
Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

ADVANCED FEEDBACK CONTROL

(MODELS, CONTROL, ROBUSTNESS)

Olivier Bachelier

LIAS-ENSIP

Advanced Control course, MEE3

1/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Outline of the course

About the various usual structures of feedback control

About the difficulty to apprehend coupling and the

handle MIMO models as SISO ones

Eigenstructure assignement (strict pole placement)

Model reduction

Introduction to LMI-based synthesis
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Various structures of feedback

We will study various structures of feedback laws. Those

structures depend on whether the feedback is applied

from the all state vector (if it can be measured),

or from the ouput vector.

Besides, the feedback itself can be either

static (the control vector entries are linear combinations

of the measurements),

or dynamic (the control vector becomes the ouput of

dynamic system - the controller - from which the

measurement vector is the input).
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Various structures of feedback

Therefore, three kinds of structures will be considered

static state feedback (usually simply referred to as state

feedback),

static output feedback,

dynamic output feedback.

Indeed, dynamic state feedback is rarely used.

The system model to be considered is simply a realization

{
ẋ = Ax + Bu

y = Cx + Du
(1)

(x ∈ IR n, u ∈ IR m and y ∈ IR p)
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Static state feedback

This is a control law that might have been studied in the

case of SISO sytstems

A

∫
C yu

D

B + +

+

+xẋHyc +

+

K
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Static state feedback

The corresponding mathematical description is

u(t) = Hyc(t) + Kx(t). (2)

with

K ∈ IR m×n : state feedback matrix ;

H ∈ IR m×p : feedforward matrix ;

yc ∈ IR p : reference vector.

7/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Static state feedback

The induced feedback model is given by

{
ẋ = (A + BK )x + BHyc

y = (C + DK )x + DHyc .
(3)

K is computed to ensure stability and either to possibly

reach transient performances (pole placement) or to

minimize some criterion (e.g. LQ control, optimal

control).

H, if used, is rather computed to reach static

performances.
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Static output feedback

Assume that not all the entries of x are measured but only

the entries of y .

A

∫
C yu

D

B + +

+

+xẋHyc +

+

F
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Static output feedback

The corresponding mathematical description is

u(t) = Hyc(t) + Fy(t). (4)

with

F ∈ IR m×p : output feedback matrix (or gain) ;

H ∈ IR m×p : feedforward matrix ;

yc ∈ IR p : reference vector.
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Static output feedback

If D = O (no direct transmission to make simpler) then the

closed-loop model is

{
ẋ = (A + BFC)x + BHyc

y = Cx
(5)

If D 6= O then the control vector u complies with

u = Hyc + FCx + FDu

⇔ (II m − FD)u = Hyc + FCx
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Static output feedback

⇔ u = (II m − FD)−1H
︸ ︷︷ ︸

yc + (II m − FD)−1F
︸ ︷︷ ︸

Cx

⇔ u = Ĥ yc + F̂ Cx .

(6)

This leads to the following closed-loop model :

{

ẋ = (A + BF̂C)x + BĤyc

y = (C + DF̂C)x + DĤyc .
(7)

One can compute F̂ and Ĥ for design purpose and deduce

F and H which are implemented in practice.
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Static output feedback

Another possibility is to modify the control law :

u = Hyc + F (y − Du) = Hyc + Fŷ (8)

ŷ = y − Du = Cx ∈ IR p is the new "measure" one has to

built (it’s part of the controller) so that one gets

A

∫

C yu

D

B + +

+

+xẋHyc +

+

F
+

−
ŷ
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Static output feedback

Then, the closed-loop model directly depends on F and H :

{
ẋ = (A + BFC)x + BHyc

y = (C + DFC)x + DHyc
(9)

F and H are computed to get satisfactory performances.

Note however that, with this kind of structure, it might be

preferable to measure u too.
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Dynamic ouput feedack

A

∫

C yu

D

B + +

+

+xẋHyc +

+

F3

F4

∫

F1

+

+ z
F2

+

+

ż
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Dynamic ouput feedack

The control law is given by

{
ż = F1z + F2y

u = F3z + F4y + Hyc ,
(10)

where z ∈ IR l is the state vector of the feedback system.

The transfer matrix of this controller is

GF (s) = F3(sII l − F1)
−1F2 + F4. (11)
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Dynamic ouput feedack

Linking controller and process realizations yields

(II m − F4D)u = F3z + F4Cx + Hyc

u = (II m − F4D)−1F4
︸ ︷︷ ︸

Cx+ (II m − F4D)−1F3
︸ ︷︷ ︸

z+ (II m − F4D)−1H
︸ ︷︷ ︸

yc ,

u = F̂4 Cx+ F̂3 z+ Ĥ yc .

Consider a concatenation of process and controller state
vectors ξ′ = [x ′ z′]′ to get :






ξ̇ =

[
A + BF̂4C BF̂3

F2C + F2DF̂4C F1 + F2DF̂3

]

ξ +

[
BĤ

F2DĤ

]

yc

y =
[

C + DF̂4C DF̂3

]
ξ + DĤyc.

(12)
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Dynamic ouput feedack

Let the next augmented dynamic model be defined :







ξ̇ = Ãξ + B̃ũ

ỹ = C̃ξ + D̃ũ,

(13)

where ξ ∈ IR n+l and

Ã =

[
A O

O Ol

]

; B̃ =

[
B O

O II l

]

;

C̃ =

[
C O

O II l

]

; D̃ =

[
D O

O Ol

]

.
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Dynamic ouput feedack

Also let some control law (static ouput feedback) be applied

on this model :

ũ = F̃ ỹ + H̃yc , with (14)

F̃ =

[
F4 F3

F2 F1

]

an H̃ =

[
H

Ol ,m

]

, (15)

After some few calculation, one gets the same closed-loop

model as the one obtained by applying the dynamic

feedback on the original process model.

⇒ Applying a dynamic output feedback controller on a linear

model is equivalent to applying a static feedback gain on an

augmented system.
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Dynamic ouput feedack

When D = O the closed-loop model reduces to :







ξ̇ =

[
A + BF4C BF3

F2C F1

]

ξ +

[
BH

O

]

yc

y =
[

C O
]
ξ.

(16)

Note that the feedback matrices can be computed in

another basis of the state space i.e., with a full rank T ,

F̆ =

[
F4 F3T−1

TF2 TF1T−1

]

=

[
II p O

O T

]

F̃

[
II m O

O T−1

]

, (17)

since F and F̆ correspond to the same transfer matrix.

20/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Dynamic or static ?

Just a little question : Assume one simply wants to stabilize

a realization (A,B,C,D). What is usually the easiest way,

dynamic ouput feedback,

or static ouput feedback (on the original model ) ?
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Dynamic or static ?

Answer : Dynamic output feedback because one can exploit

a greater number of degrees of freedom since there are

more entries in F̃ ∈ IR (m+l)×(p+l) than in F ∈ IR m×p.

Actually, the problem of stabilization by static output

feedback control is still an open problem !
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Reference

The developments in this part are actually very easy to

produce whith quite simple calculation and matrix

manipulations. Only one reference might deserve to be

cited, where the dynamic controller is formulated as a static

one applied on an augmented system :

P. Hippe and J. O’Reilly.

Parametric compensator design.

International Journal of Control, Vol 45(4), p. 1455-1468,

1987.
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Coupling between channels

The purpose in this part is to highlight the inherent difficulty

of controlling MIMO models due to coupling between the

various inputs to outputs channels.

For example, consider a process with two ouputs y1 and y2

and two control inputs u1 and u2.

It is interesting to control y1 that should track some

reference yc1
as well as to control y2 that should track some

reference yc2
.

Unfortunately, in most cases, those control laws cannot be

designed independently. An action on yc1
, and thus on u1

has an influence on y2 and the other way around.
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An example : chemical reactor

Mélangeur

Produits (sortants)

Fluide sortant

Echauffement/
Refroidissement

Réactants (produits entrants)

Fluide entrant
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An example : chemical reactor

The temperature of the reactor is highly influent on the

quality of the reaction which is itself influent on the

temperature of the environment.

The process includes two inputs :

the rate (concentration) of entering chemicals,

the temperature of the heating/cooling fluid,

and two ouputs :

the rate (concentration) of outgoing chemicals,

the temperature inside the reactor.
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An example : chemical reactor

So two input/ouput channels :

one for the chemical rates ;

the other one for the temperature.

Why is there a couplig between the two channels ?

If the temperature of the outside fluid changes (in order

to control that of the reactor), then the quality of the

reaction is modified and the rates of the products are

changed.

If the rates of the entering chemicals are changed (in

order to control the rates of products), then the reaction

is of course more or less important inducing a change

of temperature because the reaction either provides or

absorbs heat.
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Another (numerical) example

A =

[
−1 0

0 0,5

]

; B =

[
1 1

1 1

]

C =

[
−1 0

0 1

]

; D =

[
0 0

0 0

]

.

