0.9834 0.3874
0.7329 0.5721 0.7906 0.0419
0.3944 0.5467 0.3867 0.2193
0.3878 0.4480 0.4513 0.2346
0.7009 0.4883 0.9235 0.2231
0.0214 0.1904 0.7002 0.5491
0.7556 0.0708 0.1335 0.9363

0 0 0 0

. . .

0.7847 0.1604 0.8695 0.3693 0
0.0862 0.7363 0.9474 0.5299 0
0.3433 0.0798 0.1366 0.2513 0
0.2559 0.4901 0.0385 0.2309 0
1.0000 0 0 0 0

0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 1.0000 0
0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
5

. (33)

This model is such that n = 5 and r = 4. We assume that
√

γ−1E = 0.001. The nominal model

(DE ;DA) is stable in the continuous sense, regular and impulse free. In other words, it admissible.
Indeed, its nominal finite poles (the finite eigenvalues (DE , DA)) are

{−7.0657;−5.0683;−4.7079;−1.1385} (34)

with the last nominal pole at infinity. Since the number of finite poles equals r, the nominal model is
impulse free.

We apply Theorems 5 and 6 with the choice (31) and ω = 10000 in order to test robust admissibility.
Moreover, when solving LMI (16) and (26), we minimize γA. We obtain the respective robust stability
bounds:

• Theorem 5 ⇒ σ̄(∆A) ≤
√

γ−1A = 0.1255;

• Theorem 6 ⇒ σ̄(∆A) ≤
√

γ−1A = 0.3246.

It is clear from these values that Theorem 6 seems to provide a far less pessimistic bound than
Theorem 5. Indeed, by plotting several random uncertain models respecting the bounds on σ̄(∆A)
and σ̄(∆E) in both cases, we can appreciate the weak conservativeness of Theorem 6 (Figure 1). From
these results, we shall seriously investigate the actual conservativeness induced by condition (26).

7 Conclusion

In this paper we have proposed two simple strict LMI condtions for the robust ∂D-regularity of a
pencil (E,A) when both matrices A and E are subject to norm-bounded LFT-based uncertainties and
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Figure 1: Pole migration corresponding to obtained bounds (Th. 5 (left) and Th. 6 (right))

for a very large choice of set ∂D. We have shown on an example that the second condition was better
and that the systematic use of a “big LFT” might not always be suitable. We have also explained
how these conditions could be used to analyze the robust D-admissibility of a continuous or discrete
descriptor model. We insist on the compatibility of our conditions with the strong results on the
conventional models.

As future investigations, we would like to consider more general uncertainty structures and try
to give a better appreciation of the conservativeness induced by Theorem 6. We would also like to
exploit the obtained condition in a design context, which is not straightforward.
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