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Abstract

This paper deals with the robust DR-admissibility of de-
scriptor systems. The research for robustness bounds for de-
scriptor systems is addressed. The use of parameter-dependent
Lyapunov functions allows ones to handle uncertain singular
systems whose uncertainty is polytopic norm-bounded (i.e. the
state matrix can be written A+J∆L where A, J and L belong
to a polytope of matrices and ∆ is unknown). If the 2-norm of
∆ is less than a robustness bound to be determined, the eigen-
values of any pencil (E, A + J∆L) in the uncertainty domain
are clustered in an Ellipsoidal Matrix Inequality (EMI)-region.
The proposed bound is easy to compute by using LMI tools.
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1 Introduction

Singular systems, also referred to as descriptor systems, both continu-
ous and discrete, have been of great interest in the literature since they
have many applications (see [4]), for instance in electrical circuits net-
work, robotics and economics. It is fair to say that descriptor models
give a more complete class of dynamical models than the conventional
state-space systems.
Many classical concepts and results obtained for conventional systems
have been extended to descriptor systems. Let us quote for instance
controllability and observability, pole assignment, stability analysis
[7, 5]) and stabilization techniques as well as results including robust-
ness aspects [9, 6, 16].
The natural Generalized Lyapunov Equation (GLE) [7] was proven in
[5] to fail unless the system is in its Weierstrass form and the author
in [5] proposed a new GLE equivalent to that given in [13]. In [9],
the authors modified the GLE from [13] and proposed an equivalent
matrix inequality condition.
In a number of approaches, the system model is transformed into a
special form and it is understandable that this way of doing is not very
appropriate in the presence of uncertainty.
The admissibility property includes the stability as well as the regu-
larity and the absence of impulses (or causality).
Concerning the stability analysis, a number of approaches assuming
or not the regularity of the descriptor system have been proposed in
the literature [2, 4, 14]. But stability and regularity are not always
enough. Indeed, for conventional models, the location of the state ma-
trix poles in the complex plane for a standard system is related to the
performances of the system, let us quote for instance the rise or the
settling time as well as the overshoot of a step response. However,
strict location is not necessarily required and it can suffice that poles
(the eigenvales of the state matrix) lie in some specified region D of
the complex plane. Such a property is called matrix D-stability or
matrix root-clustering. For descriptor systems, the property has to
be extended to the notion of D-admissibility, which is defined as the
satisfaction of the D-stability of the state matrix pencil, the regularity
and impulse freeness or causality. In this work, the clustering regions
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are the EMI (Ellipsoidal Matrix Inequality)-regions introduced in [11].
We denote any element of this set by a generic name DR.
Recently,the characterization of pole clustering via LMI has been ex-
tended to descriptor systems in [8]. In this paper, a Linear Matrix
Inequality (LMI) formulation is adopted to express necessary and suf-
ficient conditions for the DR-admissibility of continuous descriptor
systems. The proposed approach can be understood as the LMI-
correspondant formulation of the proposed GLE in [5]. It is known
that strict inequality conditions are tractable and reliable especially
with the available LMI software solvers. Moreover, the use of Linear
Matrix Inequality formulation in expressing the poles clustering region
of the complex plane has proved its efficiency [3]. These LMI enables
us to describe EMI regions, for example, which encompass most prac-
tical performance specification regions in control theory.
Besides, it is even truer to claim that strict location is no longer what
the designer is looking for when he has to take uncertainties into ac-
count. Since the used models are generally obtained from a non linear
model, we consider simultaneously two kinds of uncertainties, that is,
polytopic and unstructured uncertainties. Unfortunately, the uncer-
tainties can generate unexpected pole migration in the complex plane.
When stability is concerned, a solution to analyze robust stability is
to find a bound on an additive uncertainty (on the 2-norm of a ma-
trix for an unstructured uncertainty or on the modulus of the param-
eter variations for the structured uncertainty) such that stability is
ensured. Such a bound is called a robust stability bound and is con-
servative most of the time [10]. In the present work, the uncertainty is
both polytopic and norm-bounded (polytopic to encompass parameter
deflection and norm-bounded to include neglected phenomena). The
polytopic uncertainty will be accurately defined by the vertices of the
polytope whereas the unstructured norm-bounded uncertainty is ”less
than” a bound which has to be maximized, in order to get large ad-
missible uncertainty.
In the available literature we easily note that quadratic stability has
taken a lion’s share, especially in the LMI framework. The quadratic
stability is characterized by a determination of a unique so-called Lya-
punov matrix which gives the approach an inherent conservatism. Many
results have been reported in quadratic stability analysis and/or sta-
bilization see for instance [1, 18, 17] and the reference therein.
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In the present work, the robustness bound not only ensures stability
but also ensures the DR-admissibility of the system, for all matrices ∆
such that ||∆||2 ≤ ρ. It is computed through the use of LMI condi-
tions for robust DR-admissibility, which, unlike the nominal case, are
conservative.
This paper is organized as follows. Section 2 gives the problem for-
mulation. Section 3 gives the result on DR-admissibility for nominal
singular system whereas Section 4 presents the result for uncertain sin-
gular systems. Section 5 presents an illustrative example. Section 6
concludes the paper.

