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Abstract

This paper comes back to the hard problem of pole placement by static
output feedback: let a triplet of matrices {A;B;C} ∈ IRn×n × IRn×m ×
IRp×n be given, find a matrix K ∈ IRm×p such that the spectrum of
A+BKC equals a specified set. More precisely, this article focuses on the
derivation of non-iterative techniques, based upon the notion of eigen-
structure assignment, to solve the problem, especially when Kimura’s
condition does not hold. Indeed, it is shown that such solutions can
sometimes be found under assumptions detailed in the paper.

Index Terms

Pole placement, eigenstructure assignment, Kimura’s condition.

1 Introduction

Since the contributions of Davison [1–3], the static ouput pole placement problem is one of the most
investigated problems in the control community and is actually not yet completely solved. For in-
teresting surveys about that problem, and more generally, about static output feedback, see [4–6].
The problem consists in considering matrices {A;B;C} ∈ IRn×n × IRn×m × IRp×n and in finding a
matrix K ∈ IRm×p such that the spectrum of the closed-loop matrix Ac = A + BKC equals a set
of arbitrarily specified values {λi, i = 1, ..., n}. A first question is the existence of a solution. This
question is in itself a hard topic. Various crucial contributions are recalled in [7]. In Brockett [8], it is
proven that the generic condition for pole placement is mp ≥ n provided that the problem is solved
in the field of complex matrices. In the field of real matrices (corresponding to the actual problem),
a sufficient condition for generic pole assignability was proposed by Wang [9] with alternative proofs
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in [10–12]: mp > n (only generic as illustrated by the counterexample of [13]). Although those results
are fundamental to understand the present control problem, another challenge is to derive methods
that exhibit a solution. The only one that is available for all the cases encompassed by mp > n is
presented in [9]. It relies on an optimisation process whose parameters may be difficult to tune. The
basic reason might be that the static output feedback pole placement problem is NP-hard [14].

Regarding this result of NP-hardness, it becomes illusory to always expect to derive a direct tech-
nique (by “direct”, the authors mean non-iterative) that solves the problem provided that Wang’s
condition holds. Nevertheless, it is important to list the various cases for which one can generically
derive a suitable static feedback control law through direct methods. There are several approaches
to solve the problem. Among those approaches, the authors focus on those based upon the notion of
eigenstructure assignment, that is those inspired from the work of Moore [15] on the state feedback.
When a static output feedback is to be computed, the best results are the so-called geometric ap-
proach [16], the parametric approach [17] and the approach based on two Sylvester equations coupled
by an orthogonality condition [18]. All these methods require that Kimura’s condition (m+p > n) [19]
be satisfied. Indeed, this condition has been considered as the best sufficient condition for generic
assignability for a long time [8, 19–21], until the work of Wang. From a practical point of view, it
remains an interesting frontier between the systems for which a solution can be easily derived and
those for which a solution exists but is not easily reached. A significant attempt to find a solution
when Kimura’s condition does not hold is [22]. In this contribution, an optimization procedure may
allow to solve the case m+ p = n (but some convenient initialization has to be guessed). Interesting
insights can also be found in [23]. Recently it has been shown that the case m + p = n < mp could
generically be solved by a direct method [24]. It must be mentionned that, as in [24], only the case of
eigenvalues with multiplicty one is here addressed.

The present paper hinges upon [24] and can be considered as an extension. It aims at highlighting
some other cases that allow to find a solution by a direct computation, even if Kimura’s condition is
not verified. For clarity, the next three sections recalls the content of [24]. Indeed, Section 2 states the
problem and recalls some classical properties of the eigenstructure. In Section 3, the spectrum assign-
ment is characterized by an “assignment equation”. In section 4, assignment techniques are deduced
for the above-mentioned cases : complete placement under Kimura’s condition, partial placement un-
der mp > m + p, complete placement under m + p = n < mp. Section 5 is the actual contribution
of the present paper. It shows how the approach of [24] can be extended in some cases for which
m + p < n < mp. Section 6 proposes some numerical illustration before the paper is concluded in
Section 7.

2 Problem statement and Background

Before to state the problem, the next preliminary definition is introduced.

