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Abstract

This paper focuses on Kalman-Yakubovich-Popov lemma for multidimensional systems
described by Roesser model that possibly includes both continuous and discrete dynamics.
It is shown that, similarly to the standard 1-D case, this lemma can be studied through the
lens of S-procedure. Furthermore, by virtue of this lemma, we will examine robust stability,
bounded and positive realness of multidimensional systems.
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1 Introduction

In the past three decades, a large attention has been paid to the study of multidimensional
(n-D) systems [7, 8, 23, 28]. These systems are characterized by rational functions, or matrices
of several independent variables which can represent different space coordinates or mixed time
and space variables. This is a result of information propagation in more than one independent
direction which is the essential difference from the classical, or one-dimensional (1-D) case, where
information propagates only in one direction.

The interest in n-D systems has predominantly been motivated by a wide variety of ap-
plications, arising in both theory and practical applications. Particular applications include
n-D filtering [5, 31], n-D coding and decoding [37], image processing [10], and multidimensional
signal processing [14]. n-D systems theory also successfully applies for analysis and synthesis
of processes with repetitive dynamics, see for example [35] and the references therein.

Two basic state-space models for n-D systems have been developed. The first is credited
to Roesser [34] and clearly has a first order structure. In what follows, the state vector is par-
titioned into sub-vectors - one for each of n directions of information propagation. Another
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commonly used state-space model for n-D systems has been proposed by Fornasini and March-
esini [16]. Note, however, that these models are not fully independent and it is possible to
transform one into the other.

The unquestioned popularity of the state-space methods in n-D system theory stems from
the fact that they are well understood and efficient numerical linear algebra routines exist
(required when manipulating state-space models). In what follows, the stability problem, which
is a main requirement for n-D systems, can be solved within Lyapunov’s framework [21, 25, 28,
30], which is naturally performed in the state space. The most important fact associated with
such an approach is that an n-D system stability condition can be recast into a linear matrix
inequality (LMI) feasibility problem [9], i.e. finite dimensional convex optimization problem
involving LMI constraints. It has to be mentioned that most of the proposed LMI stability
conditions, when tractable, are only sufficient. Recently, some preliminary results on formulating
necessary and sufficient stability condition have been proposed in [15, 17]. However, these
conditions are only formulated for 2-D discrete system case and cannot be easily extended to
controller design case.

However, the most known conditions relevant to the stability of n-D systems are expressed in
terms of characteristic polynomial root-clustering [27]. In this framework, it becomes of interest
to derive theoretical results on polynomial matrices [36]. Once again, convex optimization
techniques over LMI constraints have turned to be a good tool to tackle some problems induced
by polynomial matrices, especially D-stability analysis [24]. This paper lies in this framework.

The connection between the polynomial, or, in a more restrictive way, frequency approach,
and the matrix inequalities is quite well established in the context of 1-D systems. The strongest
result is the celebrated Kalman-Yakubovich-Popov (KYP) lemma [33, 26] which gives equiva-
lences between crucial frequency domain inequalities and LMIs.

To date, no work has been reported on a solution to this problem in terms of n-D systems
and therefore it is a natural question to ask if it is possible to provide a version of the KYP
lemma which can be exploited in the realm of n-D systems. Recently, much effort has been
dedicated to establishing KYP lemma for n-D systems. Although few special instances of the
KYP lemma have been implicitly addressed for 2-D models [38, 39], no real general result has
been provided yet. This paper aims at filling this gap.

The paper is organized as follows. After this introduction, Section 2 provides the preliminary
background. It recalls the Roesser model and shortly highlights its various extensions. These
models are very popular to describe the behaviour of multidimensional systems. Besides, it
exploits some descriptions (encountered in the literature) of regions of the complex plane as well
as the notion of ∂D-regularity for multivariate matrix functions. Section 3 states the main result
which is some extension of the generalized KYP lemma. In Section 4, this lemma is applied to
analyze the behaviour of n-D systems described with Roesser model introduced in Section 2.
Some numerical illustration is provided in Section 5 to highlight the relevance of the approach.
Finally, results are summarized and conclusions are stated in Section 6.

The following notation will be used throughout the paper. M ′ denotes the transpose conju-
gate of a matrix M . Hence, λ′ is the conjugate of complex number λ. ||M ||2 is the matrix 2-norm
(the maximum singular value) induced by the Euclidean vector norm. In is the identity matrix
of dimension n and I (resp. 0) is the identity (resp. a null) matrix of appropriate dimensions.
Matrix inequalities are considered in the sense of Löwner, i.e. > 0 (resp. < 0) means positive
(resp. negative) definite and ≥ 0 (resp. ≤ 0) means positive (resp. negative) semi-definite. The
notation Hn stands for the set of Hermitian matrices of dimension n. H+

n ⊂ Hn is the subset of



positive definite matrices and H−n ⊂ Hn that of negative definite matrices. Also let the following
notations be defined:

k
⊕
i=1

Mi = diag
i=1,...k

{Mi}

For a given subset S of the set X , the set SC is the complementary set of S such that S ∪SC =
X &S ∩ SC = ∅. At last, the sets of indices are denoted as follows:

I(q) := {1, . . . , q}, q ∈ IN.

2 Preliminaries

This section introduces some preliminaries, some of them being borrowed from the literature.
The first part is dedicated to the presentation of the Roesser models and to some associated
stability conditions. The second provides the description of a class of regions of the “multidimen-
sional” complex plane which will be used in the next section. The third part briefly introduces
the notion of ∂D-regularity of a multivariate matrix function, inspired from the concept of matrix
∂D-regularity.