Notation

We denote by X⊤ the conjugate transpose of matrix X, and by Sym {X}
the Hermitian expression = X + X⊤. The Kronecker product is de-
noted by ⊗. ||X||2 is the 2-norm of matrix X, I is the identity matrix
of suitable order, 0 is a null matrix of appropriate dimensions. Ma-
trix inequalities are considered in the sense of Löewner i.e. “< 0”
(“≤ 0”) means negative (semi-)definite and ”> 0” (“≥ 0”) positive
(semi-)definite.

2 Preliminaries

In this section, firstly we give some basic definitions concerning de-
scriptor systems. Secondly, the definition of an EMI-region is recalled.

2.1 Descriptor system

Consider the following continuous-time descriptor system,

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(1)
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where x(t) is a R
n state vector, u(t) is a R

m the control input. The
matrix E may be singular, we shall assume that rank(E) = r ≤ n. A

and B are known real constant matrices with appropriate dimensions.

Definition 2.1 The pair (E,A) is said to be regular when det(pE −
A) is not identically zero and impulse free when deg(det(pE − A)) =
rank(E).

Note that the regularity guarantees the existence and uniqueness of so-
lution x(.). Also, since the impulsive modes tend to generate undesired
impulsive behaviors, they should be eliminated.

Provided (E,A) is regular there exist two non singular matrices U and
V such that, [4]

Ē = UEV =

[

I 0
0 0

]

, Ā = UAV =

[

Ā11 Ā12

Ā21 Ā22

]

. (2)

2.2 Characterization of an EMI-region DR

The general definition of EMI-region is given:

Definition 2.2 : Let R ∈ C
2d×2d be the Hermitian matrix defined by















R = R⊤ =

[

R1 R3

R⊤
3

R2

]

,

R2 ≥ 0 ∈ C
d×d.

The set of points DR defined by

DR = {z ∈ C | fDR
(z) = R1 + Sym {R3z} + R2zz

′ < 0} (3)

is called an EMI-region (EMI for Ellipsoidal Matrix Inequality) of de-
gree d.
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Such a region is convex. For a real R, this formulation is close to the
one of LMI regions (see [11] for more details). The set of EMI-regions
includes, for instance, shifted and half planes, classical and hyperbolic
sectors, vertical and horizontal strips, discs or ellipses.

Remark 2.1 The intersection of two EMI regions DR1 and DR2 is an
EMI region which characteristic function is given by

fDR1∩DR2
= diag(fDR1

, fDR2
)

Definition 2.3 Matrix A is said to be DR-stable if all its eigenvalues
are in the region DR.

