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N.S.'.I—_> Various structures of feedback

Various We will study various structures of feedback laws. Those
eiase® structures depend on whether the feedback is applied
e o from the all state vector (if it can be measured),
Eigenstructure o or from the ouput vector.

assignment

Besides, the feedback itself can be either

o static (the control vector entries are linear combinations
Model of the measurements),

reduction

Towards o or dynamic (the control vector becomes the ouput of
ynihests. dynamic system - the controller - from which the
e measurement vector is the input).
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N.S.'.I—_> Various structures of feedback

Therefore, three kinds of structures will be considered

i o static state feedback (usually simply referred to as state
feedback feedback),

Couplng o static output feedback,

et o dynamic output feedback.

Indeed, dynamic state feedback is rarely used.

o The system model to be considered is simply a realization
Towards .

LMI-based —_

symho'issé X = AX + BU (1)
y=Cx+Du

(xe R",ue R™andy € IRP)
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If'.s.i.p Static state feedback

omiERs

Various

structures of . . s .
feedback The corresponding mathematical description is
About

coupling U(t) — Hyc(t) + KX(t) (2)
Eigenstructure

assignment

: with

o K ¢ IR™" : state feedback matrix ;

. o H e IR™¥P : feedforward matrix ;

e o yc € IRP : reference vector.

synthesis

7/197



NSi

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis

X L Static state feedback

The induced feedback model is given by

x = (A+BK)x + BHy; 3)
y = (C+DK)x + DHye.

o K is computed to ensure stability and either to possibly
reach transient performances (pole placement) or to
minimize some criterion (e.g. LQ control, optimal
control).

0 H, if used, is rather computed to reach static
performances.
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Assume that not all the entries of x are measured but only
the entries of y.

+ X
e

14
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N‘.Sip Static output feedback

Vari
sﬁﬂgtlljjsresof . . . .
feedback The corresponding mathematical description is
About
coupling U(t) — Hyc(t) _|_ Fy(t) (4)
Eigenstructure
assignment
oeraticir with
o F ¢ IR™*P : output feedback matrix (or gain);
. o H e IR™¥P : feedforward matrix ;
e 9 y; € IRP :reference vector.

synthesis
About norms
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@.S'p Static output feedback

varous If D = O (no direct transmission to make simpler) then the

feedback C|osed-|00p model is
About
lin y
coupling x = (A+BFC)x + BHy,
Eigenstructure (5)
assignment y — CX

Eige

If D = O then the control vector u complies with

Model

reduction

B u= Hy;+ FCx + FDu
LMI-based

b
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@.S'p Static output feedback

Various

structures of

feedback & u = (In—FD)'H yo + (Im—FD)"'F Cx
About " r

coupling s oy o= H yc + F CX.
Eigenstructure

as%\gmlnem[[ (6)
“uee " This leads to the following closed-loop model :

s X = (A+BEOX + Bhy )
Towards y = (C + DFC)X + DH_yc

LMI-based

synthesis

One can compute F and H for design purpose and deduce
F and H which are implemented in practice.
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D Static output feedback

Another possibility is to modify the control law :
Various

u=Hy.+ F(y — Du) = Hy. + Fy (8)
structures of

e y =y — Du = Cx € IRPis the new "measure" one has to
About built (it's part of the controller) so that one gets

coupling

Eigenstructure A
assignment

Ei ure and

Ye H =+ u B + X X c + y
Model — ® — ® f __T_ ®__>
reduction +
Towards
LMI-based [

synthesis D
Al S

+A
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X L Static output feedback

Then, the closed-loop model directly depends on F and H :

x = (A+BFC)x + BHy. ©)
y = (C+DFC)x + DHy,

F and H are computed to get satisfactory performances.

Note however that, with this kind of structure, it might be
preferable to measure u too.
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N.S.'.p Dynamic ouput feedack

Various

structures of The control law is given by

feedback

Abou >

co&)\tmg Z= F1Z + F2y (10)
Eigenstructure u= F3Z + F4y + HyC7

assignment

where z € IR/ is the state vector of the feedback system.

Model The transfer matrix of this controller is

reduction
[Mibased Gr(s) = Fa(sl; — Fy) ' Fa + Fau. (11)

synthesis
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N‘.Sip Dynamic ouput feedack

Linking controller and process realizations yields
(I m — F4D)u = F3z + F4Cx + Hy.

u=Um—FD)" "R Cx+ (Im—FD)Y 'F3 z+ (Im—FD)'H ye,
—— —— —_—

u=~F, Cx+ F z+ A Ve.

Consider a concatenation of process and controller state
vectors ¢ =[x’ Z']' to get:

i = A+ BF,C BF; ]5 [ BH ]

= | RC+FRDEC Fi+ FDE F.DH | ¥

y = [ C+DF,C DF; ¢ + DHYy,.
(12)
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o 'P Dynamic ouput feedack

Let the next augmented dynamic model be defined :

|

where ¢ € IR™ and

3

y

A A
A
> C
e-[

= A¢ + B

= C¢ + Dui,
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Dynamic ouput feedack

Also let some control law (static ouput feedback) be applied
on this model :

U= Fy+ Hy, with (14)
F=|E R e A= ]

F= an H= , 15

[Fz F O1m (15)

After some few calculation, one gets the same closed-loop
model as the one obtained by applying the dynamic
feedback on the original process model.