2.1 Hybrid Roesser model

One of the most commonly used model for n-D discrete systems is the Roesser model (RM) that
has been originally introduced in [34]. One of the key features of this model is that the state
vector is partitioned into horizontal and vertical components.

Furthermore, it is also possible to define the continuous or hybrid versions of Roesser
model [20]. The general version of the hybrid Roesser model for n-D systems takes the fol-
lowing form

E



∂

∂t1
x1(t1, . . . , tr, jr+1, . . . , jk)

...
∂

∂tr
xr(t1, . . . , tr, jr+1, . . . , jk)

xr+1(t1, . . . , tr, jr+1 + 1, . . . , jk)
...

xk(t1, . . . , tr, jr+1, . . . , jk + 1)


=

[
A11 A12

A21 A22

]


x1(t1, . . . , tr, jr+1, . . . , jk)
...

xr(t1, . . . , tr, jr+1, . . . , jk)
xr+1(t1, . . . , tr, jr+1, . . . , jk)

...
xk(t1, . . . , tr, jr+1, . . . , jk)



+
[

B1

B2

]
u(t1, . . . , tr, jr+1, . . . , jk)

y(t1, . . . , tr, jr+1, . . . , jk) =
[

C1 C2

]



x1(t1, . . . , tr, jr+1, . . . , jk)
...

xr(t1, . . . , tr, jr+1, . . . , jk)

xr+1(t1, . . . , tr, jr+1, . . . , jk)
...

xk(t1, . . . , tr, jr+1, . . . , jk)


+ Du(t1, . . . , tr, jr+1, . . . , jk)

(1)



where
k∑

i=1

ni = n.

The vectors x′i(t1, . . . , tr, jr+1, . . . , jk) ∈ IRni , i = 1, .., k, u(t1, . . . , tr, jr+1, . . . , jk) ∈ IRm and
y(t1, . . . , tr, jr+1, . . . , jk) ∈ IRp are the local state subvectors, the input vector and the output
vector respectively. The matrices

A =
[

A11 A12

A21 A22

]
∈ IRn×n, B =

[
B1

B2

]
∈ IRn×m,

C =
[

C1 C2

]
∈ IRp×n, D ∈ IRp×m

are the state, control, observation and direct transfer matrices respectively. The matrix E ∈
IRn×n is introduced to enable the description of some singularities in order to extend the notion
of 1-D linear descriptor systems. Obviously, the systems represented by the above model have
continuous dynamics along r dimensions and discrete dynamics along (k− r) dimensions. If the
matrix E is equal to I (no singularity in the dynamics), then the model of [6] is recovered. If,
furthermore, r = 0, then it reduces to the classical Roesser model [34] whereas if r = k then one
gets its continuous counterpart. At last, if r = 1 and k = 2 (still with E = I), then the obtained
2-D model is particularly suitable to describe the differential repetitive processes [22].

Note that relationships between polynomial matrix theory and state-space description are
very strong in the n-D linear case. As a result of application the Laplace transform and the Z-
transform the following frequency characterization of the system (1) is obtained

Y (λ) = G(λ)U(λ),

where
G(λ) = C(EH(λ)−A)−1B + D, H(λ) :=

k
⊕
i=1

λiIni . (2)

Now let the function c(λ, E,A) be defined by

c(λ, E,A) := det(EH(λ)−A) (3)

We begin with presenting the stability condition for n-D systems, which is just a reformulation
of a proposition in [6].

Lemma 1. Consider a multidimensional system represented by (1) and assume that E = In.
Then, such a system is asymptotically stable if and only if

c(λ, I, A) 6= 0 ∀λ ∈ SC , (4)

where c(., ., .) is defined by (3) and where SC , the complementary set of the “asymptotic stability
region”, is defined by

SC =

λ =

 λ1
...

λk

 ∈ lC k : Re(λi) ≥ 0, i = 1, ..., r & |λi| ≥ 1, i = r + 1, ..., k

 (5)

It can be seen that the above Lemma covers the existing results for both discrete and con-
tinuous n-D systems. Obviously, if r = 0, then the condition for the stability of a discrete
Roesser model proposed in [1, 27] is recovered. Furthermore, by taking r = k the result of [32]
is obtained.



Remark 1. The reader may have noticed that the matrix E has not been taken into account
in Lemma 1. The reason is that the stability of singular n-D systems has not yet been clearly
connected to the notion of root-clustering although some extended conditions could seem natural.
Besides, the asymptotic stability of descriptor systems is not always sufficient to ensure some
satisfactory behavior. Regularity and impulse-free responses are also required [11]. Few papers
address both multidimensional and singular systems. Let however reference [19] be quoted.

In Lemma 1, the stability condition is expressed in terms of polynomial root-clustering which
generally does not lead to computationally feasible conditions. One of the ways to obtain stability
conditions that result in a significant reduction in computational complexity is to formulate
them as convex optimization problems involving LMIs. Therefore, the next part provides some
preliminaries on point clustering in order to prepare the derivation of some LMI-based conditions
in the next section.