The DR-stability of a matrix A is characterized by an LMI condition
as follows:
If there exists a symmetric positive definite matrix X = X⊤ > 0 such
that the LMI

R1 ⊗ (X) + Sym {R3 ⊗ (AX)} + R2 ⊗ (AXA⊤) < 0

is satisfied then matrix A is DR stable.

Definition 2.4 Let D be any subset of C. System (1) is said to be
D-admissible if it is regular, impulse free and if A is D-stable.

Fact 2.1 The singular system is said to be DR-admissible if and only
if there exits a symmetric and positive matrix X̄11 and a non singular
matrix Ȳ22 such that the following conditions

R1 ⊗ (X̄11) + Sym
{

R3 ⊗ (ÂX̄11)
}

+ R2 ⊗ (ÂX̄11Â
⊤) < 0 (4)

Sym
{

Ā22Ȳ22

}

< 0 (5)

hold with Â = (Ā11 − Ā12Ā
−1

22
Ā21).
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Indeed, condition (5) means that matrix Ā22 is non singular which
implies impulse freeness and regularity, whereas condition (4) states
that matrix (Ā11 − Ā12Ā

−1

22
Ā21) is DR-stable. Positive definiteness is

not required for a global Lyapunov matrix X̄ but only for one smaller
block X̄11 that has to satisfy (4). Definition 2.4 is an adaptation of
that given in [4, 6].

3 DR-admissibility analysis

First, two lemmas are recalled that will be useful for the various reason-
ings and proofs in the sequel. Then a necessary and sufficient condition
for the DR-admissibility of a descriptor system is presented.

Lemma 3.1 [15] Let Z, E, ∆ and F be complex matrices with appro-
priate dimensions. Assume that Z is Hermitian then

Z + Sym {E∆F} ≺ 0 ∀∆ |∆′∆ � I, (6)

if and only if there exists a scalar number ǫ > 0 satisfying

Z + ǫEE ′ +
1

ǫ
F ′F ≺ 0. (7)

Lemma 3.2 [12] Let B ∈ C
n×m, C ∈ C

k×n and Q = Q′ ∈ C
n×n be

given. Then the following statements are equivalent:

(i) There exists a matrix Y satisfying

Q + Sym {BY C} ≺ 0. (8)

(ii) The following two conditions hold
{

B⊥QB⊥′

≺ 0 or BB′ ≻ 0

C ′⊥QC ′⊥
′

≺ 0 or C ′C ≻ 0.
(9)

7



Consider the singular system described by the pair (E,A). Let E⊥, E‡

and E† be defined as

E⊥ = V (I − UEV ) U, E‡ = U⊤ (I − UEV ) U−⊤,

E† = U−1 (I − UEV ) U. (10)

with U and V some non singular matrices satisfying the first equality
in (2) Note that we have EE⊥ = 0 and E⊤E‡ = 0 and E†E = 0.

Theorem 3.1 The singular system (E,A) is DR-admissible if and
only if there exist three matrices X, Y and Z such that

EXE⊤ + Sym
{

E†Z
}

> 0 (11)

M = R1 ⊗ (EXE⊤) + Sym
{

R3 ⊗ (AXE⊤) + I ⊗ (AE⊥Y E‡)
}

+R2 ⊗ (AXA⊤) < 0
(12)

Proof of Theorem 3.1

Sufficiency:

For the sufficiency part we assume that conditions (11) and (12) hold.
Notice that (11), if satisfied, implies that the 11-block of X̄ = V −1XV −⊤

is strictly positive definite. Indeed, we have

U
(

EXE⊤ + Sym
{

E†Z
})

U⊤ =

[

X̄11 0
0 0

]

+

[

0 Z̄12

Z̄21 Z̄22

]

> 0

and matrix Z is introduced precisely to write a strict LMI condition.