= Applying a dynamic output feedback controller on a linear

model is equivalent to applying a static feedback gain on an
augmented system.
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@.S'p Dynamic ouput feedack
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When D = O the closed-loop model reduces to :

. _ [A+BFRC BF BH
’5_[ F2C FJ’SJF[@]YC (16)

y = [C 0 ]¢

Note that the feedback matrices can be computed in
another basis of the state space i.e., with a full rank T,

. [ F FRT '] [l, 0)lg[ly, O
F_[TFZ TF1T—1]_[© T1Flo 71 07

since F and F correspond to the same transfer matrix.
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inequalitie:

Dynamic or static ?
p y

e MomIERs.

Just a little question : Assume one simply wants to stabilize
a realization (A, B, C, D). What is usually the easiest way,

@ dynamic ouput feedback,
o or static ouput feedback (on the original model ) ?
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(L Dynamic or static ?

omiERs

Answer : Dynamic output feedback because one can exploit
a greater number of degrees of freedom since there are
more entries in F € IR(MD*(+) than in F e IR™*P.

Actually, the problem of stabilization by static output
feedback control is still an open problem!
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N‘.Si o) Reference

Various

siuctures o The developments in this part are actually very easy to

o produce whith quite simple calculation and matrix

coupling manipulations. Only one reference might deserve to be

g‘sgs‘egﬁtnrggture cited, where the dynamic controller is formulated as a static
cure e one applied on an augmented system :

Eigenst

Md\ P. Hippe and J. O’Reilly.

ecueton Parametric compensator design.

LM based International Journal of Control, Vol 45(4), p. 1455-1468,
synthesis

1987.
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N.S.'.I—_> Coupling between channels

The purpose in this part is to highlight the inherent difficulty

R of controlling MIMO models due to coupling between the
eecbad various inputs to outputs channels.

About

coupling

coenscre FOF €xample, consider a process with two ouputs y; and y»
sesonment and two control inputs vy and u,.

’ It is interesting to control y; that should track some
reference y, as well as to control y» that should track some

Model
reduction reference y02 .

Towards
LMI-based

synthesis Unfortunately, in most cases, those control laws cannot be
designed independently. An action on y,,, and thus on uy
roscnn has an influence on y» and the other way around.
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Mélangeur

Fluide entrant
L

"

- An example : chemical reactor

ITIERS.

Réactants (produits entrants)

e

Echauffement/
Refroidissement

Fluide sortant

—_—

Produits (sortants)

26/197



N.S.'.p An example : chemical reactor
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Output feedback

Model
reduction
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synthesis
About norms

The temperature of the reactor is highly influent on the
quality of the reaction which is itself influent on the
temperature of the environment.

The process includes two inputs :
o the rate (concentration) of entering chemicals,
o the temperature of the heating/cooling fluid,
and two ouputs :
o the rate (concentration) of outgoing chemicals,
o the temperature inside the reactor.
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N.S.'.I—_> An example : chemical reactor

So two input/ouput channels :

Various o one for the chemical rates;

etk o the other one for the temperature.

Soupling Why is there a couplig between the two channels ?

e o If the temperature of the outside fluid changes (in order
et to control that of the reactor), then the quality of the

R reaction is modified and the rates of the products are
Model Changed.

reduction
o If the rates of the entering chemicals are changed (in

Towards

P order to control the rates of products), then the reaction
e is of course more or less important inducing a change
posn of temperature because the reaction either provides or

i absorbs heat.
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N.S'p Another (numerical) example

Various —1 0 1 1
Lol A—[ 0 0,5]'5_[1 1]
couph 10 00
coupling —

Eigenstructure C = |: 0 1 :| ' D = |: 0 0 :| .

assignment
Eig e and

It is an unstable square system (see the poles). The
. emphasized entries are those responsible for the coupling.
e The corresponding transfer matrix is G(s) =

reduction

Towards

LMI-based

S‘ybmh‘i?‘f 1 s—0,5 s-0,5 . G11(S) G12(S)

e e $24+0,5s-05| s+1 s+1 | | Ga(s) Gu(s) |’
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'f'k‘Sip Another (numerical) example

, Assume that one ignores (!!!) the coupling transfers Giz(s)
structures of and Gpz(s) and that one designs some controllers only for

feedback .
diagonal transfers.
About
coupling
Eigenstructure From Uy to y1 :

assignment
Eigenstructure and

s—0,5 1

Gi1(s) = -

() 32+0,53_075 s+1’
Model

reduction From u» to Yo

Towards -

LMI-based

s.ymhosws S + 1 1

S 29 = 23 055-05 5-05
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) Another (numerical) example

omiERs

For each first order channel, ones applies

Various
structures of
feedback

Y + Ui Yi
About H K G(S)
coupling — ' ® | ! i
Eigenstructure -
assignment
Eigenstructure and
its e

\J

feed

Output feedback

Model With H; = —1, K1 = -0.5, H, = 0.5 and K, = 1, one gets
reduction .
the two following closed-loop models :

Towards
LMI-based
synthesis 1

About norms G11 — 622 =

1425
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(L Another (numerical) example

The global control structure is then as follows :

G
yC1—> Hi >®—> K; i, IL): y1>
+
ycz—» H2 »@—» K2 U > y2>

The arrows represent the ignored transfers.
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@.S.i.p Another (numerical) example

omiERs

With such a simple (and false) reasoning, one should get
the next step response :

Various
structures of s
tep Response
feedback From: In(1) From: In(2)
1
About
coupling s
Eigenstructure 2
assignment s 0
Eigenstructure and -
0.5
back
]
g
Model g 1
<
reduction
Towards o°
LMI-based s
synthesis 3 o
About norms 2
x inequalities 05
-1
o 2 4 5 8 0 120 2 4 5 8 0 12
Time (sec)
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PRl TG

) Another (numerical) example

...Whereas one actually gets

Amplitude

Step Response

From: U(1) From: U(2)
1
05
0
05
05
0
05
1
15
2

o 2 4 3 8 10 12 0 2 a 6 8 10 12

Time (sec)
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Nﬁi.p Hence...

omiERs

Various
structures of
feedback

About ... from these examples, one can conclude that :

coupling
Eigensiructure o The coupling cannot always be neglected;
assignmen

‘ o The responses can be drastically distorted.