It is an unstable square system (see the poles). The

emphasized entries are those responsible for the coupling.

The corresponding transfer matrix is G(s) =

1

s2 + 0, 5s − 0.5

[
s − 0, 5 s − 0, 5

s + 1 s + 1

]

=

[
G11(s) G12(s)
G21(s) G22(s)

]

.
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Another (numerical) example

Assume that one ignores ( ! ! !) the coupling transfers G12(s)
and G22(s) and that one designs some controllers only for

diagonal transfers.

From u1 to y1 :

G11(s) =
s − 0,5

s2 + 0,5s − 0,5
=

1

s + 1
,

From u2 to y2 :

G22(s) =
s + 1

s2 + 0,5s − 0,5
=

1

s − 0,5
.
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Another (numerical) example

For each first order channel, ones applies

Ki Gii(s)Hi

yci
+ yi

−
ui

With H1 = −1, K1 = −0.5, H2 = 0.5 and K2 = 1, one gets

the two following closed-loop models :

Ḡ11 = Ḡ22 =
1

1 + 2s
.
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Another (numerical) example

The global control structure is then as follows :

yc1

yc2

G(s)u1

u2H2

H1

+

−

−
K2

K1

+

y1

y2

The arrows represent the ignored transfers.
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Another (numerical) example

With such a simple (and false) reasoning, one should get

the next step response :

-1

-0.5

0

0.5

1

T
o:

 O
ut

(1
)

From: In(1)

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

T
o:

 O
ut

(2
)

From: In(2)

0 2 4 6 8 10 12

Step Response

Time (sec)

A
m

pl
itu

de
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Another (numerical) example

...whereas one actually gets

Step Response

Time (sec)

A
m

pl
itu

de -0.5

0

0.5

1
From: U(1)

T
o:

 Y
(1

)

0 2 4 6 8 10 12
-2

-1.5

-1

-0.5

0

0.5

T
o:

 Y
(2

)

From: U(2)

0 2 4 6 8 10 12
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Hence...

... from these examples, one can conclude that :

The coupling cannot always be neglected ;

The responses can be drastically distorted.

Indeed, some models can even be unstable due to

couplings...
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Thus...

One can formulate several problems :

Static decoupling (only for steady-state response),

Tansient decoupling (also for the transient response).

Those problems can be handled

either from a frequency point of view (frequency

decoupling),

or from a time point of view (state-space approach).
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Freq. app./static decoupling

Some possibility is to use feedforward control :

yc u y
H(s) G(s)

Y (s) = G(s)U(s) = G(s)H(s)Yc(s)

⇒ y∞ = lim
t→∞

y(t) = lim
s→0

(sY (s)) = lim
s→0

(sG(s)H(s)Yc(s)).

If ones considers that all the reference entries yci
are steps

of magnitude αi , one has to satisfy :
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Freq. app./static decoupling

y∞ = lim
s→0




sG(s)H(s)

1

s






α1

...

αp









 =






α1

...

αp






⇔ G(0)H(0)






α1

...
αp




 =






α1

...
αp






⇔ G(0)H(0) = II p. (18)

So H(s) = H(0) = H (constant feedforward matrix) has to

check (18).
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Freq. app./static decoupling

If m = p (square model) then H = G(0)−1 ;

If m > p then H can be a pseudo-inverse of G(0) (for

example, the Moore-Penrose one) ;

If m < p then no generic solution : not enough

actuators compared with the number of outputs.

So the limits are :

m ≥ p ;

G(0) must be of full rank ;

The process must be stable or be stabilized first

because this is only a feedforward control.
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Example

G(s) =

























20(s + 1)

(s2 + 3s + 12)(s + 2)

−130(s − 0, 3)

s2 + 2s + 80

−10(s − 3)

(s2 + 3s + 12)(s + 8)

15(s − 1)

(s2 + 4s + 12)(s + 2)

43(s + 1

(s2 + 2s + 32)(s + 2)

30(s + 1)

s2 + 2s + 122

−9(s − 4)

s2 + 2s + 52

30(0, 5s + 4)

s2 + 2s + 412

3, 2

s + 2

























.

This is a square stable model ⇒

H = G(0)−1 =





0,833 −0,572 −0,075

0,972 0,927 −0,332

−0,537 0,079 0,718



 .
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Freq. app./dynamic decoupling

Just some idea that can sometimes be used !

The idea is to compute H(s) such that Q(s) = G(s)H(s)
checks







qii(s) 6= 0 ∀i ∈ {1, ...,p}

qij(s) = 0 ∀{i , j 6= i} ∈ {1, ...,p}2

But it is illusory to solve such constraints so one can simply

try to reach

|qij(iω)| << 1 ∀{i , j 6= i} ∈ {1, ...,p}2
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Freq. app./dynamic decoupling

There are several techniques in the literature based on that

simple idea (whose efficiency has still to be proved (author’s

note)). With those techniques, one has to check that the

useful transfers qii(s)

have no instable zeros ;

are strictly proper ;

should be preferably of weak order.

In any case, one has to keep in mind that a decoupling

procedure does not ensure other performances and should

be accompanied by other control laws to guarantee stability,

transient behaviour, and so on.
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Decoupling with time approach

Also very difficult but let us have a look to this very

particular case where m = p = n (yes, it can exist ! e.g.

some printers).

Assume one wants to satisfy :

ẏ = Q(y − yc) with Q diagonal








ẏ1

ẏ2

...

ẏp







=








q11 0 . . . 0
0 q22 . . . 0
...

...
. . .

...

0 0 . . . qpp















y1

y2

...

yp







−








q11 0 . . . 0
0 q22 . . . 0
...

...
. . .

...

0 0 . . . qpp
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Decoupling with time approach

These p independent linear 1st order differential equations

would correspond, in Laplace’s domain, to :

Yi(s)

Yci
(s)

=
−qii

s − qii
∀i ∈ {1, ...,p}.

that is to some transfers with unit static gain and one

pole qii .

44/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Decoupling with time approach

If one looks for a state feedback control law such that these

transfers are obtained, ones can write

ẋ = Ax + Bu = Ax + B(Hyc + Kx) = (A + BK )x + BHyc

⇔ Cẋ = ẏ = (CA + CBK )x + CBHyc.

to be identified to

ẏ = QCx − Qyc ,

leading to (assuming that W = (CB)−1 exists)

{
K = W (QC − CA)
H = −WQ.

(19)
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Decoupling with time approach

Thus a very simple technique that is unfortunately only

useful when m = p = n.

Indeed,

it cannot be extended to static output feedback ;

It cannot be used when D 6= O.

... so very restrictive !
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Decoupling : Some conclusion

Frequential approach and feedforward sometimes

efficient (not alone) for static decoupling.

Time approach rarely used (except under drastic

constraints) but see the next part for some attempt to

transient decoupling.

There exist other methods of decoupling such as the

"relative gain" method whose efficiency has not

convinced the author of these frames.

Other techniques consists in tracking a reference model

which is usually chosen with no coupling... but it is not a

decoupling approach in itself. It is rather connected to

some further issues in these frames.

As a conclusion, decoupling is fundamental but so difficult !

47/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

References

P. T. Tham
Notes - An introduction to Decoupling control.
Department of Chemical and Process Engineering, University of Newcastle
upon Tyne, England... for the example of chemical reactor

Course Notes, Chapter 6 : Analysis and Design of Multivariable Control
Systems.
Electrical Engineering Department, State University of Binghamton,
New-York, USA... for decoupling by time approach and other insights.

E. H. Bristol
On a new measure of interaction in multivariable process control.
IEEE Transactions on Automatic Control, Vol 11, p. 133-134... for the reader
interested in "relative gain approach".

J. P. Corriou.
Commande des procédés.
Lavoisier Editions, TEC&DOC Collection, 1996 (in French, sorry !), for
connected information.

48/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Eigenstructure assignment

49/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Eigenstructure and its influence

50/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Eigenstructure assignment

Motivation : assigning the poles and possibly the associated

eigenvectors in order to try to shape the transient response

of the closed-loop system.

It can be way to obtain some transient input/ouput

decoupling.

Techniques based upon eigenstructure placement are also

called Modal Control.
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Matrix eigenstructure

λ is an eigenvalue of A ∈ lC n×n iff

P(λ) = det(λII n − A) = 0. (20)

A owns n eigenvalues λi (which will be assumed distinct for

the sake of conciseness). This set is referred to as the

spectrum λ(A).

A ∈ IR n×n ⇒ λ(A) is closed under conjugation.

There exists n non zero vectors vi ∈ lC n, called right

eigenvectors, such that

Avi = λivi ∀ i ∈ {1, ...,n}. (21)

One should talk about eigendirections since they can be

multiplied by any non zero scalar.
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Matrix eigenstructure

V = [v1, · · · , vn] (22)

is called the modal matrix.