Definition 1 let M be a set of complex matrices. If M ∈M ⇒ M̄ ∈M, ∀M ∈M, then the set M
is said to be closed under conjugation.

Of course, this definition is also valid for sets of complex vectors or scalars.

Problem 1 Let {A;B;C} ∈ IRn×n × IRn×m × IRp×n be a triplet of matrices satisfying
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(i) (A,B,C) is minimal;

(ii) rank(B) = m ≤ n & rank(C) = p ≤ n.

Let {λi, i = 1, ...,m + q} be a set of m + q distinct complex eigenvalues (q ≤ n − m) such that
{λi, i = 1, ...m} and {λj , j = m+ 1, ...m+ q} are closed under conjugation.
Find a matrix K ∈ IRm×p such that {λi, i = 1, ...,m+ q} ⊂ λ(Ac = A+BKC).
If q < n−m, the pole placement is said partial; If q = n−m, it is said complete.

Assumptions (i) and (ii) are actually classical. In practice, they mean that the considered model
is controllable, observable and that sensors and actuators convey only meaningful information. Unlike
in [24], there is no condition on the dimensions (i.e. n, m, p and q). In fact, they will be further
detailed in the various tackled cases Also note that only eigenvalues with multiplicity 1 are considered
for the sake of conciseness. An actual restriction is the separation of the whole desired spectrum into
two self-conjugate subsets, which does not encompass all the possible problems. It is however a usual
assumption too.

Even if the attention is focused on the eigenstructure (eigenvalues and eigenvectors) of Ac, the
actual purpose is only eigenvalue assignment. Eigenstructure is a concept that reveals particularly
useful to design pole placement through direct computation. The next reasoning, borrowed from [15],
is a basis for this contribution. The spectrum of Ac is associated to right eigenvectors vi by the
relations

Acvi = λivi ⇔ (A− λiIn)vi +BKCvi = 0 ∀i ∈ {1, ..., n} (1)

⇔ (A− λiIn)vi +Bwi = 0 ∀i ∈ {1, ..., n} (2)

where the vectors wi = KCvi are the input directions. It comes vi ∈ Si with

Si = {v ∈ lC n | (∃w ∈ lCm | (A− λiIn)v +Bw = 0)} ∀i ∈ {1, ..., n}. (3)

This set is the so-called (A,B)-characteristic subspace [16] and is of dimension m when (A,B) is
controllable. To derive vi in Si, let the vectors πi be defined by πi =

[
v′i w′i

]′. Then

Tiπi = 0 with Ti =
[
A− λiIn B

]⇒ πi ∈ Ker(Ti) ∀i ∈ {1, ..., n}. (4)

Let Ri be a matrix whose columns span the right nullspace of Ti i.e.

Span(Ri) = Ker(Ti) with Ri =
[
Ni

Mi

]
, Ni ∈ lC n×m, Mi ∈ lCm×m ∀i ∈ {1, ..., n}, (5)

which implies TiRi = 0. Each vector πi is then characterized by a non-zero parameter vector zi ∈ lCm

such that

∀i ∈ {1, ..., n}, πi = Rizi ⇔
{
vi = Nizi,
wi = Mizi.

(6)

zi represents the dof available to assign vi as a right eigenvector associated to λi. Since vi (or wi)
can be scaled by any non-zero factor (one talks about eigendirection rather than eigenvector), each
zi provides (m − 1) degrees of freedom. When C = In (state feedback), any choice of zi, i = 1, ..., n,
such that the vi are linearly independent yields
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K = WV −1 with
{
V =

[
v1 . . . vn

]
W =

[
w1 . . . wn

] (7)

that assigns the spectrum {λi, i = 1, ..., n} for Ac [15]. Besides, in the case where the vectors Cvi,
i = 1, ..., p are linearly independent, only the subset {λi, i = 1, ..., p} is assigned by the static output
feedback matrix

K = WpV
−1
p with

{
Vp =

[
Cv1 . . . Cvp

]
,

Wp =
[
w1 . . . wp

]
.