E and

O

Indeed, some models can even be unstable due to
reduction couplings...

Towards
LMI-based
synthesis
About norms

nequalities
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synthesis
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nequalities

One can formulate several problems :

o Static decoupling (only for steady-state response),

o Tansient decoupling (also for the transient response).

Those problems can be handled

o either from a frequency point of view (frequency
decoupling),

o or from a time point of view (state-space approach).
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@.S'p Freq. app./static decoupling

Variots Some possibility is to use feedforward control :
structures of

feedback

About Y u y
coupling cﬂ H(S) G(S)
Eigenstructure

assignment
Eigenstructure and

Y(s) = G(s)U(s) = G(S)H(s) Ye(s)

reducton = Voo = lim y(t) = lim(sY(s)) = lim (sG(s)H(s) Ye(s)).
e t—o0 s—0 s—0
LMl based If ones considers that all the reference entries y,, are steps

synthesis

e of magnitude «;, one has to satisfy :
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N.S.'.p Freq. app./static decoupling

Various
structures of
feedback

About
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Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis

1]
Gp |
Qq [ Qq
s GO)H©O) | : | =
Qap | ap

& G(O)H(0) = I .

QA

Qp

(18)

So H(s) = H(0) = H (constant feedforward matrix) has to

check (18).
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N.S.'.I—_> Freq. app./static decoupling

varous o If m = p (square model) then H = G(0)~'

feedback o If m > pthen H can be a pseudo-inverse of G(0) (for
e example, the Moore-Penrose one) ;

Eiiﬂfféiﬁme o If m < p then no generic solution : not enough

actuators compared with the number of outputs.

s So the limits are :
Model

reduction om Z p,

Toward ¢ .

Towards o G(0) must be of full rank ;

e o The process must be stable or be stabilized first

because this is only a feedforward control.
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[ 1IN
& ;omzks

Example

20(s + 1) —130(s — 0,3) —10(s — 3)
(s +8s+12)(s+2) s2 +2s+ 80 (s2 +3s+12)(s+8)
G(s) = 15(s = 1) 43(s + 1 30(s + 1)
T | (2 +4s+12)(s+2)  (s? +25+82)(s+2) s2 425+ 122
—9(s—4) 30(0,55 + 4) 3,2
s2 + 25+ 52 s2 + 25+ 412 s+2
This is a square stable model =
0,833 -0,572 -0,075
H=G0)'=| 0,972 0,927 -0,332
~0,537 0,079 0,718
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N.S.'.p Freq. app./dynamic decoupling

Various
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About
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Eigenstructure
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Model
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Towards
LMI-based
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Ab orms

Just some idea that can sometimes be used !

The idea is to compute H(s) such that Q(s) = G(s)H(s)
checks

{ qif(s) 7& 0 Vie {17,p}

qi(s) =0  V{i,j#i}e{1,..p}
But it is illusory to solve such constraints so one can simply
try to reach

|qj(iw)| << 1 V{i,j#i} € {1,...p}?
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N.S.'.I—_> Freq. app./dynamic decoupling

Various
structures of
feedback

About
coupling

Eigenstructure
1sswgnmem

itput feedback

Model
reduction

Towards
LMI-based
synthesis

There are several techniques in the literature based on that
simple idea (whose efficiency has still to be proved (author’s
note)). With those techniques, one has to check that the
useful transfers q;i(s)

o have no instable zeros;

o are strictly proper;

o should be preferably of weak order.
In any case, one has to keep in mind that a decoupling
procedure does not ensure other performances and should

be accompanied by other control laws to guarantee stability,
transient behaviour, and so on.
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Decoupling with time approach

Also very difficult but let us have a look to this very
particular case where m = p = n (yes, it can exist! e.g.
some printers).

Assume one wants to satisfy :

y = Q(y — y¢) with Q diagonal

}:’1 g11 0o ... O Y1 911 0 0
ya | 0 Q2o ... O Y2 0 @g» 0
Vp 0 0 ... Qw Yp 0 0 ... Qw
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) Decoupling with time approach

These p independent linear 1st order differential equations
would correspond, in Laplace’s domain, to :

Yi(s)  —qi

Ye(s)  s—qi
that is to some transfers with unit static gain and one
pole gj.

vie{1,..,p}.
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@.S'p Decoupling with time approach

Various
structures of
feedback

About
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Eigenstructure
assignment
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Model
reduction

Towards

LMI-based
synthesis
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If one looks for a state feedback control law such that these
transfers are obtained, ones can write

X = Ax + Bu = Ax + B(Hy; + Kx) = (A+ BK)x + BHy.