⇒ Λ = diag{λ1, · · · , λn} = V−1AV (23)

One can define, by duality, left eigenvectors ui ∈ lC n such

that

u′
i A = λiu

′
i ∀i ∈ {1, ...,n} ⇒ U = [u1, · · · ,un]. (24)

ui and vi can be scaled so that

U ′V = II n (orthogonality condition). (25)

The eigenvectors vi (or ui ) make a basis of lC n.
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Feedback model eigenstructure

Closed-loop model eigenstructure=eigenstructure of its

state matrix

Ac = A + BFC.

⇒







Acvi = (A + BFC)vi = λivi ∀i ∈ {1, ...,n}

u′
i A = u′

i (A + BFC) = λiu
′
i ∀i ∈ {1, ...,n}

U ′V = II n

Ac = A + BFC = VΛU ′.
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Feedback model eigenstructure

Remark : In practice, the matrices are real meaning that not

only λ(Ac) but also the sets of eigenvectors are closed

under conjugation.

Input directions :

wi = FCvi ∀i ∈ {1, ...n}.

Output directions :

l ′i = u′
i BF ∀i ∈ {1, ...n}.
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Influence of the eigenvalues

It can be easily proved that the free response of a model to

an initial condition is

x(t) =

n∑

i=1

αie
λi tvi . (26)

Re(λi) < 0 ∀i otherwise there are non vanishing terms

(instability).

|Re(λi)| ր⇒ the term (mode) reduces faster.

|Im(λi)| ր⇒ the term induces stronger oscillation

(none if λi is real).

So λ(A) has an influence on stability, settling time,

oscillations, characterizing the transient behaviour.
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Influence of the eigenvectors

Consider the perturbed closed-loop model

{
ẋ = (A + BFC)x + BHyc + B̄d

y = Cx .
(27)

With the basis change x = V ξ, V being the modal matrix of

Ac = A + BFC :

{
ξ̇ = Λξ + U ′BHyc + U ′B̄d

y = CV ξ.
(28)

Also consider the identity matrix :

II n =
[

e1 . . . en

]
, (29)
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Influence of the eigenvectors

yci
has no effect on λj iff

u′
j BHei = 0.

⇒ left eigenvectors distribute the effects of the

references on the eigenvalues

λi has no effect on xj (resp. yj ) iff

e′
jvi = 0.

⇒ right eigenvectors vi (resp. Cvi ) distribute the effects

of the eigenvalues on the state entries (resp. outputs).

58/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Influence of the eigenvectors

di has no effect on λj iff

u′
j B̄ei = 0.

⇒ left eigenvectors distribute the effects of some

disturbances on the eigenvalues

λj has no effect on uj iff (less obvious)

e′
jwi = 0.

⇒ input directions distribute the effects of the

eigenvalues on the control entries.
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Influence of the eigenstructure

The effect of the environment on the system dynamics is

mainly described by the left eigenstructure whereas the

effect of these dynamics on the system outputs is mainly

described by the right eigenstructure (Ibrahim Chouaib).

Remark : It can also be proved that eigenvectors have an

influence on the local sensitivity of eigenvalues with respect

to additive unstructured uncertainty affecting the state

matrix (not detailed here).
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State feedback assignment

Pole Placement Problem : find K ∈ IR m×n such that

λ(Ac = A + BK ) equals some specified set.

The computation of feedforward matrix H will be considered

later.

There is always some solution provided the pair (A,B) is

controllable.
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State feedback assignment

At first sight, one needs n degrees of freedom (dof) to

place n poles. It remains n(m − 1) to place right

eigenvectors (because of the orthogonality condition, a

choice of V implies a choice of U).

However, an eigenvector is characterized by (n − 1)
entries (not n since it can be scaled).

So, not enough parameters for an arbitrary choice of

eigenvectors.

Indeed, each vi belongs to some characteristic

subspace.
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Characteristic subspaces

Because for one λ, the associated v and w = Kv comply

with

(A − λII n)v + Bw = O,

then v ∈ S(λ) where

S(λ) = {v ∈ lC n | ∃w ∈ lC m | (A − λII n)v + Bw = O}
(A,B) controllable ⇒ dim(S(λ)) = m.

⇒ Only (m − 1) should be exploited to assign v ∈ S(λ),
exactly what is offered by K .
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State feedback assignment

Define :

Tλ =
[

A − λII n B
]
∈ lC n×(n+m),

Rλ =

[
Nλ

Mλ

]

= Ker(Tλ) with Nλ ∈ lC n×m, Mλ ∈ lC m×m.

and with some parameter vector z ∈ lC m, it comes

π =

[
v

w

]

=

[
Nλz

Mλz

]

,

leading to admissible eigenvector v ∈ S(λ) and associated

input direction w .
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Choice of z

Assume vd is some desired eigenvector (with for instance

zero entries to try to reach some decoupling properties).

One has to assign an admissible v as close as possible to

vd . Solving a classical least square problem leads to

z = (N ′
λNλ)

−1N ′
λvd . (30)

Remark : It is possible to rather give specifications on

various ui and then to deduce suitable vdi
.
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Theorem

There exists K ∈ IR m×n solving the problem iff

(i) vectors vi are linearly independent ;

(ii) vi = ṽj when λi = λ̃j ;

(iii) vi ∈ S(λi).

In this event the unique solution is given by

K = WV−1 (31)

where

W =
[

w1 . . .wn

]
.
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State feedback assignment

Algorithm :

1 Choose a desired spectrum {λi} and some desired eigenvectors vdi
(do not

forget about the conjugation)

2 Compute matrices Tλi
and then Rλi

(i.e. Nλi
and Mλi

) ;

3 Compute parameter vectors zi so that each vi is admissible and as close as
possible to vdi

(note that vj = ṽi ⇔ zj = z̃i ) ;

4 





vi = Nλi
zi

∀i ∈ {1, ...,n};
wi = Mλi

zi

5 Check the independence of vi (otherwise go back to step 1 or 3) ;

6 Compute V , W and K according to the previous theorem.
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Output feedback assignment

Pole Placement Problem : find F ∈ IR m×n such that

λ(Ac = A + BFC) equals some specified set.

Remark : It is possible but dangerous to assign only part of

the spectrum following the same kind of reasoning as for

state feedback.

Necessary condition for solving the problem : (A,B,C)
minimal.
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Output feedback assignment

About the dof :

At first fight, ∃m × p entries in F so the problem can be

solved if mp ≥ n but not so simple.

In 1975, Kimura proved that m + p > n ⇒ generic

assignability.

Later (1981), it was proved that the condition is mp ≥ n

but in the field of complex matrices... but no need for a

complex F !

In 1996, Wang proved that a sufficient condition in the

field of real matrices is mp > n but the associated

design method is not very tractable.

In practice, the tractable (e.g. non iterative) techniques

require that Kimura’s condition holds.
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What to do if Kimura’s condition does not hold ?

Assign only part of the spectrum (dangerous !),

or apply a dynamic feedback.

If it holds, there are several techniques available with

different restrictions, e.g. :

"Polynomial" design ;

Parametric approach ;

Geometric approach (very elegant) ;

Coupled Sylvester Equations (my favourite !),

and many others I may not know or that still have to be

found.
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Principle of the "Sylvester approach" :

Solve the system :

AV − VΛ = −BW (right eigenstructure) (32)

U ′A − ΛU ′ = −L′C (left eigenstructure) (33)

Ker(U ′) = Im(V ) (orthogonality) (34)

The main idea : assign {λi , i ∈ {1, ...,p}} and the

associated vi as well as {λi , i ∈ {p + 1, ...,n}} and the

associated ui , while respecting the three above equations.
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Output feedback assignment

Simplified algorithm :

Choose Λn−p = diag{λi , i ∈ {p + 1, ..., n}} (subspectrum
closed under conjugation) and

Ln−p = [lp+1, ... , ln] ∈ lC
p×(n−p)

and solve

U ′

n−pA − Λn−pU ′

n−p = −L′

n−pC; (35)

in Un−p = [up+1, ... , un] ∈ lC
n×(n−p)

.

Choose the self-conjugate set {λi , i ∈ {1, ..., p}} and
compute

Nλi
=

[
A − λi II n B

U ′

n−p On−p,m

]

∀i ∈ {1, ..., p}; (36)
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Simplified algorithm (cont’d) :

Compute
[

Nλi

Mλi

]

= Ker(Nλi
) ∈ lC

(n+m)×ri )

(it generically exists when m + p > n) ;

Choose p parameter vectors zi ∈ lC
ri such that

Vp = [Cv1, ...,Cvp] = [CNλ1
z1, ... ,CNλp

zp] (37)

is a full rank matrix ;
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Simplified algorithm (cont’d) :

Compute

Wp = [w1, ... ,wp] = [Mλ1
z1, ... ,Mλp

zp]; (38)

The feedback matrix is given by

F = Wp(Vp)
−1. (39)

⋄ The dof are on the entries of Ln−p and zi ∀i ∈ {1, ...,p}. It

can be shown that this flexibility corresponds to the flexibility

brought by F . It can be used to assign part of the

eigenstructure.
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With direct transmission D :

Just find F̂ by the above technique to assign the spectrum of

Ac = A + BF̂C

and then deduce

F = F̂ (II p + DF̂ )−1.