2.2 Point-clustering

Unlike the 1-D system case, zeros of n-D system characteristic polynomial (i.e. system poles)
are not isolated and generally they cannot be a finite set. Furthermore, it is accompanied by
difficulties in applying the pole placement technique for n-D systems, since there is no link
between pole location and the dynamic response of n-D system. Therefore, it becomes clear
that only the imaginary axis and the unit circle, which are the boundaries of SC defined in (5),
can be considered.

To proceed, consider the following matrices[
Ri11 R′i10
Ri10 Ri00

]
∈ lC 2×2. (6)

Let the sets ∂Di be described by

∂Di := {s ∈ lC : FRi(s) = 0,∀i ∈ I(k)} (7)

where the functions FRi(s) are defined by

FRi(s) :=
[

sI
I

]′
Ri

[
sI
I

]
∀i ∈ I(k). (8)

Due to the fact that the only meaningful sets are lines or circles we limit our consideration to
sets described by the equalities FRi(s) = 0.

Now define the “k-region” ∂D as

∂D := ∂D1 × ∂D2 × ...× ∂Dk. (9)

In the remaining part of the paper, we shall restrict the study to matrices that comply with

Ri =
[

0 1
1 0

]
∀i ∈ I(r) and

[
1 0
0 −1

]
∀i ∈ {r + 1, . . . , k}, (10)

meaning that, respectively, only the imaginary axis and the unit circle are considered as instances
of ∂Di. Indeed, as it has been mentioned, they are the ones of practical interest for the study



of nD models. More precisely, with such a choice, ∂D is the boundary of SC defined in (5).
But note that another work considering a much larger class of regions has been completed in a
technical report which is available upon request to the authors [4].

Let λ be a complex vector that can be written

λ :=

 λ1
...

λk

 ∈ lC k. (11)

In the sequel, define the following matrices

Λ :=
k
⊕
i=1

λi;

R :=


k
⊕
i=1

Ri11

k
⊕
i=1

R′i10
k
⊕
i=1

Ri10

k
⊕
i=1

Ri00

 ;

to obtain

λ ∈ ∂D ⇔
[

Λ
Ik

]′
R

[
Λ
Ik

]
= 0. (12)

Before proceeding further, we give the following lemma which will be useful in the sequel.

Lemma 2. Let a k-region ∂D be defined as in (9) with (6)–(8), (10) and λ ∈ lC k comply
with (11). The two following statements are equivalent.

i)
λ ∈ ∂D (13)

ii) [
H(λ)

I

]′

R(P)
[

H(λ)
I

]
= 0 ∀P ∈ H (14)

where H = {Hn1 × · · · × Hnk
}, H(λ) is defined in (2) and R(P) stands for

R(P) :=


k
⊕
i=1

PiRi11

k
⊕
i=1

PiR
′
i10

k
⊕
i=1

PiRi10

k
⊕
i=1

PiRi00

 ,∀l ∈ I(k), (15)

and with Pni ∈ Hni, ∀i ∈ I(k).

Proof. i) ⇒ ii) : if λ ∈ ∂D then the equality in (12) holds or equivalently

k
⊕
i=1

FRi(λi) = 0,

leading to
k
⊕
i=1

FRi(λi)Pi = 0, (16)



with considering any set P of k matrices Pi ∈ Hni , i ∈ I(k), one gets[
H(λ)

I

]′
R(P)

[
H(λ)

I

]
= 0. (17)

ii) ⇒ i): Assume that (14) holds. Let a vector z comply with

z =

 z1
...
zk

 with zi ∈ lC ni , ∀i ∈ I(k). (18)

Left and right multiplying (14) by z′ and z respectively yields

k∑
i=1

((z′iPizi)FRi(λi)) = 0. (19)

The above inequality holds for any set P meaning that z′iPizi can take any value. Thus, it is
clear that FRi(λi) = 0 ∀i ∈ I(k).

2.3 Multivariate matrix ∂D-regularity

To conclude this section, the definition of the ∂D-regularity of a multivariate matrix function is
proposed, accompanied by a short discussion.

Definition 1. Let ∂D be a subset of lC k and λ ∈ lC k comply with (11). Also consider a k-variate
matrix function A(λ). Then, A(λ) is said to be

• ∂D-regular if {λ ∈ lC k : det(A(λ)) = 0} ∩ ∂D = ∅;

• ∂D-singular if {λ ∈ lC k : det(A(λ)) = 0} ∩ ∂D 6= ∅.

In Section 4, a particular attention will be paid to the k-D polynomial matrix of the form

A(λ) := EH(λ)−A, (20)

since, in this case, det(A(λ)) = c(λ, E,A) corresponds to the characteristic polynomial of Roesser
model (1). If E = I, from Lemma 1, it can be seen that the asymptotic stability of (1) is a
special instance of the ∂D-regularity of A(λ) as defined in (20). More precisely, for (1) with
E = I to be asymptotically stable, it is necessary that A(λ) be ∂D-regular with (6)–(10).

In such a case, the difference between ∂D-regularity and asymptotic stability lies in the
distribution of the roots of c(λ, I, A) with respect to ∂D. More generally, D-stability requires
∂D-regularity when ∂D is the boundary of the region D.

For the classical 1-D case (r = k = 1 or k = k − r = 1), then A(λ) can be written
A(λ) = (λE − A) and, if E = I, Definition 1 becomes equivalent to the definition of the ∂D-
regularity of matrix A proposed in [3]. If E 6= I, then the definition in [3] can be directly
extended to the notion of ∂D-regularity of the pencil (E,A).