& Cx =y = (CA+ CBK)x + CBHy..

to be identified to
y = OCX - Q.yC>

leading to (assuming that W = (CB)~" exists)

(19)

K = W(QC — CA)
H=—wa.
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Decoupling with time approach

Va

SI';[J‘STLLJJSYCS of . . .

etk Thus a very simple technique that is unfortunately only
About — —

S useful when m=p = n.

Eigenstructure

assignment Indeed
o it cannot be extended to static output feedback ;
Vsl o It cannot be used when D # O.
reduction
Toward: it
fowards ... 80 very restrictive !
synthesis

About norms

nequalities
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N.S.'.p Decoupling : Some conclusion

Various
structures of
feedback

About
coupling

Eigenstructure
asswgnmem

Output feedback

Model
reduction

Towards
LMI-based
synthesis

Q

Q

Frequential approach and feedforward sometimes
efficient (not alone) for static decoupling.

Time approach rarely used (except under drastic
constraints) but see the next part for some attempt to
transient decoupling.

There exist other methods of decoupling such as the
"relative gain" method whose efficiency has not
convinced the author of these frames.

Other techniques consists in tracking a reference model
which is usually chosen with no coupling... but it is not a
decoupling approach in itself. It is rather connected to
some further issues in these frames.

As a conclusion, decoupling is fundamental but so difficult !

47/197



s

- Momers

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design
Pole placement
Mixt synthesis.

Insights into
robustness

P References

P. T. Tham

Notes - An introduction to Decoupling control.

Department of Chemical and Process Engineering, University of Newcastle
upon Tyne, England... for the example of chemical reactor

Course Notes, Chapter 6 : Analysis and Design of Multivariable Control
Systems.

Electrical Engineering Department, State University of Binghamton,
New-York, USA... for decoupling by time approach and other insights.

E. H. Bristol

On a new measure of interaction in multivariable process control.

IEEE Transactions on Automatic Control, Vol 11, p. 133-134... for the reader
interested in "relative gain approach".

J. P. Corriou.

Commande des procédés.

Lavoisier Editions, TEC&DOC Collection, 1996 (in French, sorry!), for
connected information.
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Eigenstructure and its influence
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fatrix inequalities

) Eigenstructure assignment

Motivation : assigning the poles and possibly the associated
eigenvectors in order to try to shape the transient response
of the closed-loop system.

It can be way to obtain some transient input/ouput
decoupling.

Techniques based upon eigenstructure placement are also
called Modal Control.
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Matrix eigenstructure
\is an eigenvalue of A € € ™" iff
P(\) = det(Al , — A) = 0. (20)

A owns n eigenvalues \; (which will be assumed distinct for
the sake of conciseness). This set is referred to as the
spectrum A(A).

Ac IR™" = )\(A) is closed under conjugation.

There exists n non zero vectors v; € C", called right
eigenvectors, such that

Avi = \v; Vie {1,...,[7}. (21)

One should talk about eigendirections since they can be
multiplied by any non zero scalar.
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N.S'p Matrix eigenstructure

V= [vi, -, V] (22)
S Rusresof is called the modal matrix.
feedback
?gjﬁjt\ﬂg = N= dlag{)‘1 s T 7An} = V_1AV (23)
Eigenstructure
aﬁiﬂfﬂﬁ:;ﬁ One can define, by duality, /eft eigenvectors u; € €" such
that

Voge UA=Nu Yie{l,.nt=U=[us, - ,Up). (24)
[ibased u; and v; can be scaled so that
synthesis

UV =1, (orthogonality condition). (25)

The eigenvectors v; (or u;) make a basis of C".

53/197



N.S.'.p Feedback model eigenstructure

Closed-loop model eigenstructure=eigenstructure of its
Various

structures of state matrix
feedback

CA(E)SJ;‘T‘HQ AC = A + BFC

Eigenstructure
assignment

Acvi=(A+BFC)v;=\v; Vie{1,...n}

Model UA= uj(A+ BFC) = \u; Vie{l,..,n}
reduction
=
Toward:
LM based uv=I,

synthesis

| Ac=A+BFC=VAU'.
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@

- Feedback model eigenstructure

Varione Remark : In practice, the matrices are real meaning that not
rcesol only A\(A¢) but also the sets of eigenvectors are closed

About under conjugation.

coupling

Eigenstructure
assignment

Eigenstructure and
its influence

o Input directions :

State vack

S w; = FCv; Vie{1,..n}.
Model
reduction

o Output directions :

Towards

LMI-based
synthesis I .
i =u;BF Vie{1,..n}.

nequalities
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N.S'I—_> Influence of the eigenvalues

It can be easily proved that the free response of a model to

Various an initial condition is

structures of

feedback n

coupling x(t) =D aieMy; (26)
Eigenstructure =1

assignment

teerce o Re();) < 0Vi otherwise there are non vanishing terms
(instability).

Model

reduction o |Re(\j)| /= the term (mode) reduces faster.

e o |Im())| /= the term induces stronger oscillation
e (none if )\, is real).

bo

So A(A) has an influence on stability, settling time,
oscillations, characterizing the transient behaviour.
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Influence of the eigenvectors

Consider the perturbed closed-loop model

Various
foocibadk x = (A+ BFC)x + BHy, + Bd
(27)
About _y - CX.
coupling

oensene With the basis change x = V&, V being the modal matrix of
Ac=A+BFC:

{ § = A+ U'BHy, + U'Bd

reduction y = CV& (28)
Towards
Rl Ee Also consider the identity matrix :

synthesis
Ab Orms

lh=[e ... en], (29)
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Influence of the eigenvectors

Various 9 ¥ has no effect on ) iff

structures of

feedback ,

About UjBHei = 0

coupling

SlgEIEElE = left eigenvectors distribute the effects of the
assignment

references on the eigenvalues
o \; has no effect on x; (resp. y;) iff

Model

reduction e/,'V,‘ — 0

Towards

LMI-based

synthesis = right eigenvectors v; (resp. Cv;) distribute the effects

bout norms

of the eigenvalues on the state entries (resp. outputs).
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State vack

Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms

nequalities

Influence of the eigenvectors

@ d; has no effect on J; iff
uBe; = 0.