(8)

A dual reasoning can be followed for the left eigenvectors ui ∈ lC n, defined by

u′iAc = λiu
′
i ∀i ∈ {1, ..., n} (9)

and belonging to the (A′, C ′)-characteristic subspace S̃i. They are associated to ouput directions
li = K ′B′ui and can be chosen through parameters xi ∈ lC p such that

∀i ∈ {1, ..., n},
{
u′i = x′iÑi

l′i = x′iM̃i,
(10)

where R̃i =
[
Ñi M̃i

]
is the orthogonal complement of

T̃i =
[
A− λiI
C

]
, (11)

thus satisfying R̃iT̃i = 0. Only m eigenvalues {λi, i = 1, ...,m} are assigned by the output feedback
matrix

K = (U ′m)−1L′m with
{
Um =

[
B′u1 . . . B′um

]
Lm =

[
lm . . . lm

]
.

(12)

When B = In, a complete pole placement is obtained owing to the output injection matrix

K = (U ′)−1L′ with
{
U =

[
u1 . . . un

]
L =

[
l1 . . . ln

]
.

(13)

Note that both sets of eigenvectors are not independent of each other. These vectors can be scaled so
that the modal matrices U and V satisfy the orthogonality condition

U ′V = In. (14)

Remark 1 If the spectrum of Ac and the sets of associated “left” and “right” free parameter-vectors xi
and zi, i = 1, . . . , n, are denoted by Λ, X and Z respectively, it really matters that each “eigentriplet”
satisfies

{λ, x, z} ∈ Λ×X× Z⇒ {λ̄, x̄, z̄} ∈ Λ×X× Z, (15)

otherwise the feedback matrix K may be complex. It means that the sets Λ, X and Z are closed under
conjugation and therefore so are the sets of eigenvectors. See [15] for details about how to obtain a
real K and to reduce numerical effects of imaginary parts.
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3 Eigenstructure assignment equality

This section is still mainly borrowed from [24]. The eigenstructure assignment will now be character-
ized by a single equality that is the basis for the present approach. Although this equality could be
referred to as ‘eigenvalue assignment equality”, the reader is reminded of the actual purpose which is
only pole placement. For good insights about eigenvector assignment, see [25]. Matrix K must assign
the m first eigenvalues and thus comply with li = K ′B′ui, i = 1, . . . ,m. It is also necessary that K
satisfies the eigenstructure properties for the q remaining roots, i.e. wj = KCvj , j = m+1, . . . ,m+q.
Hence, taking equations (6) and (10) into account yields

u′iBKCvj = l′iCvj = x′iM̃
′
iCNjzj ∀{i, j} ∈ {1, ...,m} × {m+ 1, ...,m+ q}, (16)

which, still refering to equations (6) and (10), also writes

u′iBKCvj = u′iBwj = x′iÑ
′
iBMjzj ∀{i, j} ∈ {1, ...,m} × {m+ 1, ...,m+ q}. (17)

These equalities lead to



x′1Ñ1
...

x′mÑm


BMjzj −




x′1M̃1
...

x′mM̃m


CNjzj = 0 ∀j ∈ {m+ 1, ...,m+ q}. (18)

which can be stacked into one single matrix equality:

XY Z = 0 (19)

where
X = blocdiag

i=1,...,m
{x′i} ∈ lCm×mp, (20)

Z = blocdiag
j=m+1,...,m+q

{zj} ∈ lCmq×q, (21)

Y = Ñ ′BM−M̃′CN , (22)

with





Ñ =
[
Ñ ′1 . . . Ñ ′m

]

M̃ =
[
M̃ ′1 . . . M̃ ′m

]
N =

[
Nm+1 . . . Nm+q

]
M =

[
Mm+1 . . . Mm+q

]
.

(23)

This paragraph is summarized by the next proposition.

Proposition 1 There exists a solution to Problem 1 if and only if there exist some non-zero vectors
xi ∈ lC p, i = 1, ...,m, and zj ∈ lCm, j = m+ 1, ..., n, such that

(i) xi and zj do not contradict the conjugation constraint (15);

(ii) The vectors (x′iÑiB) are linearly independent as well as the vectors vj;

(iii) Equality (19) is satisfied.
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A solution is then given by (12) or (8).