To prove the admissibility of the considered system we begin by proving
that if (12) is satisfied then the 22-block of UAV is invertible. For this
purpose we transform M according to

= R1 ⊗ (ĒX̄Ē⊤) + Sym
{

R3 ⊗ (ĀX̄Ē⊤) + I ⊗ (ĀĒ⊥Ȳ Ē‡)
}

+R2 ⊗ (ĀX̄Ā⊤)
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with

X̄ = V −1XV −⊤ =

[

X̄11 X̄12

X̄21 X̄22

]

, Ȳ = UY U⊤ =

[

Ȳ11 Ȳ12

Ȳ21 Ȳ22

]

and

Ē⊥ = V −1E⊥U−1 =

[

0 0
0 I

]

= Ē‡ = U−⊤E‡U⊤.

Since X̄11 is invertible then X̄ can be written as

X̄ =

[

I 0
X̄21X̄

−1

11
I

] [

X̄11 0
0 X̄22 − X̄21X̄

−1

11
X̄12

] [

I X̄−1

11
X̄12

0 I

]

,

the square matrix ĀX̄Ā⊤ is written as

ĀX̄Ā⊤ =

[

∗ Ā12

Ax Ā22

] [

X̄11 0
0 X̄22 − X̄21X̄

−1

11
X̄12

] [

∗ A⊤
x

Ā⊤
12

Ā⊤
22

]

=

[

∗ ∗
∗ AxX̄11A

⊤
x + Ā22

(

X̄22 − X̄21X̄
−1

11
X̄12

)

Ā⊤
22

]

where the * corresponds to entries with no much relevance at this step
and Ax = Ā21 + Ā22X̄k21X̄

−1

k11
. It comes, from M̄ , by permutations on

the rows and on the columns,

M̄0 =

[

R1 ⊗ (X̄11) 0
0 0

]

+

[

∗ ∗
∗ R2 ⊗

(

AxX̄11A
⊤
x + Ā22

(

X̄22 − X̄21X̄
−1

11
X̄12

)

Ā⊤
22

)

]

+ Sym

{[

R3 ⊗ (Ā11X̄11 + Ā12X̄21) 0
R3 ⊗ (Ā21X̄11 + Ā22X̄21) 0

]}

+ Sym

{[

0 I ⊗ (Ā12Ȳ22)
0 I ⊗ (Ā22Ȳ22)

]}

< 0.

The above inequality implies that

S = R2 ⊗
(

AxX̄11A
⊤
x + Ā22

(

X̄22 − X̄21X̄
−1

11
X̄12

)

Ā⊤
22

)

+ Sym
{

I ⊗ (Ā22Ȳ22)
}

< 0.
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If Ā22 was singular then there would exist a non zero vector ξ such
that ξ ∈ KerĀT

22
. Therefore, one would get

(I ⊗ ξ⊤)S(I ⊗ ξ) = ξ⊤
(

R2 ⊗ (AxX̄11A
⊤
x )

)

ξ < 0

which is impossible since R2 ≥ 0 and X̄11 > 0. Hence, Ā22 cannot be
singular.

Now we have to show that the system is DR-stable or precisely that
matrix Ā11− Ā12Ā

−1

22
Ā21 is DR-stable. For this purpose, let us consider

the two matrices

Σ =

[

I 0
−Ā−1

22
Ā21 Ā−1

22

]

and Γ =

[

I −Ā12Ā
−1

22

0 I

]

,

that transform matrix Ā in a block diagonal form as

¯̄A = ΓĀΣ =

[ ¯̄A11 0
0 I

]

with ¯̄A11 = Ā11 − Ā12Ā
−1

22
Ā21 and transform M̄ into ¯̄M as

¯̄M = (I ⊗ Γ) M̄
(

I ⊗ Γ⊤
)

= R1 ⊗ ( ¯̄E ¯̄X ¯̄E
⊤
) + Sym

{

R3 ⊗ ( ¯̄A ¯̄X ¯̄E
⊤
)
}

+ Sym
{

I ⊗ ( ¯̄A ¯̄E
⊥ ¯̄Y ¯̄E

‡
)
}

+R2 ⊗ ( ¯̄A ¯̄X ¯̄A
⊤
) < 0

(13)

with

¯̄E = ΓĒΣ = Ē, ¯̄X = Σ−1X̄Σ⊤−1

, ¯̄E
⊥

= Σ−1Ē⊥Γ−1 = Ē⊥, ¯̄Y = ΓȲ Γ⊤.