= left eigenvectors distribute the effects of some
disturbances on the eigenvalues

o ); has no effect on v iff (less obvious)
e/,-W,' =0.

= input directions distribute the effects of the
eigenvalues on the control entries.
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e MOITIERS

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H

Influence of the eigenstructure

The effect of the environment on the system dynamics is
mainly described by the left eigenstructure whereas the
effect of these dynamics on the system outputs is mainly
described by the right eigenstructure (lbrahim Chouaib).

Remark : It can also be proved that eigenvectors have an
influence on the local sensitivity of eigenvalues with respect
to additive unstructured uncertainty affecting the state
matrix (not detailed here).
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design
Pole placement
Mixt synthesis

Insights into
robustness

Eigenstructure assignment by state feedback

J
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
P o -desigr
Pole placement

Mixt s

Insights into
robustness

k 'P State feedback assignment

omiERs

Pole Placement Problem : find K € IR™*" such that
M A: = A+ BK) equals some specified set.

The computation of feedforward matrix H will be considered
later.

There is always some solution provided the pair (A, B) is
controllable.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
ts influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

bout norms

) State feedback assignment

At first sight, one needs n degrees of freedom (dof) to

place n poles. It remains n(m — 1) to place right

eigenvectors (because of the orthogonality condition, a

choice of V implies a choice of U).

However, an eigenvector is characterized by (n— 1)
entries (not n since it can be scaled).

So, not enough parameters for an arbitrary choice of

eigenvectors.

Indeed, each v; belongs to some characteristic
subspace.
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N'S'I'P State feedback assignment

Characteristic subspaces

Ve i —

RS Because for one ), the associated v and w = Kv comply
feedback W|th

About

coupling

Eigenstructure (A - )\" n)V + BW == @,

assignment

then v € S(\) where

ch
Output feedback

Model SN ={veC"|IweC"|(A- M)V +Bw=0}
LS (A, B) controllable = dim(S())) =
synthesis

About norms

= Only (m — 1) should be exploited to assign v € S(\),
, exactly what is offered by K.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
ts influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis

bout norms

) State feedback assignment

Define :
T\=[A- M, B]ec™m,
R, = [ I\I\/lli ] =Ker(Ty) with Ny, eC™™ M, eC™™.

and with some parameter vector z € €, it comes

v | Naz
L VA Myz |’
leading to admissible eigenvector v € S(\) and associated
input direction w.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
is influence

State feedback

Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms

nequalities

) State feedback assignment

Choice of z

Assume vy is some desired eigenvector (with for instance
zero entries to try to reach some decoupling properties).
One has to assign an admissible v as close as possible to
Vvg. Solving a classical least square problem leads to

z = (N\Ny) ™ N vy (30)

Remark : It is possible to rather give specifications on
various u; and then to deduce suitable vy,.
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@.5'; State feedback assignment

State feedback

Theorem
There exists K € IR™ " solving the problem iff

(i) vectors v; are linearly independent;
(i) vi=V when\i=X;;
(i) v; € S(\).

In this event the unique solution is given by

K=wyv1 (31)

where
W=[w ...w,].
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Various
structures of
feedback

About
coupling

Eigenstructure

assignment
Eigenstructure and
its influence
State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

) State feedback assignment

- Momiers

Algorithm :
@ Choose a desired spectrum {);} and some desired eigenvectors v (do not
forget about the conjugation)
@ Compute matrices Ty, and then Ry, (i.e. Ny, and M) ;

@ Compute parameter vectors z; so that each v; is admissible and as close as
possible to v, (note that v; = V; & 7 = Z);

@

vi = Ny;z;
vie{1,...,n}
w; = My, z;

@ Check the independence of v; (otherwise go back to step 1 or 3);
@ Compute V, W and K according to the previous theorem.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design
Pole placement
Mixt synthesis

Insights into
robustness

Eigenstructure assignment by output feedback

J
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -desigr

Pole placement
Mixt synthesis
Insights into
robustness

Output feedback assignment

Pole Placement Problem : find F € IR™*" such that
M A: = A+ BFC) equals some specified set.

Remark : It is possible but dangerous to assign only part of
the spectrum following the same kind of reasoning as for
state feedback.