Condition (i) reduces the set of solutions to real feedback matrices. Condition (ii) ensures that K
can be computed owing to (12). Condition (iii) corresponds to the actual assignment equality and
encompasses vj ∈ Sj , ui ∈ S̃i and (14). The problem therefore appears to be essentially bilinear since
X and Z have to be found so that to satisfy (19). The bilinearity of this formulation is not a surprise
since another bilinear descritpion was proposed in [22]. A suitable solution to (19) may not be easy
to reach. However, some special cases are considered in the sequel. In the next section, the authors
recall the cases addressed in [24] but in section 5, some further investigations are led to tackle more
restrictive cases.

4 Existing procedures

4.1 m+ p > n ⇔ p > r (Kimura’s condition)

In this case, one considers q = n −m, that is complete pole placement. Spectrum assignment under
Kimura’s condition has been tackled in [16–18]. These references do not solve exactly equivalent
problems since the desired spectrum is less constrained in [18]. The procedure proposed here (and
also in [24]) can be considered as an alternative to the result of [18]. This subsection can therefore
not be seen as an improvement compared with the background but it is necessary to recall the next
procedure to clearly understand the forthcoming contribution.

Matrix Z defined in (21) is arbitrarily chosen. Matrix product Y Z ∈ lCmp×q is at most of rank q
so if the product Y Z is written as follows,

Y Z =



Ỹ1
...
Ỹm


 with Ỹi ∈ lC p×q ∀i ∈ {1, ...,m}, (24)

it appears that the rank of each Ỹi cannot exceed q < p. Thus, a basis of the left nullspace of Ỹi can
be computed. Let Xi be the left orthogonal complement of Ỹi such that

XiỸi = 0 ∀i ∈ {1, ...,m}. (25)

The dimension of Xi is (p − q) × p. Let βi ∈ IRp−q be a non-zero parameter vector (∀i ∈ {1, ...,m}).
It comes that β′iXiỸi = 0 and then the choice xi = X ′iβi, ,∀i ∈ {1, ...,m} provides a solution to (19)
from which K can be computed thanks to (10) and (12).

Remark 2 With the expression “arbitrary choice of Z”, the reader could think that the vectors zj are
completely free. Actually, they are a bit constrained since they have to comply with (15) and to lead
to independent eigenvectors vi = Njzj, which is almost always true.

4.2 q < r and mp > m+ p (partial placement)

In this part, only partial placement is achieved. The procedure described above can be easily applied
when q < p. It confirms, as in [21], that min(n,m+ p− 1) eigenvalues can be assigned.
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But when q = p, the above procedure fails. Indeed, in this case, it becomes impossible to derive
the orthogonal complements Xi (they are reduced to 0). The reason is that Ỹi is generically of rank
q = p. The idea is then to determine Z such that each Ỹi becomes rank deficient, i.e. satisfies
rank(Ỹi) ≤ p− 1. Among such admissible matrices Z, some can be derived. Let Z ∈ lCmp×(mp−m−p)

be such that

Span(Z) = Ker(Y ). (26)

It is at most of rank (m+ p). Any non-zero γ ∈ IRmp−m−p such that g = Zγ complies with

Y g = Y



zm+1

...
zm+p


 = 0 with zj ∈ lCm ∀j ∈ {m+ 1, ...,m+ p}. (27)

One can write Y as follows:

Y =
[
Ym+1 . . . Ym+p

]
with Yj ∈ lCmp×m ∀j ∈ {m+ 1, ...,m+ p}. (28)

From (27) and (21), it can be deduced that the columns of Y Z are linearly dependent so rank(Ỹi) ≤
p − 1. At this stage, it suffices to proceed as in subsection 4.1 by computing matrices Xi. Unless
additional rank deficiency on Ỹi, each matrix Xi is reduced to a vector xi = Xi. From these vectors,
equations (10) and (12) lead to a solution K. In the case of an additional rank deficiency on Ỹi, Xi is a
matrix and some additional dof appears and can be exploited under the form of vectors βi as defined
in subsection 4.1.

The reader may have noticed that another condition was assumed: mp > m + p. It is actually
related to the existence of Z. It is easy to see that Z is non-zero if and only if mp > m + p. If this
condition is not satisfied, a classical partial pole placement can be performed to assign only max(m, p)
poles.