From (13), by permutation on the rows and on the columns, one gets

¯̄M0 =

[

R1 ⊗
¯̄X11 0

0 0

]

+ Sym

{[

R3 ⊗ ( ¯̄A11
¯̄X11) 0

∗ 0

]

+

[

0 0
∗ ∗

]}

+

[

R2 ⊗
(

¯̄A11
¯̄X11

¯̄A
⊤

11

)

∗
∗ ∗

]

< 0,

which implies that if ¯̄M0 or equivalently ¯̄M is negative definite and
then we have necessarily

R1 ⊗
¯̄X11 + Sym

{

R3 ⊗ ( ¯̄A11
¯̄X11)

}

+ R2 ⊗
(

¯̄A11
¯̄X11

¯̄A
⊤

11

)

< 0. (14)
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Inequality (14) means that the singular system is DR-stable bearing
in mind that ¯̄X11 is positive definite thanks to condition (11) and this
ends the proof of the sufficiency part.

Necessity

Assume that the system is DR-admissible or in other words that matrix
Ā22 is invertible and there exists a positive definite matrix X̄11 such
that

R1 ⊗ X̄11 + Sym
{

R3 ⊗ ( ¯̄A11X̄11)
}

+ R2 ⊗
(

¯̄A11X̄11
¯̄A
⊤

11

)

< 0

we have

Ē = ŪEV̄ =

[

I 0
0 0

]

and Ā = ŪAV̄ =

[ ¯̄A11 0
0 I

]

.

Let E⊥, E‡ and E† be defined as

E⊥ = V̄

[

0 0
0 I

]

Ū E‡ = Ū⊤

[

0 0
0 I

]

Ū−⊤ E† = Ū−1

[

0 0
0 I

]

Ū .

Note that in this part of the proof the matrices below do not comply
with the same expression as in (2) and take

X = V̄

[

X̄11 0
0 X̄22

]

V̄ ⊤, Y = Ū−1

[

0 0
0 Ȳ22

]

Ū−⊤.

It is clear that there exist X̄11 and Ȳ22 such that (4) can be written as

[

R1 ⊗ X̄11 0
0 0

]

+ Sym

{[

R3 ⊗ ( ¯̄A11X̄11) 0
0 0

]}

+

[

R2 ⊗ ( ¯̄A11X̄11
¯̄A
⊤

11
) 0

∗ ∗

]

+ Sym

{[

0 ∗
0 I ⊗ (Ȳ22)

]}

< 0,

and, with permutations on rows and columns, we rewrite the above
condition as follows (noting that ĀĒ⊥Ȳ Ē‡ = Ē⊥Ȳ Ē‡)

M̄ = R1 ⊗ (ĒX̄Ē⊤) + Sym
{

R3 ⊗ (ĀX̄E⊤)
}

+ R2 ⊗ (ĀX̄Ā⊤)
+Sym

{

I ⊗
(

ĀĒ⊥Ȳ Ē‡
)}

< 0
(15)
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Pre and postmultiplying (15) respectively by (I ⊗ U−1) and (I ⊗U−⊤)
yields

R1 ⊗ (EXE⊤) + Sym
{

R3 ⊗ (AXE⊤)
}

+ Sym
{

I ⊗ (AE⊥Y E‡)
}

+R2 ⊗ (AXA⊤) < 0.