Necessary condition for solving the problem : (A, B, C)

minimal.
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N.S.'.I—_> Output feedback assignment

About the dof :
Various o At first fight, 3m x p entries in F so the problem can be
structures of . .
fesdback solved if mp > n but not so simple.
. 0 In 1975, Kimura proved that m + p > n = generic
Eigenstructure aSSIQHabI“’[y
assignment

o Later (1981), it was proved that the condition is mp > n
o but in the field of complex matrices... but no need for a
Vodel complex F'!

f"“C:O” o In 1996, Wang proved that a sufficient condition in the
LMi-based field of real matrices is mp > n but the associated
synthesis . .

soaroms design method is not very tractable.

o In practice, the tractable (e.g. non iterative) techniques
require that Kimura’s condition holds.
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Various
structures of
feedback

About
coupling

Eigenstructure

St: ck
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms

Output feedback assignment

What to do if Kimura'’s condition does not hold ?

o Assign only part of the spectrum (dangerous!),

o or apply a dynamic feedback.
If it holds, there are several techniques available with
different restrictions, e.g. :

o "Polynomial" design;

o Parametric approach;

o Geometric approach (very elegant) ;

o Coupled Sylvester Equations (my favourite !),

@ and many others | may not know or that still have to be
found.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
Eig e and

Model
reduction

Towards

LMI-based

synthesis
Ab

Output feedback assignment

Principle of the "Sylvester approach” :

Solve the system :
AV — VA = —BW (right eigenstructure) (32)
UA - AU = —L'C (left eigenstructure) (33)
Ker(U') = Im(V) (orthogonality) (34)

The main idea : assign {\;, i € {1,...,p}} and the
associated v; as well as {\;, i € {p+1,...,n}} and the
associated u;, while respecting the three above equations.
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@.S'p Output feedback assignment

- Momers

Simplified algorithm :

Various

structures of O Choose A,_p =diag{);, i € {p+1,...,n}} (subspectrum
feedback closed under conjugation) and

. Ln-p = lpt1, -, In) € CP*("P) and solve

Eigenstructure " / ’

asswgnmefwt Un—pA - /\nprn_p = _Ln_pC; (35)

and

in Up_p = [Ups1, -, Up) € TP,

Model

odel o Choose the self-conjugate set {\;,i € {1,...,p}} and

Towards CompUte

LMI-based

synthesis A _ )\III n B

:’“buu norms = V 1, ... )

: 3 NA/ Ur/1—p On—p,m el Pk (36)
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S 'P Output feedback assignment

omiERs

R Simplified algorithm (contd) :

feedback

o @ Compute

[ ] = Kertas) g
Eigenstructure M)\’.

assignment

(it generically exists when m+ p > n);

- O Choose p parameter vectors z; € € " such that
Model
reduction
Vo = [Cw, ..., CVp] = [CNy, 21, ..., CNy, 2p] (37)
Towards
LMI-based . .
synthesis is a full rank matrix ;
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N.S'p Output feedback assignment

Simplified algorithm (cont'd) :

Various

structures of Q Compute
feedback

o Wp = [W1’ Tt WP] = [MM ZAPIRI MApZP]; (38)

coupling

Eigenstructure
assignment

O The feedback matrix is given by

Output feedback F = WP(VP)_1~ (39)
Model

reduction

i o The dofare on the entries of L,_p and z Vi € {1,..., p}. It

can be shown that this flexibility corresponds to the flexibility
brought by F. It can be used to assign part of the
eigenstructure.
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N.S.i.p Output feedback assignment

omiERs

Various
structures of

P With direct transmission D :

About
coupling

) Just find F by the above technique to assign the spectrum of
igenstructure
assignment

E ure and AC = A —|— BﬁC

Output feedback

o and then deduce

reduction

Towards F=FQl,+DF)".

LMI-based
synthesis
About norms

qualities
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
Eig icture and

3 edback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H

Output feedback assignment

m+p<n

It is possible to design a dynamic feedback or order / in
order to assign n + / poles but one has to satisfy

I>n—m—-—p+1. (40)

Hence, Kimura’s condition holds for the "augmented system"
(see part on the various feedback structures) and then one
computes a static gain for this augmented system which
corresponds to a dynamic gain for the original system.

Some special cases can also be handled with static gain
(since 2006)
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N.S'p Output feedback assignment

Various

structures of Pole placement and feedforward

feedback

About

coupling IE might be possible (de:pending on dimensions) to compute
Eigenstructure Hand H = (II m— FD)H such that

assignment
Eig e and

(—(C+ DFC)A+BFC) "B+ D)H=1,  (41)
Model

reduction to ensure a unit static gain otherwise add integrators before
Towards to solve the problem... but with integrators, Kimura’s

LMI-based

synthesis condition is harder to satisfy.

b orms
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Output feedback assignment

Various

structures of Slmple example W|th MATLAB

feedback

About

coupling Model and desired spectrum :
Eigenstructure
assignment

»A=[145;026;103];
» B=[11;10;00];
— »C=[100;010];

reduction » D=eye(2) ,
vl » N=3;m=2;p=2;

synthesis
Ab

» lambda=[-1 -2 -3];
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N.S.'.p Output feedback assignment

Choice of L,_p, solution to "left" Sylvester equation :

Various

structures of » Lam_nmoinsp=diag(lambda(p+1 :n))
feedback
About .
coupling Lam_anInSp =
Eigenstructure
assignment
genstucture and -3
» L_nmoinsp=[1;1];

— » U_nmoinsp=sylv(A’,-Lam_nmoinsp’,-C’*L_nmoinsp)
reduction
Towards .
LMi-based U_nmoinsp =
synthesis
; -0.3025

0.0420

0.2101
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
E e and

State feedback
Output feedback
Model
reduction

Towards
LMI-based
synthesis

norms

N.S.EP Output feedback assignment

Computation of A7y, its kernel, v4 and wy :

» NN1=[A-lambda(1)*eye(3) B ;U_nmoinsp’ zeros(n-p,m)]