4.3 mp > m+ p = n (Kimura’s non-strict condition)

The above condition implies mp > n and which is Wang’s condition, indicating that complete pole
placement is generically possible. The equality q = p can still be considered so that assigning m + p
poles is equivalent to assign the whole spectrum. Thus, this complete pole placement becomes a
special case of the procedure described in the previous subsection. For most of the cases, Kimura’s
strict condition (m + p > n) is no longer a limit for the complete pole assignment through modal
approach. A better sufficient condition for pole placement becomes m+ p ≥ n < mp.

Remark 3 The reader is invited to have a glimpse to [24] where some further comments on the
remaining flexibility available on K are provided: only one degree of freedom is not exploited when
placing the poles. Other details about the way to handle complex desired eigenvalues are given in [24].
They are not repeated here to avoid redundancy. Besides, the linear independence of the vectors
(x′iÑiB) (item (ii) in Proposition 1) is not ensured by the procedure. It is not a drastic drawback and
few models lead to dependent vectors. When it occurs, there are however some techniques that can be
used to try to remedy the problem [24].

The advantage of the above procedures are [24]:
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• min(n,m+ p) poles can be assigned rather than min(n,m+ p− 1);

• The procedure is non-iterative;

• The complete pole placement is easily performed when m+ p = n < mp.

5 m+ p < n: A step further

This section contains the actual contribution of the paper. It consists in an attempt to deal with the
case m+ p < n. The authors do not pretend to solve such a NP-hard problem, especially by a direct
technique, but they want to emphasize the fact that some few cases can be easily solved, even when
m+ p < n.

The idea remains the same as in the previous sections. More precisely, the purpose is to manage
to compute an admissible matrix Z, that is a matrix Z which induces a suitable rank deficiency in
the various matrices Ỹi. Considering the structure of Y given by (22), Y can be written

Y =
[ N ′B −M′ ]

[ M
CN

]
. (29)

Hence, rather than inducing rank deficiencies in the blocks of Y Z, it is easier to do the same on HZ
where

H =
[ M
CN

]
=
[
Hm+1 . . . Hj . . . Hm+q

]
, with Hj ∈ lC (m+p)×m. (30)

Therefore, assume that Z can be found so that the matrix product HZ has column rank less than p.
Therefore, matrix product

Y Z =
[ N ′B −M′ ]HZ (31)

is also of rank less than p and the procedure of section 4 allows us to compute matrices Xi that make
XY Z equal zero. So the challenge consists in finding a suitable Z such that HZ is of column rank
less than p, i.e. p− 1. This is a hard challenge but some cases for which such a calculation is possible
will now be emphasized.

To proceed, let the matrix H be defined by

H =



Hm+1 . . . Hm+p−h Hm+p−h+1 0 0

Hm+1 . . . Hm+p−h 0
. . . 0

Hm+1 . . . Hm+p−h 0 0 Hm+q


 ∈ lC (m+p)(q−p+h−1)×mq, (32)

where h is a positive integer. The idea is to compute, if possible, a matrix Z whose columns span the
right nullspace of H. As in subsection 4.2, let γ be any non-zero vector such that g = Zγ complies
with

Hg = H



zm+1

...
zm+q


 = 0 with zj ∈ lCm ∀j ∈ {m+ 1, ...,m+ q}. (33)
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If such a computation is possible, i.e. if Z is not reduced to zero, then the matrix product HZ is of
generic rank (p− h) < p Thus, from (31), matrix product

Y Z =



Ỹ1
...
Ỹm


 , with Ỹi ∈ lC p×(p−h) ∀i ∈ {1, ...,m} (34)

is such that each block Ỹi is of rank (p− h) at most, allowing the computation of suitable vectors xi
as in the previous section.