3 A version of the KYP lemma

This section is devoted to the derivation of the main result which is some sort of k-D version
of the celebrated KYP-lemma. This version will only provide a sufficient condition but the
necessity will be briefly discussed with the help of the so-called generalized S-procedure. A large
reference is made to the seminal paper [26] where generalized KYP lemma for 1-D linear models
and the generalized S-procedure are presented in a very elegant way.

Before stating the result, let us introduce the following notation useful for a further analysis
(note that various notations are borrowed from [26]).

Consider some matrix F ∈ lC (n+m)×(n+m) and let another matrix Θ belong to Hn+m. Next,
let the set P be made up by k matrices Pi ∈ Hni , ∀i ∈ I(k). With each set P and with a set ∂D
given by (9) with (6)–(8) and (10), one can associate a matrix R(P), as in Lemma 2, defined
by (15). The set M is the set of all complex matrices M associated with F and R(P) in the
following way:

M := {M ∈ Hn+m : M = F ′R(P)F}. (21)

¿From the above formulation, the subset M̃ can be described by

M̃ := {M ∈ M : (M + Θ) ∈ H−n+m}. (22)

At last, for a complex vector λ defined as in (11), the matrices Γ(λ) and N(λ) are defined by

Γ(λ) :=
[

I −H(λ)
]

and Span(N(λ)) := Ker(Γ(λ)F )

respectively.
Now, the main result, which can be considered as some extension of the KYP lemma in its

“strict inequality” version [33] is stated.

Theorem 1. With the notations and assumptions detailed above, consider the two following
statements:

i)
N ′(λ)ΘN(λ) ∈ H−m ∀λ ∈ ∂D; (23)

ii)
M̃ 6= ∅. (24)

Then ii) is sufficient for i).

Before giving the proof to the above theorem, the comments to the both conditions are
provided. The first statement corresponds to some property to be checked such as robust
stability, H∞ performance level, and others (see paragraph 4.1.1 to understand how a suitable
choice of Θ can link N(λ) and Θ to a property to be satisfied by the system transfer matrix).
The second statement corresponds to some numerically tractable condition which simply means
that there exists some set P (which is usually seen as a set of Lyapunov matrices), such that

M + Θ < 0. (25)

The idea is then to handle inequality (25) rather than directly tackle the original property i)
which cannot be easily exploited from a numerical point of view.



Proof. Firstly, observe that (24), as mentioned above, means that there exists a set P such that
(25) holds. Further, based on the definition of N(λ), it can be seen that

Γ(λ)FN(λ) = 0, ∀λ ∈ ∂D. (26)

Next, inequality (25) implies that

N ′(λ)(M + Θ)N(λ) < 0, ∀λ ∈ ∂D (27)

and hence
N ′(λ)F ′R(P)FN(λ) + N ′(λ)ΘN(λ) < 0, ∀λ ∈ ∂D. (28)

Moreover, we can see from (26) that Span (FN(λ)) is completely characterized by the relation

Span(FN(λ)) = Span
([

H(λ)
I

]
X

)
, (29)

where X is any full rank matrix. Thus, inequality (28) can be equivalently written as

X ′
[

H(Λ)
I

]′
R(P)

[
H(Λ)

I

]
X + X ′N ′(λ)ΘN(λ)X < 0, ∀λ ∈ ∂D. (30)

Finally, taking the result of Lemma 2 into account, it is clear that the first term of the left
handside member of inequality (30) is zero when λ ∈ ∂D. Hence, the second term is negative
definite which is equivalent to i). This completes the proof.

The important point to note is that the 1-D version of KYP lemma is known to provide
a necessary and sufficient condition whereas Theorem 1 only proposes a sufficient condition
ii) for property i) to hold. More than proving Theorem 1, it is important to emphasize why
condition ii) might not be necessary. The 1-D version of KYP lemma [33] can be proven through
the so-called S-procedure [40] in its generalized form (see [26] and the references therein). In
the remaining part of the section, Theorem 1 is studied through the lens of S-procedure, which
is now recalled in its generalized strict inequality version.

Lemma 3. (S-procedure, from [26]) Let Θ be an Hermitian matrix and M be an arbitrary subset
of Hq. Moreover let M̃ ⊂ M be defined by

M̃ := {M ∈ M : (M + Θ) ∈ H−q } (31)

and the set S be defined by

S := {S ∈ Hq : S 6= 0, rank(S) = 1, S ≥ 0, tr(MS) ≥ 0∀M ∈ M}. (32)

Consider the two following statements:

a)
tr(ΘS) < 0, ∀S ∈ S; (33)

b)
M̃ 6= ∅. (34)



Then b) is sufficient for a) and if the set M is rank-one separable (see the definition in [26])
then b) is also necessary and the S-procedure is said lossless.

A possible approach to understand why Theorem 1 only provides a sufficient condition unlike
the classical KYP lemma is to try to see why S-procedure is either useless or is simply not lossless
when applied to the assumptions of Theorem 1. According to the used notations, it is clear that
the idea is to compare the sets M and M̃ defined, on one hand, in Theorem 1 and, on the other
hand, in Lemma 3 with q = n + m, and then to address two issues.

1. Is it possible to exhibit a set S = Sa from the assumptions of Theorem 1 that could match
the set S = Sb in Lemma 3 (this would enable ones to apply the S-procedure, at least in
the sense b) ⇒ a)) ?