77/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Output feedback assignment

m + p ≤ n

It is possible to design a dynamic feedback or order l in

order to assign n + l poles but one has to satisfy

l ≥ n − m − p + 1. (40)

Hence, Kimura’s condition holds for the "augmented system"

(see part on the various feedback structures) and then one

computes a static gain for this augmented system which

corresponds to a dynamic gain for the original system.

Some special cases can also be handled with static gain

(since 2006 !)
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Pole placement and feedforward

It might be possible (depending on dimensions) to compute

Ĥ and H = (II m − FD)Ĥ such that

(−(C + DF̂C)(A + BF̂C)−1B + D)Ĥ = II p. (41)

to ensure a unit static gain otherwise add integrators before

to solve the problem... but with integrators, Kimura’s

condition is harder to satisfy.
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Simple example with MATLAB

Model and desired spectrum :

» A=[1 4 5 ;0 2 6 ;1 0 3] ;

» B=[1 1 ;1 0 ;0 0] ;

» C=[1 0 0 ;0 1 0] ;

» D=eye(2) ;

» n=3 ;m=2 ;p=2 ;

» lambda=[-1 -2 -3] ;
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Choice of Ln−p, solution to "left" Sylvester equation :

» Lam_nmoinsp=diag(lambda(p+1 :n))

Lam_nmoinsp =

-3

» L_nmoinsp=[1 ;1] ;

» U_nmoinsp=sylv(A’,-Lam_nmoinsp’,-C’*L_nmoinsp)

U_nmoinsp =

-0.3025

0.0420

0.2101
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Computation of N1, its kernel, v1 and w1 :

» NN1=[A-lambda(1)*eye(3) B ;U_nmoinsp’ zeros(n-p,m)]
NN1 =

2.0000 4.0000 5.0000 1.0000 1.0000
0 3.0000 6.0000 1.0000 0
1.0000 0 4.0000 0 0

-0.3025 0.0420 0.2101 0 0

» R1=null(NN1)
R1 =

-0.0364
-0.3074
0.0091
0.8675
0.3892

» v1=R1(1 :3) ;w1=R1(4 :5) ;
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The same for λ2.

» NN2=[A-lambda(2)*eye(3) B ;U_nmoinsp’ zeros(n-p,m)]

NN2=
3.0000 4.0000 5.0000 1.0000 1.0000
0 4.0000 6.0000 1.0000 0
1.0000 0 5.0000 0 0

-0.3025 0.0420 0.2101 0 0

» R2=null(NN2)
R2 =

-0.0305
-0.2499
0.0061
0.9629
0.0975

» v2=R2(1 :3) ;w2=R2(4 :5) ;
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Computation of Wp, Vp and F̂ :

» Wp=[w1 w2] ;Vp=C*[v1 v2] ;

» F_hat=Wp*inv(Vp)
F_hat =

-285.8000 31.0000
242.8000 -30.0000

Verification of the cloded-loop spectrum :

» eig(A+B*F_hat*C)
ans =

-3.0000
-2.0000

-1.0000
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Deduction of F and computation of H :

» F=F_hat*inv(eye(p)-D*F_hat)
F =

-0.9773 0.0227
0.1780 -0.7897

» H_hat=inv(-(C+D*F_hat*C)*inv(A+B*F_hat*C)*B+D)
H_hat =

58.5529 -84.1059
-49.6706 71.3412

» H=(eye(p)-F*D)*H_hat
H =

-0.2161 0.3106

-0.0962 0.1406
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Construction of the closed-loop model and verification of the static gain

» Ac=(A+B*inv(eye(m)-F*D)*F*C) ;
» Bc=B*inv(eye(m)-F*D)*H ;
» Cc=(C+D*inv(eye(m)-F*D)*F*C) ;
» Dc=D*inv(eye(m)-F*D)*H ;
» -Cc*inv(Ac)*Bc+Dc

ans =

1.0000 0.0000

0.0000 1.0000
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Model reduction

The main idea : Approximate a high order (n) linear model

by a reduced order (r) model to make the design simpler.

S =

{
ẋ = Ax + Bu

y = Cx + Du
→ Sr =

{
ẋr = Arxr + Br u

yr = Crxr + Dr u
(42)
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Quality of Sr

Several criteria can be considered :

Preserve the dominant poles (i.e. neglect the fast (high

frequency) dynamics) ;

Approximate the input/ouput behaviour : for a same

input vector, yr should be as close as possible to y .
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Some existing methods

According to these criteria, a non complete list of existing

techniques is as follows :

By modal approach ;

By "agregation" ;

By Schur decomposition ;

By minimization of norm (ex : H∞-norm) ;

By balancing transformation (the only one presented

here and maybe the most known !).
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Balanced reduction

Only valid for asymptotically stable minimal models but there

exists a (not well known) extension to unstable models.

The idea : neglect the dynamics of the state entries that are

the less controllable and observable in S.

But how to quantify controllability and observability ?

Answer : through the grammians (or Gramm matrices).
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Controllability grammian

Wc =

∫
∞

0

eAτBB′eA′τdτ. (43)

which solves Lyapunov equation

AWc + WcA′ = −BB′. (44)

Observability grammian

Wo =

∫ ∞

0

eA′
τC′CeAτdτ ⇒ (45)

A′Wo + WoA = −C′C. (46)

(hence the stability assumption).
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The controllability grammian can be interpreted in terms of

energy.

There exists a basis in IR n in which Wc is diagonal. In this

basis each diagonal entry wci
of Wc is the reciprocal of the

minimum energy required to (asymptotically) bring the state

vector to [0, . . . , 0, 1, 0 . . . , 0]′. Thus, it can be seen as a

controllability index of xi .

For observability, the reasoning is based upon duality to

conclude that in the "diagonal" basis, woi
is an observability

index of xi .
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Balanced reduction

Let S be decribed by the triplet of matrices (A,B,C),
assuming D = 0 for the sake of conciseness.

Theorem

There exists a full rank matrix T such that the realisation

S = (T−1AT ,T−1B,CT ) = (Ā, B̄, C̄) is balanced i.e. both

grammians equal to the same diagonal matrix

W̄o = W̄c = Σ.

It means that in this basis, for each entry x̄i , the

controllability and observability indices are the same ⇒ one

has to neglect the dynamics of the less controllable and

observable x̄i .
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Balanced reduction

In the balanced basis, the model is (here, D is kept)







˙̄x1 = Ā11x̄1 + Ā12x̄2 + B̄1u

˙̄x2 = Ā21x̄1 + Ā22x̄2 + B̄2u

y = C̄1x̄1 + C̄2x̄2 + Du.

(47)

The limit between the preserved dynamics (that of x̄1 and

the neglected ones (that of x̄2) depends on a possible gap in

the diagonal entries of Σ.

97/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Balanced reduction

The idea is then to neglect the dynamics of x̄2, the less

controllable and observable part of x̄ (thus the less influent

on the input/ouput behaviour) by imposing ˙̄x2 = 0. This

technique is sometimes called the "singular perturbations

approximation".

It is also possible to simply truncate x̄ by imposing x̄2 = 0

but it does not preserve the static gain so it is rather rough

as a reduction.
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Balanced reduction

So, the reduced model Sr is given by

Sr =







ẋr = Arxr +Bru

yr = Crxr + Dr u.

(48)

where xr = x1 and







Ar = Ā11 − Ā12Ā−1
22 Ā21

Br = B1 − Ā12Ā−1
22 B̄2

Cr = C̄1 − C̄2Ā−1
22 Ā21

Dr = D − C̄2Ā−1
22 B̄2.

(49)
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Balanced reduction

MATLAB corresponding functions

minreal : Compute the minimal realization of original

system S ;

balreal : Compute the balanced realization

(Ā, B̄, C̄,D) of S ;

modred : Compute the final realization (Ar ,Br ,Cr ,Dr )
of reduced system Sr .
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Norms

Definition and properties

A norm enables ones to compare an element with another

in a set which does not necessarily own a relation of order

(here a vector space on IR or lC ). It is usually denoted by

||u||• where u is the concerned element and • stands for the

considered norm.