But satisfying (19) is not sufficient to derive a static ouput feedback control law. Two other
constraints have to be satisfied. The vectors vi and (x′iÑiB) have to be linearly independent and of
course, cannot be reduced to zero. It is classical to verify the independence a posteriori. But it is
absolutely necessary to ensure that eigenvectors do not equal zero, that is, in the above procedure, to
avoid that zj = 0 for some j. To summarize the problem from a technical point of view, there must
exist some h such that two conditions are satisfied:

1. Z is not reduced to zero;

2. All the vectors zi are non zero.

The former condition means, in the generic case, that matrix H must have more columns than rows.
In terms of model dimensions, it can be written

mq > (m+ p)(q − p+ h+ 1). (35)

The later condition means that Z = Ker(H) should not equal Ker(Ĥ) where

Ĥ =
[
Hm+1 . . . Hm+p−h

] ∈ lC (m+p)×m(p+p−h). (36)

In terms of dimensions, this yields

m(p− h) < m+ p. (37)

Thus, the problem can generically be solved if some positive integer h satisfying (35) and (37) can be
found.

Since the partial pole placement is of weak interest in practice, some tests have been performed to
find which dimensions could allow complete pole placement by a direct procedure, considering that,
regarding the above discussions, the procedure can be applied in three cases cases:

• m+ p ≥ n (Kimura’s non strict condition);

• state feedback and, by duality, input injection;

• m+ p < n, (35) and (37) and, by duality, the same conditions by substituting m with p and the
other way around.

For instance, with n = 12, table 1, where ’1’ denotes a successful test and ’0’ denotes a failure, is
obtained.
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m \ p 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 1 1 1 1 1
3 0 0 0 0 0 0 0 0 1 1 1 1
4 0 0 0 0 0 0 0 1 1 1 1 1
5 0 0 0 0 0 0 1 1 1 1 1 1
6 0 0 0 0 0 1 1 1 1 1 1 1
7 0 0 0 0 1 1 1 1 1 1 1 1
8 0 1 0 1 1 1 1 1 1 1 1 1
9 0 1 1 1 1 1 1 1 1 1 1 1
10 0 1 1 1 1 1 1 1 1 1 1 1
11 0 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1

Table 1: test results for n = 12

m \ p 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 1 1 1 1 1
3 0 0 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 0 0 1 1 1 1 1
5 0 0 0 0 0 0 1 1 1 1 1 1
6 0 0 0 0 0 1 1 1 1 1 1 1
7 0 0 0 0 1 1 1 1 1 1 1 1
8 0 1 1 1 1 1 1 1 1 1 1 1
9 0 1 1 1 1 1 1 1 1 1 1 1
10 0 1 1 1 1 1 1 1 1 1 1 1
11 0 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1

Table 2: refreshed test results for n = 12

Many comments can be made thanks to Table 1. First, this table is symmetric. This is due to
duality. If duality was not taken into account, then this table would not be symmetric. If one focuses
on entry (m = 2, p = 8), one can see that the complete pole placement is possible throught direct
computation although Kimura’s condition is far from being satisfied. Indeed, m+ p = 10 < n = 12.

Another striking entry is (m = 3, p = 8). For this case, one cannot find any positive integer h that
complies with (35) and (37). It is a very surprising fact since it suffices to ignore one ouput to make
the problem be solvable. Perhaps it means that some further investigations can be done to explain
this paradox by fullfilling the authors’ technique. Whatever this contradiction is, since it is always
possible to ignore one ouput, Table 1 can be actualized into Table 2.

To conclude about this technique, it has been proven that Kimura’s condition (even non strict) is
not always necessary for a complete pole placement problem to be solved by a direct procedure.
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6 Numerical illustration

To illustrate the previous the efficiency of the previously presented technique, an example with n = 12,
m = 2, p = 8 is considered. Kimura’condition is then not satisified at all.