2. If so, is the S-procedure lossless (this would enable ones to apply the S-procedure in the
sense a) ⇒ b))?

Firstly, it can be seen that the statement i) in Theorem 1 is equivalent to

y′N ′(λ)ΘN(λ)y < 0, ∀y 6= 0,∀λ ∈ ∂D. (35)

Next, substitute ξ = N(λ)y into (35) to obtain

tr(ΘS) < 0, ∀S ∈ Sa := {S = ξξ′ : ξ 6= 0, Γ(λ)Fξ = 0, λ ∈ ∂D}. (36)

With the change η = Fξ, it is easy to see that η complies with

η =
[

H(λ)
I

]
z, z 6= 0, (37)

and hence the set Sa can be written

Sa =
{

ξξ′ : ξ 6= 0, η = Fξ =
[

H(λ)
I

]
z, λ ∈ ∂D

}
. (38)

In the following, based on Lemma 2, it can be deduced that

Sa =
{

ξξ′ : ξ 6= 0, η = Fξ =
[

H(λ)
I

]
z,[

H(λ)
I

]′
R(P)

[
H(λ)

I

]
= 0 ∀P ∈ H

}
.

(39)

⇔ Sa =
{

ξξ′ : ξ 6= 0, η = Fξ =
[

H(λ)
I

]
z,

q′
[

H(λ)
I

]′
R(P)

[
H(λ)

I

]
= 0 ∀{P; q} ∈ H× lC n

}
.

(40)

so, it is possible to express i) as a) with Θ = Θ and with S matching Sa as described above.
Secondly, the condition ii) in Theorem 1 can be expressed as b) in Lemma 3 with Θ = Θ and
with the set M as defined in (21). Next, application of Lemma 3 yields

tr(ΘS) < 0, ∀S ∈ Sb := {S = ξξ′ : ξ 6= 0, tr(Mξξ′) ≥ 0∀M ∈ M},



where Sb can also be written as

Sb = {S = ξξ′ : ξ 6= 0, ξ′F ′R(P)Fξ ≥ 0 ∀P ∈ H}. (41)

Now, since P is any set in H then the inequality involved in the above description of Sb holds
for any choice P+ = {Pi} ∈ H as well as for any choice P− = {−Pi} ∈ H. In the following,
observe that R(P) is linear with respect to various matrices Pi and therefore the description of
Sb can be modified as follows

Sb = {S = ξξ′ : ξ 6= 0, ξ′F ′R(P)Fξ = 0 ∀P ∈ H}. (42)

Now, the issue 1 mentioned above is to compare Sa in (40) and Sb in (42). Sa can be written

⇔ Sa =
{

ξξ′ : ξ 6= 0 : η = Fξ =
[

H(λ)
I

]
z,

q′
[

H(λ)
I

]′
R(P)

[
H(λ)

I

]
q = 0 ∀{P; q} ∈ H× lC n

}
.

which, with q = Xz, also writes (X being any full rank matrix)

⇔ Sa =
{

ξξ′ : ξ 6= 0 : η = Fξ =
[

H(λ)
I

]
z,

z′X ′
[

H(λ)
I

]′
R(P)

[
H(λ)

I

]
Xz = 0∀{P; X : det(X) 6= 0} ∈ H×Hn

}
.

Now, assume that k = 1 which corresponds to the 1-D system case, then, with no loss of gener-
ality, the matrix P1 can be substituted with X−1P1X

−1 and Sa can then be described by

⇔ Sa =
{

ξξ′ : ξ 6= 0 : η = Fξ =
[

H(λ)
I

]
z,

z′
[

H(λ)
I

]′
R(P)

[
H(λ)

I

]
z = 0 ∀P ∈ H

}
,

which is simplified in

⇔ Sa =
{

ξξ′ : ξ 6= 0 : η = Fξ =
[

H(λ)
I

]
z, η′R(P)η = 0 ∀P ∈ H

}
.

or equivalently in Sb. But this equality Sa = Sb holds when k = 1. It means that the S-procedure
can be directly applied from ii) to i) to prove Theorem 1 only when one comes back to the 1-D
case. In this case only, shall one ask the question of necessity i.e. of the losslessness of the
S-procedure. So it is lossless if the set M defined in (21) is rank-one separable. Actually this
set is the one studied in [26] so the answer is yes, it is rank-one separable.

As a summary of the above discussion, here are four points:

• Theorem 1 provides a sufficient condition that is generally not necessary.

• Sa ⊂ Sb, so b) is clearly more constraining than a); Thus, b) ⇒ a). But it is not a direct
application of the S-procedure. However ii) ⇔ b) with S = Sb ⇒ b) with S = Sa
S-procedure⇒ a) with S = Sa ⇔ i). Hence, ii) ⇒ i).

• At last, when k = 1 (1-D case), then S = Sa = Sb which enables ones to directly apply
the S-procedure. Moreover, it has been proven that it is lossless in this case so ii) ⇔ i).
One recovers the classical KYP lemma [33].



4 Application to the analysis of Roesser models

In this section, the relevance of Theorem 1 for the study of multidimensional hybrid state-space
Roesser model (1) is emphasized. The idea is simply to make a suitable choice of matrices F
and θ. Matrix F is chosen as follows:

F :=
[

A B
E 0

]
∈ IRn×n (43)

where the matrices A, B and E are of course those involved in (1). It can be noticed that matrix
F is here real which corresponds to a special case of Theorem 1. Condition i) in Theorem 1
must be considered as a performance level or a property of (1) to be tested. In the sequel, three
properties are considered, depending on the choice of Θ.