This allows us to recover condition(12).
Condition (11) is easily recovered since for

Z = Ū−1

[

0 0
0 Z̄22

]

Ū−⊤

with Z̄22 > 0, it comes

ĒX̄Ē⊤ + Sym

{[

0 0
0 Z̄22

]}

=

[

X̄11 0
0 Z̄22

]

> 0,

which implies that X̄11 > 0. This closes the proof of the theorem.
∇∇∇

4 Robust DR-admissibility analysis

In this section the singular system is characterized by the pair

(E, A(∆, ᾱ))

where matrix A(∆, ᾱ) reads

A(ᾱ) + J(ᾱ)∆L(ᾱ).

Matrix ∆ is a real or a complex unstructured norm bounded uncer-
tainty satisfying

∆⊤∆ ≤ ρ2I, (16)

and matrices A(ᾱ), J(ᾱ) and L(ᾱ) belong to a polytope in the following
way:

[

A(ᾱ) J(ᾱ)
L(ᾱ) 0

]

=

p
∑

i=1

αi

[

Ai Ji

Li 0

]
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with

αi ≥ 0, i = 1, . . . , p,
p

∑

i=1

αi = 1 and ᾱ = [ α1 . . . αp ] .

Matrices Ai, Ji, Li are known matrices that make the vertices of the
polytope up.

The problem for a system corrupted by uncertainty is to preserve its
performances for all admissible uncertainties or in other terms for every
instance of matrix A(∆, ᾱ).

Definition 4.1 The uncertain system is robustly DR-admissible if it
is DR-admissible for all admissible uncertainties ∆ and ᾱ.

Explicitly, the uncertain singular system will be DR-admissible if for
every instance ∆ and α, matrix Ā22(∆, ᾱ) is invertible and there exists
a positive definite matrix X̄11(∆, ᾱ) such that

R1 ⊗ (X̄11(∆, ᾱ)) + Sym
{

R3 ⊗ (Â(∆, ᾱ)X̄11(∆, ᾱ))
}

+R2 ⊗ (Â(∆, ᾱ)X̄11(∆, ᾱ)Â⊤(∆, ᾱ)) < 0
(17)

with Â(∆, ᾱ) = (Ā11(∆, ᾱ) − Ā12(∆, ᾱ)Ā−1

22
(∆, ᾱ)Ā21(∆, ᾱ)).

It is understandable that computing matrices X̄11(∆, ᾱ) for every in-
stance (∆, ᾱ) is inconceivable. Thus one can find other alternatives to
check the robust DR-admissibility.

If we make the assumption that matrix Ā22(∆, ᾱ)) is invertible and
there exists a unique matrix X11 over the uncertainty set, or in other
words matrix X̄11(∆, ᾱ) = X̄11 for every instance (∆, ᾱ) such that we
have

R1 ⊗(X̄11) +Sym
{

R3 ⊗(Â(∆, ᾱ)X̄11)
}

+R2 ⊗(Â(∆, ᾱ)X̄11Â(∆, ᾱ)⊤) <0

In this case the system will be termed as quadratically DR-admissible.
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From above, we easily understand that quadratic DR-admissibility im-
plies robust DR-admissibility but the DR-admissibility converse is, in
general, false.
Nevertheless, to reduce the conservatism inherent to quadratic ap-
proach, we now propose a theorem in which the conditions implicitely
involve matrices X, Y and Z that match the polytopic structure of A,
J and L.

Theorem 4.1 The uncertain singular system is robustly DR-admissible
if there exist matrices Xi, Yi and Zi, i = 1, . . . , p, with

EXiE
⊤ + Sym

{

E†Zi

}

> 0 ∀i ∈ {1, . . . , p} (18)

and matrices G1 and G2 such that the condition








R1 ⊗ (EXiE
⊤) W⊤ ρ(I ⊗ Ji) ((I ⊗ Li)G1)

⊤

W R2 ⊗ Xi 0 ((I ⊗ Li)G2)
⊤

ρ(I ⊗ Ji)
⊤ 0 −I 0

((I ⊗ Li)G1) ((I ⊗ Li)G2) 0 −I









+Sym























I ⊗ Ai

−I ⊗ I

0
0









[ G1 G2 0 0 ]















< 0 ∀i ∈ {1, . . . , p}

(19)

with W =
(

R3 ⊗ (XiE
⊤) + I ⊗ (E⊥YiE

‡)
)⊤

is satisfied.