(i) ||u||• ≥ 0

(ii) ||u||• = 0 ⇔ u = 0

(iii) ||au||• = |a|.||u||•, ∀a ∈ lC

(iv) ||u + v ||• ≤ ||u||• + ||v ||• (triangular inequality)

(50)
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Vector norms

Euclidean norm

Inner product of a couple {x ; y} ∈ { lC n}2 :

< x , y >=

n∑

i=1

x ′
i yi = x ′y (51)

From this inner product, one can define the Euclidean norm

of 2-norm (the most natural) :

||x ||2 =
√
< x , x > =

√
√
√
√

n∑

i=1

x2
i =

√
x ′x . (52)

There are many other vector norms not detailed here.
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Vector function norms

Now the vectors depend on some real or complex variable

(t or s).

L2 and H2-norms

Let Ln
2 be the set of vector functions X (s) ∈ lC n, with s ∈ lC

whose square can be "summed" along the imaginary axis :

||X ||2 =

(
1

2π

∫ ∞

−∞
X ′(iω)X (iω)dω

)1/2

< ∞. (53)

||X ||2 is called the L2-norm ofX (L for Lebesgue).

It can be shown that Ln
2 is an Hilbert space.
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Vector function norms

Hn
2 ⊂ Ln

2 is the restriction to analytic functions over lC +

(owning Taylor’s expansion in every points). Then the

L2-norm is called H2-norm (H for Hardy).

Parserval’s theorem

||X ||2 =

(
1

2π

∫
∞

−∞

X ′(iω)X(iω)dω

)1/2

=

( ∫
∞

0
x ′(t)x(t)dt

)1/2
=

( ∫
∞

0
||x(t)||2

2
dt

)1/2
= ||x||2.

Beware of the fooling notation : ||x(t)||2 is the 2 (Euclidean)-norm of vector x at

time t (i.e. reflects the instantaneous energy) whereas ||x||2 (or ||X ||2) is the

H2-norm of signal vector x which depends on time (resp. of its Laplace transform,

i.e. reflects the signal energy over and an infinite horizon).
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Vector function norms

L∞ and H∞-norms

Let Ln
∞ be the set of vector functions X (s) ∈ lC n, with s ∈ lC

bounded along the imaginary axis i.e. :

||X ||∞ = sup
ω

||X (iω)||2 < +∞. (54)

||X ||∞ is called the L∞-norm ofX .

Ln
∞ is not an Hilbert space.

Hn
∞ ⊂ Ln

∞ contains only analytic functions over lC + and one

defines the H∞-norm (still from Hardy).

108/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Vector function norms

L2-gain

Let a mathematical operator R be defined over the following

sets :
R : Lnw

2 → Lnw

2

w(t) 7→ e(t)

Then,

GL2
(R) = sup

w∈Hnw
2

||e||2
||w ||2

(55)

is the L2-gain of R which corresponds to the highest energy

gain associated with R.
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Matrix norm

There are so many but one is particularly interesting.

Singular values of a matrix

Any matrix M ∈ lC m×n can be factorized as follows (singular

value decomposition) :

M = UΣW ′. (56)

U ∈ lC m×m et W ∈ lC n×n are such that

UU ′ = II m et WW ′ = II n, (57)

110/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Matrix norm

and Σ, if q = min{m,n}, complies with






Σ =








σ1 0 · · · 0 0
0 σ2 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 · · · σq 0








si q = m,

Σ =










σ1 0 · · · 0
0 σ2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · σq

0 0 · · · 0










si q = n,

Σ = diag{σ1, · · · , σq} si q = m = n.

(58)
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Matrix norm

σi are the singular values of M :

σ̄(M) = σ1 ≥ σ2 ≥ · · · ≥ σq = σ(M) ≥ 0. (59)

rank(M) = number of non-zero singular values =
number of linearly independant rows or columns.

M such that rank(M) < min{m;n} is rank deficient,

otherwise it is full rank.

M square and rank deficient cannot be inverted and

owns n − r zero singular values.

σi = eigenvalues of MM ′ (if m ≤ n) or M ′M (if n ≤ m).

M Hermitian ⇒ σi = |λi |.
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Matrix norm

σ̄(M) is a norm called 2-norm because it is induced by the
Euclidean vector norm in the following way :

σ̄(M) = ||M||2 = max
x 6= 0 ∈ lC n

(
||Mx||2
||x||2

)

= max
x 6= 0 ∈ lC n

√

x ′M′Mx

x ′x
.

(60)

Besides

σ(M) ≤ ||Mx ||2
||x ||2

≤ σ̄(M). (61)

shows that the gain from x to (Mx) lies in the range

[σ(M) ;σ̄(M)]

113/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

Transfer matrix norm

In this part, the matrices whose norm is defined depend

on s.

Singular value of transfer matrix

If w is an input harmonic signal vector of a plant G(s) ∈ lC
ne×nw

and e is the output harmonic signal vector. Then, at a given

frequency ω, the gain from w to e complies with

σ(G(iω)) ≤ ||e(iω)||2
||w(iω)||2

=
||G(iω)w(iω)||2

||w(iω)||2
≤ σ̄(G(iω)). (62)

Lower and upper bounds of the gain (in the sense of the 2-norm)

are given by the minimum and maximum singular values of G(iω).

These bounds also depend on ω.
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L∞ −H∞-norm of a transfer

Let RLne×nw
∞ (resp. RHne×nw

∞ ), be the set of proper transfer

matrices G(s) ∈ lC ne×nw (i.e. with finite direct transmission)

and with no pole on the imaginary axis I (resp. with no pole

over lC + ∪ I). Then the L∞ (resp. H∞-norm) simply

corresponds to the frequency for which the transfer is the

highest in the sense of the 2-norm. Hence :

||G||∞ = sup
ω

||G(iω)||2 = sup σ̄(G(iω)).
ω

(63)
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Transfer matrix norm

20log(σ̄(G(iω)))

20log(σ(G(iω)))

Pulsation ω (rad/s)

G
a

in
(d

B
)

20log(||G||∞)

FIGURE: Gain Bode diagramm in the MIMO case

The actual transfer lies somewhere between both curves.
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H∞-norm

Energetic interpretation

Let S be a stable plant whith transfer matrix G(s).

||G||∞ = GL2
(S) = sup

w∈H2(t)nw

||e||2
||w ||2

.

meaning that the H∞-norm is the L2-gain
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L2/H2-norm of a transfer

Let RLne×nw

2 (resp. RHne×nw

2 ), be the set of strictly proper

transfer matrices G(s) ∈ lC ne×nw (i.e. with no direct

transmission) and with no pole on the imaginary axis I
(resp. with no pole over lC + ∪ I). Then the L2 (resp.

H2-norm) is defined by

||G||2 =

(
1

2π

∫ ∞

−∞
trace(G′(iω)G(iω))dω

)1/2

⇔ (64)

||G||2 =

(

1

2π

∫ ∞

−∞

min{nw ;ne}∑

i=1

(σi(G(iω)))2dω

)1/2

. (65)

118/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

H2-norm

Energetic interpretation

Assume that êi(t) ∈ Lne

2 is the response to (only) a Dirac impulse

on the i th entry in w . One can prove that

nw∑

i=1

||êi ||22 = ||G||22. (66)

The H2-norm is related to the sum off all input energies induced

by these impulses.

In the SISO case, it means that the H2 norm if the energy of the
impulse response.

Time domain : ||G||2 =

√
∫ ∞

0

trace(e(t)e′(t))dt . (67)
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H2-norm

Stochastic interpretation

If the wi are white noises scaled such that

W (iω)W ′(iω) = II nw , then the expectation of the inner

product of the induced input vector checks

ne∑

i=1

E(e′
i(t)ei (t)) = ||G||22. (68)

Remark : For this reason the so-called H2-problem can be

related to the celebrated LQG-problem
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L2/H2-norm

H2-norms in terms of gain

Reminding that the H∞-norm is the the L2-gain then the

H2-norm checks

||G||2 = sup
W (s)∈Hnw

∞

||E ||2
||W ||∞

. (69)

which, unlike for the H∞-norm, is not very meaningful.
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H2-norm

H2-norms and grammians

Remember the controllability and observability grammians :

Wc =

∫ ∞

0

eAtBBT eA′tdt ; Wo =

∫ ∞

0

eA′tCT CeAtdt .

(70)

that satisfy
{

AWc + WcA′ = −BB′,

A′Wo + WoA = −C′C.
(71)
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H2-norm

H2-norms and grammians (cont’d)

Then

||G||2 =
√

trace(B′WoB) =
√

trace(CWcC′). (72)

This provides an analytical expression of the H2-norm

which is valid for calculation.

Unlike the H∞-norm, the H2-norm can be computed directly

through its analytic expression.
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LMI approach

For simplicity, only real matrices are considered.

Matrix inequalities

This is related to the notion of sign definition (partial order of

Löwner).