4.1 Robust ∂D-regularity against an LFT-based uncertainty

This part is devoted to the analysis of the ∂D-regularity of the uncertain k-variate polynomial
matrix described by

A(λ) = A(λ)− Ā = EH(λ)−Ac, (44)

where A(λ) is given by (20), where A, B, C, and E have the same dimensions as those involved
in (1), where Ac = A + Ā and where Ā, given by

Ā = B∆̄C, (45)

is an uncertain matrix complying with the so-called LFT (Linear Fractional Transform)-based
structure:

∆̄ = ∆(Ip −D∆)−1, det(Ip −D∆) 6= 0. (46)

The above full rank assumption is referred to as the well posedness of the uncertainty. Matrix ∆
is the actual uncertainty matrix which belongs to B(ρ), the ball of complex matrices ∆ verifying
||∆||2 ≤ ρ.

4.1.1 Complex ∂D-regularity radius

Nominal matrix A(λ) is assumed to be ∂D-regular with ∂D as defined by (9) with (6)–(8) and
(10). The purpose is here to derive what can be called the complex ∂D-regularity radius %∂D,
which is the largest value of the radius ρ such that the uncertain polynomial matrix A(λ) defined
by (44) remains ∂D-regular over B(ρ). To reach such a goal, Θ is chosen as follows:

Θ :=
[

C ′C C ′D
D′C D′D − γI

]
, γ = ρ−1/2. (47)

Corollary 1. Let an uncertain k-variate matrix A(λ) be defined as in (44) and a set ∂D be
defined by (9) with (6)–(8) and (10). A(λ) is robustly ∂D-regular against B(ρ) if there exists a
set P ∈ H such that (25) holds with M defined as in (21), R(P) defined by (15), F given by
(43) and Θ given by (47).

Proof. It consists in applying Theorem 1. With the choice (47), the property i) in Theorem 1
can be expressed

||G(λ)||2 <
√

γ ∀λ ∈ ∂D, (48)



(with G(λ) given by (2)), by noting that the choice of F proposed in (43) leads to

Span(N(λ)) = Span
([

(EH(λ)−A)−1B
I

])
. (49)

Then, inequality (48) can be written as

{ sup
λ∈∂D

σ̄(G(λ))}−1 > ρ. (50)

Simple arguments on singular values show that

σ̄(G(λ)) = µ lC (G(λ)) (51)

where µ lC (.) denotes the celebrated complex structured singular value introduced in [12]. Then
it comes

{ sup
λ∈∂D

µ lC (G(λ))}−1 > ρ. (52)

Taking the fact that

µ lC (G(λ)) =
[
inf
∆
{σ̄(∆) : det(I −G(λ)∆) = 0}

]−1

(53)

into account, one gets

inf
λ∈∂D

{
inf
∆
{σ̄(∆) : det(I −G(λ)∆) = 0}

}
> ρ. (54)

Besides,

det(I −G(λ)∆) = 0

⇔ det(I − C(EH(λ)−A)−1B∆−D∆) = 0

⇔ det(I − C(EH(λ)−A)−1B∆(Ip −D∆)−1) det(Ip −D∆) = 0.

From the well posedness assumption, det(Ip −D∆) 6= 0, the above equality is equivalent to

det(I − C(EH(λ)−A)−1B∆̄) = 0

⇔ det(I − (EH(λ)−A)−1B∆̄C) = 0

⇔ det((EH(λ)−A)−1) det(EH(λ)−A−B∆̄C) = 0.

Since, for ∆ = 0, A(λ) = A(λ) is implicitly assumed to be ∂D-regular (otherwise why testing
robust ∂D-regularity?), the left factor of the left handside member is non zero so it follows that

det(EH(λ)−A− Ā) = 0. (55)

From (54) and (55), it can be deduced that

inf
λ∈∂D

{
inf
∆
{σ̄(∆) : det(A(λ)) = 0}

}
> ρ, (56)

which proves that A(λ) remains ∂D-regular against B(ρ).

It is clear that ρ?, the maximum value of ρ = γ−1/2 obtained by computing P proving (24),
is a lower bound of %∂D. If k = 1, then ρ? = %∂D. Note, however, that matrix ∆ is here assumed
to be complex. In practice, it would be interesting to take its possible realness into account.



4.1.2 Application to asymptotic stability analysis of hybrid Roesser model

In this part, the model (1) is considered in association with the uncertainty structure defined
by the feedback equation

u(t1, . . . , tr, jr+1, . . . , jk) = ∆y(t1, . . . , tr, jr+1, . . . , jk), ∆ ∈ B(ρ) ∩ IRm×p, (57)

The above equation corresponds to the LFT formalism mentioned in the previous subsection.
Application of (57) to (1) yields the closed-loop state matrix

Ac = A + Ā, (58)

where Ā is given by (45)–(46).