Proof:

Assume that condition (19) is satisfied and let

[ X(ᾱ) Y (ᾱ) Z(ᾱ) ] =

p
∑

i=1

αi [ Xi Yi Zi ] ,
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then one can deduce that








R1 ⊗ (EX(ᾱ)E⊤) ∗ ∗ ∗
R3 ⊗ (X(ᾱ)E⊤) + I ⊗ (E⊥Y (ᾱ)) R2 ⊗ X(ᾱ) ∗ ∗

ρ(I ⊗ J(ᾱ))⊤ 0 −I ∗
((I ⊗ L(ᾱ))G1) ((I ⊗ L(ᾱ))G2) 0 −I









+Sym























I ⊗ A(ᾱ)
−I ⊗ I

0
0









[ G1 G2 0 0 ]















< 0

Now let
G = [ G1 G2 ]

then after a Schur complement we get
[

R1 ⊗ (EX(ᾱ)E⊤) ∗
R3 ⊗ (X(ᾱ)E⊤) + I ⊗ (E⊥Y (ᾱ)) R2 ⊗ X(ᾱ)

]

+ Sym

{[

I ⊗ A(ᾱ)
−I ⊗ I

]

G

}

+ρ2

[

I ⊗ J(ᾱ)
0

]

[ I ⊗ J⊤(ᾱ) 0 ] + (I ⊗ (L(ᾱ))G)⊤ (I ⊗ (L(ᾱ))G) < 0
(20)

At this step, the use of lemma 3.1 in the sense (7) to (6) allows us to
state that
[

R1 ⊗ (EX(ᾱ)E⊤) ∗
R3 ⊗ (X(ᾱ)E⊤) + I ⊗ (E⊥Y (ᾱ)) R2 ⊗ X(ᾱ)

]

+ Sym

{[

I ⊗ A(ᾱ)
−I ⊗ I

]

G

}

+Sym

{[

I ⊗ J(ᾱ)
0

]

(I ⊗ (∆)) (I ⊗ (L(ᾱ))) G

}

< 0
(21)

holds for every ∆ satisfying (16). Note that the implication (21) ⇒
(20) might not hold because (I ⊗∆) is not full block. Notice that the
condition above can be written as follows
[

R1 ⊗ (EX(ᾱ)E⊤) ∗
R3 ⊗ (X(ᾱ)E⊤) + I ⊗ (E⊥Y (ᾱ)) R2 ⊗ X

]

+Sym

{[

I ⊗ A(∆, ᾱ)
−I ⊗ I

]

G

}

< 0(22)

The use of matrix elimiation procedure [12] enables ones to state that
the previous inequality implies

M̃ =

[

I ⊗ I

I ⊗ A⊤(∆, ᾱ)

]⊤ [

R1 ⊗ (EX(ᾱ)E⊤) ∗
R3 ⊗ (X(ᾱ)E⊤) + I ⊗ (E⊥Y (ᾱ)) R2 ⊗ X(ᾱ)

]

[

I ⊗ I

I ⊗ A⊤(∆, ᾱ)

]

< 0
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or explicitly

M̃ = R1 ⊗ (EX(ᾱ)E⊤) + R2 ⊗ (A(∆, ᾱ)X(ᾱ)A⊤(∆, ᾱ))

+Sym
{

R3 ⊗ (A(∆, ᾱ)X(ᾱ)E⊤) + I ⊗ (A(∆, ᾱ)E⊥Y (ᾱ))
}

< 0

which is in fact condition (12) expressed for the uncertain system.