M ∈ IR n×n is positive definite (M > 0) (resp. semi-positive

definite (M ≥ 0)) iff

xT Mx > 0 (resp.≥ 0) ∀x 6= 0 ∈ IR n. (73)

M is negative definite (M < 0) (resp. semi-negative definite

(M ≤ 0)) iff (−M) > 0 (resp. (−M) ≥ 0).
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Matrix inequalities (MI)

In practice mostly symmetric matrices are handled so sign

definition is now considered only for those matrices.

With this assumption, one gets







M < (≤)0 ⇔ λmax(M) < (≤)0

M > (≥)0 ⇔ λmin(M) > (≥)0

(74)

A straightforward notation is

{
M > (≥)N ⇔ M − N > (≥)0

M < (≤)N ⇔ M − N < (≤)0.
(75)
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LMI bases

Example of MI :

M = MT = AX3 + (X 3)T AT + eBYY T (eB)T < 0

with, for instance, X and Y that are unknown.

Among all possible MI only two will be considered because

they are often encountered :

LMI : Linear matrix inequalities, that can be solved,

BMI : Bilinear matrix inequalities.
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Properties of MI

If M1 < 0 and M2 < 0 then one can stack these

properties in one single MI :

[
M1 O

O M2

]

< 0. (76)

If M = MT is such that

M =

[
M1 M2

MT
2 M3

]

< 0, (77)

then M1 < 0 and M3 < 0 but the reverse may be false.
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LMI

LMI are interesting because they can be solved !

The most famous LMI come from...

Theorem

Let the autonomous continuous (resp. discrete) model

ẋ = Ax (resp. xk+1 = Axk )

This model is asymptotically stable iff ∃P = PT > 0 such

that

AT P + PA < 0, (resp. − P + AT PA < 0).

(Lyapunov’s inequality and its discrete counterpart due to

Stein).
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BMI

Consider the next MI with respect to X and Y :

AX + X T AT + XBY + Y T BT X T > 0

Because of the two last terms, it is bilinear.

Unfortunately those BMI are very difficult to solve in spite of

some existing software.

Some crucial control problems are unfortunately very easily

formulated as BMI, not as LMI (e.g. static output feedback

stabilization).
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A useful tool !

Schur’s lemma

Let S, Q = QT and R = RT be matrices.

[
Q S

ST R

]

< 0 ⇔







R < 0

Q − SR−1ST < 0

(78)

This lemma enables to handle Stein’s inequality as an LMI

wrt A :

[
−P + AT PA O

O −P

]

< 0 ⇔
[
−P AT P

PA −P

]

< 0.
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Standard H•-problem

The H•-problem is basically a disturbance rejection

problem !

The studied feedback system matches the next figure :

P(s)

K (s)

u

w e

F(P(s),K (s))

y

where P(s) is the process model, K (s) is the controller

model and F(P(s),K (s)) is the closed-loop model.
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The process

u : control vector issued from control law ;

w : disturbance to be rejected (in practice, not always

actual exogeneous signals) ;

y : measured ouput for the purpose of control ;

e : vector of signals to be controlled.

[
E(s)
Y (s)

]

= P(s)

[
W (s)
U(s)

]

, with P(s) =

[
Pew (s) Peu(s)
Pyw (s) Pyu(s)

]

.

The idea is to reduce the transfer from w to e.
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The process

P(s) = D + C(sII − A)−1B, with (79)

B =
[

Bw Bu

]
; C =

[
Ce

Cy

]

; D =

[
Dew Deu

Dyw Dyu

]

.

(80)

Or in other words







ẋ(t) = Ax(t) + Bww(t) + Buu(t)
e(t) = Cex(t) + Deww(t) + Deuu(t)
y(t) = Cyx(t) + Dyww(t) + Dyuu(t)

x(t) ∈ IR n, w(t) ∈ IR nw , u(t) ∈ IR nu , e(t) ∈ IR ne et y(t) ∈ IR ny .
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The process

Assumptions

A1 : (A;Bu) and (A;Cy ) are respectively stabilisable

and detectable ;

A2 : Dyu = Ony ,nu ;

A3 : Dew = One,nw (only for H2-problem).

A1 is rather classical and completely compulsory.

A2 is just technical and induces no loss of generality. A3 is

necessary for the H2-norm to be defined.
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Static controller

One considers a static state feedback controller

u = Kx . (81)

In such a case, since y = x , the process model reduces to

{
ẋ(t) = Ax(t) + Bw w(t) + Buu(t)
e(t) = Cex(t) + Deww(t) + Deuu(t).

(82)
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Dynamic controller

One considers a dynamic output feedback controller

{
ẋc(t) = Acxc(t) + Bcy(t)
u(t) = Ccxc(t) + Dcy(t)

(83)

where xc(t) ∈ IR n. Thus,

K (s) = Dc + Cc(sII n − Ac)
−1Bc . (84)

In the H2-case (not studied in these frames), one has to

consider a strictly proper controller i.e. Dc = Onu ,ny .
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Closed-loop model

What is the state-space model of F(P(s),K (s)) ?

With static controller

Under Assumption A2 :

[
ẋ

e

]

=

[
Af Bf

Cf Df

] [
x

w

]

=

[
A + BuK Bw

Ce + DeuK Dew

] [
x

w

]

.

In the H2-case, Df = 0.
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Closed-loop model

With dynamic controller

Still under Assumption A2 :





ẋ
ẋc

e



 =

[
Af Bf

Cf Df

]




x
xc

w



 =





A + BuDcCy BuCc Bw + BuDcDyw

BcCy Ac BcDyw

Ce + DeuDcCy DeuCc Dew + DeuDcDyw









x

xc

w



 .

In the H2-case, Df = 0.
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H•-problem

Problem

Let P(s) and γ• > 0 be given. Also let assumptions A1 to A3

hold. Find a stabilizing (static or dynamic) feedback such

that ||F(P(s),K (s))||• < γ•.

If • = ∞, then Assumption A3 can be omitted.

With no additional constraints (such as weighting matrices),

the problem is referred to as standard.
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H•-problem

H2 or H∞ ?

... not exactly the same philosophy.

In the H∞-case, one looks after the L2-gain i.e. the highest

possible energy transfer or, from the frequency viewpoint,

the energy transfer at the worst frequency.

In the H2-case, one considers energy transfer over the

whole frequency range, not focusing on the worst one.
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H•-synthesis

In the following frames, some solutions are given for

the H2-design by state static feedback,

the H∞-design by state static feedback,

the H∞-design by output dynamic feedback,
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“H2 static design”

Property of the closed-loop model

Lemme

Under assumptions A1-A3, the H2-norm of F(P(s),K (s)) is

less than γ2 > 0 iff there exist two symmetric positive

definite matrices {X2;T} ∈ { IR n×n}2, such that (primal and

dual versions)






BT
f

X2Bf < T ,

[
AT

f
X2 + X2Af CT

f
Cf −II ne

]

< 0,

trace(T ) = γ2
2,

or






Cf X2CT
f

< T ,

[
Af X2 + X2AT

f
Bf

BT
f

−II nw

]

< 0,

trace(T ) = γ2
2.
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“H2 static design”

The idea is that X2 is a matrix upper bound of either the

observability grammian (X2 > Wo : primal version) or of the

controllability grammian (X2 > Wc : dual version). So the

Lyapunov equations used to calculate the grammians are

here replaced by LMIs.

The dual version enables ones to derive some K .
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“H2 static design”

Theorem

There exists u = Kx, K ∈ IR nu×n such that the H2-norm of

F(P(s),K (s)) is less than γ2 iff there exist two symmetric

positive definite matrices {X2;T} ∈ { IR n×n}2, and a matrix

L ∈ IR nu×n such that







[
AX2 + BuL + X2AT + LT BT

u Bw

BT
w −II nw

]

< 0,

[
−T CeX2 + DeuL

X2CT
e + LT DT

eu −X2

]

< 0,

trace(T ) = γ2
2.
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In this event, K is given by

K = LX−1
2 .

Notice that with various LMI solvers, it is possible to

minimize γ2 while satisfying the LMI constraints.

Also notice that X2 can be inverted since it is positive

definite.

147/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

“H∞ static design”

Property of the closed-loop model

Lemme

(Bounded real lemma) Under assumptions A1-A2, the

H∞-norm of F(P(s),K (s)) is less than γ∞ > 0 iff there

exists a symmetric positive definite matrix X∞ ∈ IR n×n,

such that (primal and dual versions)





AT
f X∞ + X∞Af X∞Bf CT

f

BT
f X∞ −γ∞II nw DT

f

Cf Df −γ∞II ne



 < 0, (85)
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or in dual version :





Af X∞ + X∞AT
f Bf X∞CT

f

BT
f −γ∞II nw DT

f

Cf X∞ Df −γ∞II ne



 < 0. (86)

Once again, the dual version is useful to derive a static state

feedback control law.
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Theorem

There exists u = Kx, K ∈ IR nu×n such that the H∞-norm of

F(P(s),K (s)) is less than γ∞ > 0 iff there exist a symmetric

positive definite matrix X∞ ∈ IR n×n, and a matrix

L ∈ IR nu×n such that




AX∞ + BuL + X∞AT + LT BT
u (•) (•)

BT
w −γ∞II nw (•)

CeX∞ + DeuL Dew −γ∞II ne



 < 0. (87)
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In this event, K is given by

K = LX∞
−1.