Before to study various performance levels in the next subsection, the main property is
considered, namely asymptotic stability. As mentioned in Remark 1, the stability of descriptor
nD-models is rather still an open problem so this discussion on stability will be led with assuming
E = I. In this case, Corollary 1 enables ones to test, with conservatism, if matrix A(λ) = H(λ)−
Ac is robustly ∂D-regular against B(ρ). As mentioned at the end of subsection 2.3, asymptotic
stability of Roesser model (1) with E = I depends on the root-clustering of polynomial c(λ, I, A).
Thus, robust stability of the uncertain hybrid Roesser model described by (1) with E = I
and (57) against B(ρ) depends on the root-clustering of c(λ, I, Ac) = det(A(λ)). More precisely,
for c(λ, I, Ac) to match the robust stability conditions induced by Lemma 1, it is necessary that
A(λ) be at least ∂D-regular with the choice (10). Following this idea, the next theorem is stated

Theorem 2. Suppose that a multidimensional hybrid system of the form described by (1) with
E = I is subject to uncertainty (57). Then the resulting uncertain system is robustly asymptot-
ically stable against B(ρ) if there exists a set P of k matrices Pi ∈ H+

ni
, i = 1, . . . , k, such that

the following LMI holds
F ′R(P)F + Θ < 0 (59)

where F is given by (43), R(P) is given by (15) with (10), and Θ is given by (47).

Proof. Based on Corollary 1, we conclude that the LMI (59) implies that A(λ) is robustly ∂D-
regular against B(ρ) with ∂D characterized by (10). But it is not just another corollary. Since
the matrices Pi are assumed to be positive definite, then the first block in (59), which is[

A
I

]′
R(P)

[
A
I

]
+ C ′C < 0 ⇒

[
A
I

]′
R(P)

[
A
I

]
< 0,

proves asymptotic stability of the nominal system (1) with E = I. To see this, note that the
columns of [

A
In

]
,

span the kernel of [
In −A

]
, (60)

and, in the sequel, invoke the matrix elimination procedure [9] to observe that there exists
a matrix G = G′ such that

N = R(P) +
[

In

−A′

]
G

[
In −A

]
< 0. (61)



Further, let a vector λ (as introduced in (11)) comply with c(λ, I, A) = 0. It will be proven that
λ cannot lie in SC defined as in (5). Indeed, if c(λ, I, A) = 0, there exists a vector v ∈ lC n such
that

A(λ)v = 0. (62)

Let the vector q be defined by

q =
[

H(λ)
In

]
v.

Note that, if v is written

v =

 v1
...

vk

 , with vi ∈ lC ni ∀i ∈ I(k),

then q becomes

q =



λ1v1
...

λkvk

v1
...

vk


.

Now, based on (61), it can be deduced that

q′Nq < 0

which can be rewritten as

k∑
i=1

(
v′iPiviFRi(λi)

)
+ v′A′(λ)GA(λ)v < 0. (63)

From (62), it can be seen that the second term in the above inequality is zero. Moreover, the
set SC can be defined (with the choice (10)), by FRi ≥ 0. Thus, if λ belongs to SC , then the
first term in (63) is positive or zero, which contradicts (63). Hence, λ cannot belong to SC .
Then c(λ, I, A) = det(A(λ)) satisfies the condition of Lemma 1, implying nominal satbility. It
is clear that c(λ, I, Ac) = det(A(λ)) also satisfies the condition of Lemma 1 for any ∆ otherwise,
by continuity of λ with respect to ∆, A(λ) would becomes ∂D-singular. Hence, (1) with E = I
and (57) is robustly asymptotically stable against B(ρ).

It can be noted again that the maximum value of ρ while satisfying LMI (59), denoted by
ρ?, is a lower bound of the complex stability radius.

The strong difference between ∂D-regularity and asymptotic stability lies in the distribution
of the roots of c(λ, I, Ac) with respect to ∂D. Basically, Theorem 2 ensures robust ∂D-regularity.
However, if nominal k-variate polynomial matrix is “stable”, meaning that c(λ, I, A) fills the
conditions given by Lemma 1 or equivalently that (1) with E = I is asymptotically stable,
then this property is obviously preserved when ∆ describes B(ρ) if A(λ) remains ∂D-regular.
Nevertheless, if, for some ∆, matrix A(λ) becomes ∂D-singular, it does not necessarily imply



instability. Thus, the conservatism of Theorem 2 is due both to this reason and to the fact that
Corollary 1 also proposes a sufficient condition. Another reason is that the realness of ∆ is not
taken into account.
In the 1-D case, only this last reason induces conservatism. Indeed, in this case, not only
Theorem 1 and thus Corollary 1 provide a necessary and sufficient condition but moreover,
∂D-singularity implies instability.

4.2 Positive realness of hybrid Roesser model

Since the work of Popov on hyperstability, positive realness [2] of transfer matrices have been
widely investigated, especially for classical 1-D systems, noting that, for such models, positive
realness means passivity and enables the designer to include sector-bounded nonlinearities. For
multidimensional linear models, few contributions exist. However, the 2-D discrete Roesser
models are considered from the viewpoint of positive realness in [38]. Hence, we make an attempt
to extend those results to investigate positive realness of hybrid Roesser models.

We will first state the following definition.

Definition 2. Let the set ∂D be defined by (9) with (6)–(8) and (10). The model (1) is said
to be strictly positive real over ∂D if

G(λ) + G′(λ) > 0 ∀λ ∈ ∂D (64)

Following this idea, the next corollary is proposed.

Corollary 2. Consider a hybrid Roesser model and the set ∂D be described by (1) and (9) with
(6)–(8) and (10) respectively. Suppose also that M is defined in (21), R(P) is defined by (15),
F is given by (43) and

Θ :=
[

0 −C ′

−C −D −D′

]
. (65)

Then, the model (1) is strictly positive real over ∂D if there exists a set P ∈ H such that (25)
holds.