A =




0.0147 0.8289 0.8518 0.7134 0.1310 0.3722 0.5979 0.4984 0.0174 0.6595 0.3073 0.0743
0.6641 0.1663 0.7595 0.2280 0.9408 0.0737 0.9492 0.2905 0.8194 0.1834 0.9267 0.1932
0.7241 0.3939 0.9498 0.4496 0.7019 0.1998 0.2888 0.6728 0.6211 0.6365 0.6787 0.3796
0.2816 0.5208 0.5579 0.1722 0.8477 0.0495 0.8888 0.9580 0.5602 0.1703 0.0743 0.2764
0.2618 0.7181 0.0142 0.9688 0.2093 0.5667 0.1016 0.7666 0.2440 0.5396 0.0707 0.7709
0.7085 0.5692 0.5962 0.3557 0.4551 0.1219 0.0653 0.6661 0.8220 0.6234 0.0119 0.3139
0.7839 0.4608 0.8162 0.0490 0.0811 0.5221 0.2343 0.1309 0.2632 0.6859 0.2272 0.6382
0.9862 0.4453 0.9771 0.7553 0.8511 0.1171 0.9331 0.0954 0.7536 0.6773 0.5163 0.9866
0.4733 0.0877 0.2219 0.8948 0.5620 0.7699 0.0631 0.0149 0.6596 0.8768 0.4582 0.5029
0.9028 0.4435 0.7037 0.2861 0.3193 0.3751 0.2642 0.2882 0.2141 0.0129 0.7032 0.9477
0.4511 0.3663 0.5221 0.2512 0.3749 0.8234 0.9995 0.8167 0.6021 0.3104 0.5825 0.8280
0.8045 0.3025 0.9329 0.9327 0.8678 0.0466 0.2120 0.9855 0.6049 0.7791 0.5092 0.9176




;

B =




0.6390 0.6690
0.7721 0.3798
0.4416 0.4831
0.6081 0.1760
0.0020 0.7902
0.5136 0.2132
0.1034 0.1573
0.4075 0.4078
0.0527 0.9418
0.1500 0.3844
0.3111 0.1685
0.8966 0.3227




; C =




0.1131 0.4194 0.4881 0.5651 0.8952 0.8686 0.0693 0.5695
0.8121 0.2130 0.9926 0.9692 0.9424 0.6264 0.8529 0.1593
0.9083 0.0356 0.3733 0.0237 0.3351 0.2412 0.1803 0.5944
0.1564 0.0812 0.5314 0.8702 0.4374 0.9781 0.0324 0.3311
0.1221 0.8506 0.1813 0.0269 0.4712 0.6405 0.7339 0.6586
0.7627 0.3402 0.5019 0.5195 0.1493 0.2298 0.5365 0.8636
0.7218 0.4662 0.4222 0.1923 0.1359 0.6813 0.2760 0.5676
0.6516 0.9138 0.6604 0.7157 0.5325 0.6658 0.3685 0.9805
0.7540 0.2286 0.6737 0.2507 0.7258 0.1347 0.0129 0.7918
0.6632 0.8620 0.9573 0.9339 0.3987 0.0225 0.8892 0.1526
0.8835 0.6566 0.1919 0.1372 0.3584 0.2622 0.8660 0.8330
0.2722 0.8912 0.1112 0.5216 0.2853 0.1165 0.2542 0.1919




′

.

(38)
The spectrum to be assigned is the following vector:

Λ =
[ −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9 −1 −1.1 −1.2

]
. (39)

Applying the procedure described in section 5 on the dual model enables the designer to eventually
obtain the static output feedback matrix

K =
[ −5.0815 −8.2561 −1.2112 2.4683 2.6506 −0.8361 3.0586 5.3662

1.9190 −6.3295 0.1042 −0.1048 1.0469 −1.3748 −0.7923 1.6888

]
. (40)

This matrix assigns the desired spectrum. It may occur that some desired eigenvalues cannot be
precisely obtained. It is due to either weak controllability or sometimes to inaccurate computation of
nullspaces for high dimensional models.

7 Conclusion

In this paper, an extension of [24] has been proposed. A technique to design a static output feedback
pole placement control law has been presented. It relies on the notion of eigenstructure. Only direct
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(i.e. non-iterative) computation has been considered so that the technique remains very tractable and
very easy to implement. Other methods may be used to solve the problem, such as [9, 22], but when
Kimura’s strict condition does not hold, they require iterative processes for which some parameters
might be difficult to tune or some suitable initial points have to be guessed. In this work, not only,
as in [24], Kimura’s condition can be non strict but it has been shwon that even some cases for which
Kimura’s condition does not hold can be easily handled.

As further investigations, this method could be extended to the case of multiple desired closed-loop
eigenvalues. But the most interesting challenge is rather to search for some other cases for which a
direct computation can be performed to design a solution to this hard problem.
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