Notice that with various LMI solvers, it is possible to

minimize γ∞ while satisfying the LMI constraints.

Also notice that X∞ can be inverted since it is positive

definite.
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A first procedure

Condition for solvability

Under assumptions A1-A2, the H∞ dynamic problem can be

solved iff there exist R = RT and S = ST such that







[
NR O

O II nw

]T




AR + RAT RCT
e Bw

CeR −γ∞II ne Dew

BT
w DT

ew −γ∞II nw





[
NR O

O II nw

]

< 0

[
NS O

O II ne

]T




AT S + SA SBw CT
e

BT
w S −γ∞II nw DT

ew

Ce Dew −γ∞II ne





[
NS O

O II ne

]

< 0

[
R II n

II n S

]

≥ 0

(88)
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where Span(NR) = Ker([BT
u DT

eu]) and

Span(NS) = Ker([Cy Dyw ]).

Moreover, a nth-order controller exists iff

rang(II n − RS) = n. (89)

• It is also possible to achieve

min γ∞ under the LMI constraints.
R=RT ;S=ST
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How to recover K (s) ?

Achieve the singular value decomposition of (II n − RS) in

order to obtain {M;N} ∈ { IR n×n}2 such that

MNT = II n − RS.

Then X∞ =

[
S N

NT −M−1RN

]

is solution to the condition of the bounded real lemma

(primal version) which therefore becomes an LMI (thus

solvable) w.r.t. (Ac ,Bc ,Cc,Dc).
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A second procedure

Assume that X∞ and its inverse are patitionned as follows

X∞ =

[
R M

MT U

]

, X−1
∞ =

[
S N

NT V

]

with R ∈ IR n×n and S ∈ IR n×n.

From X∞X−1
∞ = II 2n, it comes

MNT = In − RS.
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Also define the new “controller variables” according to the

following system :







B = NBc + SBuDc ,

C = CcMT + DcCyR,

A = NAcMT + NBcCyR+

SBuCcMT + S(A + BuDcCy )R.

This system is such that given matrices

A, B and C,

R, S, M and N,

Dc (direct transfer of the controller to be found),

then Ac, Bc and Cc can always be computed and even

uniquely determined.
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Condition for solvability

Under assumptions A1-A2, the H∞ dynamic problem can be

solved iff there exist R = RT , S = ST , A, B, C and Dc such

that [
R II n

II n S

]

> 0,

[
Φ11 ΦT

21

Φ21 Φ22

]

< 0.
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with

Φ11 =



 AR + RAT + BuC + CT BT
u Bw + BuDcDyw

(Bw + BuDcDyw)
T −γ∞II nw



 ,

Φ21 =



 A+ (A + BuDcCy )
T SBw + BDyw

CeR + DeuC Dew + DeuDcDyw



 ,

Φ22 =



 AT S + SA + BCy + CT
y BT (Ce + DeuDcCy)

T

Ce + DeuDcCy −γ∞II ne



 .
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How to recover K (s) ?

Given a solution to the previous LMI system, one has to

compute :

MNT = II n − RS,

for example by using a SVD factorization, and







Bc = N−1(B − SBuDc),

Cc = (C − DcCyR)M−T ,

Ac = N−1(A− NBcCyR−
SBuCcMT − S(A + BuDcCy )R)M−T .
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Example

e =

[

z

u

]

K (s)

u y

u

ẋ

+

+

1
s

v

+

z P(s)

K (s)

+b x

y

w =

[

b

v

]

Find the state-space model, write the LMI system, deduce

the minimum value of γ∞ and explain how to recover K (s).
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State-space model :






ẋ = [0]x +
[

1 0
]

[
b
v

]

︸ ︷︷ ︸

w

+ [1]u

[
z
u

]

︸ ︷︷ ︸

e

=

[
1
0

]

x +

[
0 0
0 0

] [
b
v

]

+

[
0
1

]

u

y = [1]x +
[

0 1
]
[

b
v

]

+ [0]u.

(90)
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which correspond to these matrices :

A = 0 Bw =
[

1 0
]

Bu = 1

Ce =

[
1

0

]

Dew =

[
0 0

0 0

]

Deu =

[
0

1

]

Cy = 1 Dyw =
[

0 1
]

Dyu = 0.

Assumptions A1 and A2 are easily verified. The first

procedure is now applied.

162/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

“H∞ dynamic design”

[BT
u DT

eu] = [1 |0 1] = [Cy Dyw ] ⇒

NR = NS =





1 0

0 1

−1 0



.

A is scalar then so are R and S. The first LMI to be solved is








1 0 0 0
0 1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1








T 







0 R 0 1 0

R −γ∞ 0 0 0
0 0 −γ∞ 0 0

1 0 0 −γ∞ 0
0 0 0 0 −γ∞
















1 0 0 0
0 1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1








< 0
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which becomes

⇔







−γ∞ R 1 0
R −γ∞ 0 0
1 0 −γ∞ 0
0 0 0 −γ∞







< 0.

and, by Schur’s lemma, is equivalent to







γ∞ > 0,

γ∞
2 − 1 − R2 > 0.
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In a totally similar way, the 2nd inequality reduces to

γ∞
2 − 1 − S2 > 0.

whereas the 3rd one , i.e.

[
R 1

1 S

]

≥ 0 leads to







R ≥ 0

RS − 1 ≥ 0

⇔







S ≥ 0

RS − 1 ≥ 0.
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The whole of constraints yields

γ∞
2 − 1 > min (max{R2;S2}).

R,S

which shows that the optimum is reached for

R = S = 1 ⇒ γ∞ =
√

2.

But in this case, the optimal controller is not of order n = 1.

Anyway, for a suboptimal case RS 6= 1, one gets

M = −N =
√

RS − 1,
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⇒ X∞ =

[
S −

√
RS − 1

−
√

RS − 1 R

]

.

Once X∞, it suffices to use its value in the condition of the

bounded real lemma which becomes an LMI that can be

solved by any LMI software.
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LMI region

Any set D ⊂ lC defined by

D = {z ∈ lC |α + βz + βT z̃ < 0} (91)

where α = αT ∈ IR l×l and β ∈ IR l×l is an open LMI-region

of order l .

These regions are always convex and, if α and β are real (as

in the above definition), and symmetric w.r.t. the real axis.
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Intersection of LMI regions... is an LMI-region.

z

Im(s)

Re(s)

a′

a

D
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LMI formulation of a disc

... of center ρ and radius r .

|z − ρ| < r ⇔ (z − ρ)(z̃ − ρ)− r2 < 0

⇔ −r + (z − ρ)
1

r
(z̃ − ρ) < 0.

Applying Schur’s lemma, it comes

[
−r z − ρ

z̃ − ρ −r

]

= α+ βz + βT z̃ < 0 ⇔

α =

[
−r −ρ

−ρ −r

]

< 0 ; β =

[
0 1

0 0

]

.
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A matrix (or by extension a model) is said D-stable when its

eigenvalues lie inside D.

Theorem

Let D be an LMI-region. A matrix A is D-stable iff

∃XD = XD
T > 0 such that

MD(A,XD) = α⊗ XD + β ⊗ (AXD) + βT ⊗ (XDAT ) < 0.

This is an LMI w.r.t. XD or w.r.t. A.
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One considers a static state feedback control law.

Theorem

Let D be an LMI-region. P(s) is D-stabilizable by state

feedback iff ∃XD = XD
T > 0 and L such that

MD(A,Bu ,XD, L) = α⊗ XD + β ⊗ (AXD) + βT ⊗ (XDAT )+

β ⊗ (BuL) + βT ⊗ (LT BT
u ) < 0.

In this event, K is given by K = LXD
−1.
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Let us forget about disturbance rejection an assume that the

plant P(s) is restricted to the classic state-space model

{
ẋ = Ax + Buu,

y = Cyx ,

(i.e. with Dyu = 0) controlled by a dynamic nth-order output

feedback control law
{

ẋc = Acx + Bcy ,

u = Ccx + Dcy .
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Then as seen in the first part of these slides, the

closed-loop model is

ξ̇ = Af ξ

with ξ =
[

x ′ x ′
c

]′
and

Af =

[
A + BuDcCy BuCc

BcCy Ac

]

.