NN1 =
2.0000 4.0000 5.0000 1.0000
0 3.0000 6.0000 1.0000
1.0000 0 4.0000 0
-0.3025 0.0420 0.2101 0

» R1=null(NN1)
Ri=
-0.0364
-0.3074
0.0091
0.8675
0.3892

» v1=R1(1 :3);w1=R1(4 :5);

loNeNeRoH

.0000
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
E e and

State feedback
Output feedback
Model
reduction

Towards
LMI-based
synthesis

norms

N.S.EP Output feedback assignment

The same for .
» NN2=[A-lambda(2)*eye(3) B ;U_nmoinsp’ zeros(n-p,m)]

NN2=
3.0000 4.0000 5.0000 1.0000
0 4.0000 6.0000 1.0000
1.0000 0 5.0000 0
-0.3025 0.0420 0.2101 0

» R2=null(NN2)
R2 =

-0.0305
-0.2499
0.0061
0.9629
0.0975

» v2=R2(1 :3) ;w2=R2(4 5);

loNeNeRoH

.0000
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
E e and

S eedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms

N.S.i.p Output feedback assignment

Computation of Wp, Vp and F :
» Wp=[w1 w2] ;Vp=C*[v1 v2];

» F_hat=Wp*inv(Vp)

F_hat =
-285.8000 31.0000
242.8000 -30.0000

Verification of the cloded-loop spectrum :

» eig(A+B*F_hat*C)
ans =

-3.0000
-2.0000

-1.0000
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
E e and

State feedback
Output feedback
Model
reduction

Towards
LMI-based
synthesis

norms

Deduction of F and computation of H :

N.S.i.p Output feedback assignment

» F=F_hat*inv(eye(p)-D*F_hat)

F=

» H_hat=inv(-(C+D*F_hat*C)*inv(A+B*F_hat*C)*B+D)

H_hat =

» H=(eye(p)-F*D)*H_hat

H=

-0.9773
0.1780

58.5529
-49.6706

-0.2161
-0.0962

0.0227
-0.7897

-84.1059
71.3412

0.3106
0.1406
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Output feedback
Model
reduction

Towards
LMI-based
synthesis

About norms

N.S.EP Output feedback assignment

omiERs

Construction of the closed-loop model and verification of the static gain

» Ac=(A+B*inv(eye(m)-F*D)*F*C);
» Bc=B*inv(eye(m)-F*D)*H ;

» Cc=(C+D*inv(eye(m)-F*D)*F*C);
» Dc=D*inv(eye(m)-F*D)*H;

» -Ccinv(Ac)*Bc+Dc

ans =

1.0000 0.0000
0.0000 1.0000
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Various

structures of
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About
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Output feedback

Model
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Model reduction

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

x = Ax + Bu
S =

y =Cx+ Du
Towards
LMI-based
synthesis

About norms

)‘(r — ArXr + Bru
Yr = CrXx; + Dru

The main idea : Approximate a high order (n) linear model
by a reduced order (r) model to make the design simpler.

—>Sr:{

(42)
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Various
structures of
feedback

About
coupling

Eigenstructure

Model
reduction

Towards
LMI-based
synthesis
About norms

nequalities

) Quality of S,

Several criteria can be considered :

o Preserve the dominant poles (i.e. neglect the fast (high

frequency) dynamics) ;

o Approximate the input/ouput behaviour : for a same
input vector, y, should be as close as possible to y.
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@.S.i.p Some existing methods

e MOITIERS

Various

shucturesof According to these criteria, a non complete list of existing
eedback i .

. techniques is as follows :

coupling

o By modal approach;

Eigenstructure

sesanment o By "agregation";

o o By Schur decomposition;

Model o By minimization of norm (ex : H..-norm);

reduction . )

- o By balancing transformation (the only one presented
e here and maybe the most known !).

synthesis

bout norms
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Balanced reduction

Various

focbart Only valid for asymptotically stable minimal models but there
About exists a (not well known) extension to unstable models.
coupling

Eigenstructure

assignment The idea : neglect the dynamics of the state entries that are
the less controllable and observable in S.

Output feedback

Model But how to quantify controllability and observability ?

reduction

Towards

L based Answer : through the grammians (or Gramm matrices).
synthesis

bout norms
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms

Balanced reduction

Controllability grammian

W, = / e’" BB e* " dr.
0
which solves Lyapunov equation

AW, + W,A' = —BB'.

Observability grammian

w, = / e’TC'cerdr =
0

AI Wo + WoA = _CIC-

(hence the stability assumption).
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N.S.'.I—_> Balanced reduction

The controllability grammian can be interpreted in terms of

Various

tructures of

footbeck energy.

AbOLJI . . . . . . . .

Colblig There exists a basis in IR” in which W, is diagonal. In this

st basis each diagonal entry we, of W, is the reciprocal of the
et minimum energy required to (asymptotically) bring the state
S vectorto [0,...,0,1,0 ..., 0]. Thus, it can be seen as a

Model controllability index of x;.

reduction

Toward oy . . .

Lfm;baiod For observability, the reasoning is based upon duality to

synthesis

ot o conclude that in the "diagonal" basis, w,, is an observability
H ooy index of x;.
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N.S.'.I—_> Balanced reduction

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis

Let S be decribed by the triplet of matrices (A, B, C),
assuming D = 0 for the sake of conciseness.