Proof. It follows immediately form Theorem 1 that with (65), the expression 23 corresponds
to (64).

It is clear that the notion of strict positive realness over ∂D might not be sufficient to
appreciate the performances of a nD-model and one can come back to the more classical notion
of strict positive realness.

Definition 3. The model (1) is strictly positive real if G(λ) is analytic on SC defined by (5)
and if inequality

G(λ) + G′(λ) > 0 (66)

hold on SC .

Theorem 3. Consider a multidimensional hybrid system described by Roesser model (1) with
E = I. Suppose also that F is given by (43), R(P) is given by (15) with (10) and Θ is given
by (65). Then, the hybrid n-D system is strictly positive real if there exists a set P of k matrices
Pi ∈ H+

ni
, i = 1, . . . , k, such that LMI (59) holds.



Proof. This follows immediately from the result of Corollary 2 except that the matrices Pi are
assumed to be positive definite in order to guarantee asymptotic stability as in the proof of
Theorem 2.

It is significant to note that Theorem 3 can be seen as an extension of the LMI version of the
classical positive real lemma (see [9] for example).

4.3 Bounded realness of hybrid Roesser model

The idea is about the same as in the above subsection but the performance to be considered is
the so-called H∞-level. As some extension of the H∞-norm proposed in [13] for the 2-D discrete
Roesser models, the following definition introduces the L∞-norm of model (1) with respect to
∂D.

Definition 4. Let a hybrid Roesser model and the set ∂D be described by (1) and (9) with (6-8)
and (10) respectively. Then, the L∞-norm of (1) with respect to ∂D is defined by

||G||∞ = sup
λ∈∂D

||G(λ)||2. (67)

From this definition and from Theorem 1, the next corollary is stated.

Corollary 3. Let the hybrid Roesser model and the set ∂D be described by (1) and (9) with
(6-8)and (10) respectively. The L∞-norm of (1) with respect to ∂D is strictly lower than

√
γ if

there exists a set P ∈ H such that (25) holds with M defined as in (21), R(P) defined by (15),
F given by (43) and Θ given by (47).

Proof. Direct from the discussion in subsection 4.1.1 and especially inequality (48).

A particular attention can be paid to the case where E = I. Assuming that (1) is asymptot-
ically stable (i.e. G(λ) is analytic on SC), then the L∞-norm becomes the so-called H∞-norm.

Definition 5. Let the hybrid Roesser model (1) with E = I comply with Lemma 1. Its H∞-norm
is defined by (67) with (9) and (6-8) together with (10).

This H∞-norm actually equals the so-called L2-gain but this connection is not detailed here
for the sake of conciseness.

From the above definition, the next corollary is formulated.

Theorem 4. Let the hybrid Roesser model described by (1) with E = I. It is asymptotically
stable and its H∞-norm is strictly lower than

√
γ if there exists a set P of k matrices Pi ∈ H+

ni
,

i = 1, . . . , k, such that LMI (59) holds, where F is given by (43), R(P) is given by (15) with
(10) and Θ is given by (47).

Proof. The proof follows immediately from the result of Corollary 3 combined with (10) and
under assumption that the matrices Pi are positive definite to ensure asymptotic stability.

Theorem 4 can be seen as an extension of the classical LMI version of the Bounded real
lemma [18] to hybrid Roesser models. It has to be mentioned that the H∞-control design is
considered in [39] through an equivalent approach.



Remark 2. Corollaries 1 and 3 actually involve the same conditions. The same for Theorems
2 and 4. In Corollary 1 (resp. Theorem 2), robust ∂D-regularity (resp. robust stability) is
concerned whereas in Corollary 3 (resp. Theorem 4), L∞-norm on ∂D (resp. H∞ performance
level) is addressed. This connection between the L∞ or H∞-norm of a system and the quadratic
stability against an LFT-based uncertainty is already well known in the 1-D system case [29].

5 Numerical Example

In this section, the results developed above are illustrated by one numerical example.

Example 1. Consider the hybrid 2-D system (1) with r = 1 (it means that the system has
continuous dynamics along one of two dimensions) and the state space model matrices given by

A =
[
−0.5 0.2
0.1 −0.4

]
, B =

[
0.4 1.1
0.6 0.1

]
C =

[
−0.1 −0.1
−0.2 0.6

]
, D =

[
−0.1 −0.2
−0.1 −0.3

]
.

The purpose of this example is to use the result of Theorem 4 to compute the minimum upper
bound on H∞ norm of the system described by the above matrices.

With computations performed with Lmi Control Toolbox, it is verified that this system is
asymptotically stable and the minimum H∞ performance level ρ =

√
γ is 1.3224. Furthermore,

the matrices that solves the LMI (59) are

P1 = 0.4233, P2 = 0.9447.

Following Remark 2, it also means that ρ is a lower bound of the complex stability radius.

6 Conclusion

In this paper, a KYP-like theorem has been proposed with a purpose of application to the very
general hybrid state-space Roesser models. As a special instance of the result, the KYP lemma
for classical 1-D linear models is recovered. Unlike for this 1-D case, for multidimensional models,
some conservatism appears. This is due to the nature of Roesser models themselves. The origin
of this conservatism has been highlighted.
Some possibilities of exploiting this new theorem in terms of robust stability, positive realness
and H∞-analysis of hybrid Roesser models have been emphasized. The authors hope that this
point of view will be seen as an attempt to unify numerous contributions dealing with LMI
approach applied to n-D models.
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