175/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and

its influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

Matrix inequalities

H• -design

Pole placement

Mixt synthesis

Insights into

robustness

D-stabilization by dynamic output feedback

Given an LMI region characterized by α = αT and β, the

purpose is then to find XD = XD > 0 and Ac, Bc , Cc , Dc

such that

MD(Af ,XD) = α⊗ XD + β ⊗ (Af XD) + βT ⊗ (XDAT
f ) < 0.

Unfortunately, it is a BMI which is not so easy to transform

into an LMI... but it is possible.
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The idea is the same as for the second procedure solving

the H∞-problem. Assume that XD and its inverse are

patitionned as follows

XD =

[
R M

MT U

]

, X−1
D =

[
S N

NT V

]

with R ∈ IR n×n and S ∈ IR n×n.

From XDX−1
D = II 2n, it comes

MNT = In − RS.
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Once again, define the new “controller variables” according

to the following system :







B = NBc + SBuDc ,

C = CcMT + DcCyR,

A = NAcMT + NBcCyR+

SBuCcMT + S(A + BuDcCy )R.

This system is such that given matrices

A, B and C,

R, S, M and N,

Dc (direct transfer of the controller to be found),

then Ac, Bc and Cc can always be computed and even

uniquely determined.
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Theorem

Let D be an LMI-region. P(s) is D-stabilizable by dynamic

output feedback iff ∃,R = RT , S = ST A, B, C and Dc such

that [
R II n

II n S

]

> 0,

α⊗
[

R II n

II n S

]

+ β ⊗ Φ+ βT ⊗ ΦT < 0,

with

Φ =

[
AR + BuC A + BuDcCy

A SA + BCy .

]

.
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If the LMI system is found feasible, then Dc is found and the

other matrices of the controller are obtained by

MNT = II n − RS.







Bc = N−1(B − SBuDc),

Cc = (C − DcCyR)M−T ,

Ac = N−1(A− NBcCyR−
SBuCcMT − S(A + BuDcCy )R)M−T .
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One still considers a static state feedback control law.

Theorem

Let D be an LMI-region. P(s) is D-stabilizable by state

feedback that ensures ||F(P(s),K )||• < γ• ∀ • ∈ {∞;2} if

∃{X = X T > 0;T = T T ;L} such that

Z∞(P(s), X , L, γ∞) =





AX + BuL + XAT + LT BT
u (•) (•)

BT
w −γ∞II nw (•)

CeX + DeuL Dew −γ∞II ne



 < 0

Z21
(P(s), X , L) =

[
AX + BuL + XA′ + L′B′

u Bw

BT
w −II nw

]

< 0.
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Mixt synthesis

Z22
(P(s), X , L, T ) =

[
−T CeX + DeuL

XCT
e + LT DT

eu −II n

]

< 0

trace(T ) < γ2
2

MD(A,Bu ,X , L) = α⊗X +β⊗(AX )+βT ⊗(XAT )+β⊗(Bu L)+βT ⊗(LT BT
u ) < 0.

In this event, K is given by K = LX−1.

• A great interest in LMI is that one can stack several LMI

constraints with preserving the LMI nature of the problem

but...
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Mixt synthesis

...The condition is only sufficient because one imposes

the constraint

X = X2 = X∞ = XD,

with also a single L. This is referred to as the Lyapunov

Shaping Paradigm.

In such a mixt synthesis only one criterion is minimized

(either γ2 or γ∞) and the other one is arbitrarily chosen.

Another possibility is to minimize a weighted objective

function.

The design of dynamic controllers is also possible but

harder and not detailed here. Nevertheless, it relies on

previously notions here introduced here.
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Introduction to robust control

Polytopic uncertainty

(...still considering state feedback)

The process model is assumed to be uncertain (not

precisely known) but also assumed to belong to a family of

models defined by

M = M(τ ) =

[
A(τ) Bw(τ ) Bu(τ)
Ce(τ) Dew(τ) Deu(τ)

]

=

N∑

j=1

(τjMj).
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Polytopic uncertainty

in which τ = [τ1, ..., τN ]
T contains the coefficients of a

convex combination (i.e. τj ≥ 0 and

N∑

j=1

(τj) = 1) and Mj are

the vertices of a so-called polytope of matrices :

Mj =

[
Aj Bjw Bju

Cje Djew
Djeu

]

. (92)

Remarque

There are many possible descriptions of uncertainties either

in the frequency domain (i.e. affecting the transfer matrix) or

in the time domain (i.e. affecting the state-space model).

Here only few time-domain uncertainties are introduced.
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Polytopic uncertainty

Why polytopic uncertainty ?

It has a very interesting special case i.e the affine

parametric uncertainty :

M = M0 +

p
∑

i=1

(δiNi), (93)

M0 is the nominal part, the matrices Ni are known and the δi

are unknown parameters obeying

δimin
≤ δi ≤ δimax

∀i ∈ {1, ...,p}. (94)

In this case, the polytope has N = 2p vertices.
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Polytopic uncertainty

Example :

M =

[
−1 + δ1 δ2 3

1 −2 + 2δ1 0

]

where

{
|δ1| ≤ 0, 5
|δ2| ≤ 0, 2.

⇔

M0 =

[
−1 0 3
1 −2 0

]

; N1 =

[
1 0 0
0 2 0

]

; N2 =

[
0 1 0
0 0 0

]

which corresponds to the polytopic description :

[M1|M2|M3|M4] =
[

−0, 5 0, 2 3 −0, 5 −0, 2 3 −1, 5 0, 2 3 −1, 5 −0, 2 3
1 −1 0 1 −1 0 1 −3 0 1 −3 0

]
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Polytopic uncertainty

Yes, but, once again, why polytopic uncertainty ?

Simply because it is easily handled through LMI machinery.

For example, assume one wants to analyze the robust

stability of a polytopic matrix A with two vertices A1 and A2.

This matrix is robustly stable if ∃P = PT > 0 such that

AT
1 P + PA1 < 0 & AT

2 P + PA2 < 0.

The condition is only sufficient since only one unique P is

considered and it is not a function of the uncertainty (one

talks about quadratic stability).
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Robust mixt synthesis

Theorem

Consider an uncertain process model P(s, τ ) and some

LMI-region D. There exists a D-stabilizing state feedback K

that ensures ||F(P(s),K )||• < γ• ∀ • ∈ {∞;2} if

∃{X = X T > 0;T = T T ;L} such that







Z∞j
= Z(P j(s),X ,L, γ∞) < 0

Z21j
= Z(F(P j(s),X ,L)) < 0

Z22j
= Z(F(P j(s),X ,L,T )) < 0 ∀j ∈ {1, ...,N},

trace(T ) < γ2
2

MDj
= MD(Aj + Buj

,X ,L) < 0

In this event, K is given by K = LX−1.
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Robust mixt synthesis

There are two reasons why the condition is conservative :

Lyapunov shaping paradigm,

Quadratic stability.

Avoiding the shaping paradigm is quite difficult but there

exist techniques that consider a matrix X (τ) (i.e. which is

dependent on the uncertainty).
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Robustness and H∞

Many authors consider that H∞ approach belongs to the

realm of robust control whereas it is simply disturbance

rejection.

The reason is as follows :

Consider the uncertain matrix (Linear Fractional Transform

(LFT)-based uncertainty) :

A = A + B∆̄C (95)

where ∆̄ = ∆(II − D∆)−1 and ||∆|| ≤ ρ, with ∆ complex

(this special LFT is called norm-bounded uncertainty).

Problem : find the largest value of ρ such that A is Hurwitz

for all ∆. This value is the so-called complex stability radius.
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Robustness and H∞

Surprisingly, it has been proved that the complex stability

radius is exactly the reciprocal of the H∞-norm of the

realization (A,B,C,D).

⇒ The bounded real lemma enables ones to compute this

radius with no conservativeness.

However, one shall mention that it is anyway

conservative in pratice since the actual realness of the

uncertainty is not taken into account.

Notice that, in this case, quadratic stability is not

pessimistic (P(∆) is not needed but P suffices).

It is also possible to consider static or dynamic

synthesis even when the uncertanty is polytopic

LFT-based.

There exist discrete counterparts to all these results...

See all the possibilities !
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M. Chilali and P. Gahinet
H∞ design with pole placement constraints.
IEEE Transactions on Automatic Control, Vol 41(3), p.358-367, 1996, for the
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H∞ control.
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robust stability against norm-bounded uncertainty.

C. Scherer and S. Weiland.
Lectures Notes DISC Course on Linear Matrix Inequalities in Control
available for downloading from the web, very general and elegant approach
covering many of the aspects of these slides and much more.

... and all the references therein.

See also the very good frames proposed by D. Henrion on

his web page :

http://www.laas.fr/∼henrion
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Hoping you enjoyed these
frames, the control community
now needs you to investigate
many of the problems that are
still unsolved !
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