Note also that according to the definition of X(ᾱ) and Z(ᾱ) we easily
deduce that

EX(ᾱ)E⊤ + Sym
{

E†Z(ᾱ)
}

> 0

which is in fact condition (11) expressed for the uncertain system. This
ends the proof. ∇∇∇

It must be noticed that (18)-(19) makes an LMI system with respect
to Xi, Yi, Zi and ρ that can be solved while maximizing ρ.

In [8] a sufficent condition to check the robustness of the pole clus-
tering in the presence of a Linear Fractional Transform (LFT)-based
uncertainty is presented. However, in [8] no parametric uncertainty
is considered. The main interest of the present approach, compared
with the reference mentioned herebefore, is that, not only a poly-
topic uncertainty is considered but the derived conditions implicity
involve parameter-dependent Lyapunov matrices which is less conser-
vative than the quadratic approach used in [8]. It is enabled by the
use of EMI formulation of regions rather than LMI formulation. But
it should be noted that, although that it does not tackle parametric
uncertainties, the result of [8] is for an LFT-based uncertainty, which
is a bit more general than a norm-bounded one.

5 Illustrative example

Consider the descriptor system defined by

E =





1 0 1
1 1 2
−1 1 0




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and the state matrix belongs to the polytope whose vertices are given
by

A1 =





0.1376 −0.0264 −0.0021
0.0000 0.0000 −1.0000

−0.8624 −0.0264 −0.0021



 ,

A2 =





0.0000 −1.0000 0.0000
−0.1972 −1.0384 0.1964
−2.0000 0.0000 0.0000



 ,

A3 =





0.2561 0.3302 0.1578
0.0000 1.0000 0.0000

−0.7439 −0.6698 2.1578



 .

The norm-bounded uncertainty is described by

[ J1 J2 J3 ] =





0.1376
−0.0264
−0.0021

∣

∣

∣

∣

∣

∣

0.7
− 0.1
0.1

∣

∣

∣

∣

∣

∣

0.4
0.2
0.1



 and

[ L⊤
1

L⊤
2

L⊤
3

] =





0.1
0.1
1.0

∣

∣

∣

∣

∣

∣

0.2
0.0
0.5

∣

∣

∣

∣

∣

∣

0.4
0.3
0.8





The chosen EMI-region is defined by the intersection of three regions,
respectively a horizontal strip and two conic sector. By applying the-
orem 4.1, the LMI is solvable and using the LMI toolbox of Matlab

we get:

ρ = 0.340.

The Figure shows the pole migration plotted for several values of ∆
such that ||∆||2 ≤ ρ
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Finite eigenvalues location of the uncertain closed loop system

On this figure, one can notice that the pole migration nearly reaches
the boundary of region which highlights the weak conservatism in-
duced by our condition. Actually it is possible to find a matrix ∆
such that ||∆||2 = 0.341 which makes the uncertain system loose its
DR-admissibility. It proves this weak conservatism for the example.

6 Conclusion

In this paper, a new method to compute robustness bounds against
polytopic norm-bounded has been proposed. A strict LMI condition for
checking the DR-admissibility for descriptor systems is given. An LMI
technique to compute robust DR-admissibility bounds was presented,
where DR is a generic name for an EMI region. It enables ones to get
a large choice of clustering regions including many convex regions or
intersections of such convex-subregions (preserving convexity). Besides
of the unstructured additive uncertainty, another convex polytopic one
can be taken into account. In this case, the bound is obtained through
the implicit computation of a parameter-dependent Lyapunov function
which allows a strong reduction of conservatism. No expression of
bound is proposed since the bound value is reached by maximizing
a linear criterion under LMI constraints. Hence, powerful numerical
tools can be used for computation and the proposed technique turns
to be not only efficient but also tractable.
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It would be interesting, in a future work, to consider more sophisticated
regions such as the unions of several disjoint EMI-subregions.
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