Theorem
There exists a full rank matrix T such that the realisation

S= (T 'AT,T'B,CT) = (A, B, C) is balanced i.e. both
grammians equal to the same diagonal matrix

WOZWCZZ

It means that in this basis, for each entry X;, the
controllability and observability indices are the same =- one
has to neglect the dynamics of the less controllable and
observable X;.
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N‘.Sip Balanced reduction

e In the balanced basis, the model is (here, D is kept)

feedback

?gﬁg"‘mg )_(1 = A11)_(1 + A12)_(2 + B1U

Eigenstructure

seanmen Xo = AnXy + AxX + Bu (47)
Mod;IM y = Cixy + GCxxo + Du.

:"W“:Z" The limit between the preserved dynamics (that of X; and
- the neglected ones (that of x») depends on a possible gap in
the diagonal entries of .

qQ7/197



N.S.'.I—_> Balanced reduction

Various

L Theideais then to neglect the dynamics of X,, the less

About controllable and observable part of x (thus the less influent

?;::slgme on the input/ouput behaviour) by imposing X, = 0. This

assignment technique is sometimes called the "singular perturbations
e approximation".

o o It is also possible to simply truncate x by imposing Xo = 0

Towards but it does not preserve the static gain so it is rather rough

LMI-based

synthesis asa redUCtion-
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If'.s.'.p Balanced reduction

omiERs

So, the reduced model S, is given by

Various

structures of
feedback .
About Xf — ArXr +Bru
coupling Sr — (48)
E truct —
assignment Yr Cxr + D
~ where x, = x; and
Model A = Ay — A12A Ao
reduction
Towards Br = B A12A22 BQ (49)
LMI-based _
symh;;z Cr — C1 CZAZZ A21
e D = D-CohyBe
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P Balanced reduction

Variou

SI:LJSILusrcs of . .

feedback MATLAB corresponding functions

About . . . . e
coupling o minreal : Compute the minimal realization of original
Eigenstructure System S ;

0 pbalreal : Compute the balanced realization
(A,B,C,D) of S;

o o o modred : Compute the final realization (A, B, C,, Dy)
Towards of reduced system S,.

LMI-based

synthesis

About norms

nequalities
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design
Pole placement
Mixt synthesis.

Insights into
robustness

P References

Q@ E. J. Davison.

A method for simplifying linear dynamic systems.

IEEE Transactions on Automatic Control, Vol. 11(1), p. 93-101, 1966, for a
first glimpse to (non presented) modal approach

B. Moore.

Principal component analysis in linear systems : controllability, observability
and model reduction

IEEE Transactions on Automatic Control, Vol. 26, p. 17-31, 1981, for the
bases of balanced reduction

L. Fortuna and G. Muscato

Model reduction via singular perturbation approximation of normalized right
coprime factorizations.

Proceedings of "European Control Conference ECC’95", Roma, ltaly,
September 1995, for the balanced reduction of unstable models.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms
A alities

Definition and properties

A norm enables ones to compare an element with another
in a set which does not necessarily own a relation of order
(here a vector space on IR or @). It is usually denoted by
||u]|e Where u is the concerned element and e stands for the
considered norm.

(i) llulle >0
(i) Jlulle =0 u=0
(|||; llaulle = |a|.|lulle, VaeC

llu+ vile < ||U]le + ||V]|e (triangular inequality)
(50)

(iv
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
E

ture and

Model
reduction

Towards
LMI-based
synthesis
About norms

qualities

Mol Vector norms

Euclidean norm
Inner product of a couple {x;y} € {€"}?:

n
<xy>=> Xy =xy (51)
i=1

From this inner product, one can define the Euclidean norm
of 2-norm (the most natural) :

n
Ixlz = V<X, x> = | > _xF = V¥x'x. (52)
i—1

There are many other vector norms not detailed here.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Output feedback

Model
reduction

Towards
LMI-based
synthesis

About norms
Matrix inequalities

"‘P Vector function norms

Now the vectors depend on some real or complex variable
(tors).

L> and Ho-norms
Let £] be the set of vector functions X(s) e C", with s € C
whose square can be "summed" along the imaginary axis :

Xl = (g [ xwxess ) < 69

[|X||2 is called the L£>-norm ofX (L for Lebesgue).
It can be shown that L7 is an Hilbert space.
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N,S,'.p Vector function norms

omiERs

HJ C L3 is the restriction to analytic functions over € *

Varous (owning Taylor’s expansion in every points). Then the
feedback Lo>-norm is called Ho-norm (H for Hardy).

About

coupling

Parserval’'s theorem

X1l = ( ;7/_°;X’(iw)X(iw)dw )1/2:

Eigenstructure
asswgnmem

Model 1/2 1/2
fecusion ( J5=x Ox(dt )2 = ( f5= Ix@liZat ) = Jix|l2-
Towards . . . .
LMI-based Beware of the fooling notation : ||x(t)||- is the 2 (Euclidean)-norm of vector x at
th ) . . .
S,szm isr‘ni time t (i.e. reflects the instantaneous energy) whereas ||x||2 (or || X]||2) is the
H_ e ‘Ho-norm of signal vector x which depends on time (resp. of its Laplace transform,

i.e. reflects the signal energy over and an infinite horizon).
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Various
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feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis

1S 'P Vector function norms

omiERs

L and H.-norms

Let £7 be the set of vector functions X(s) € C", with s € €
bounded along the imaginary axis i.e. :

[IXloo = sup [[X(iw)[[2 < +oo. (54)

|| X||s is called the L,-norm ofX.
L is not an Hilbert space.

HD c L7 contains only analytic functions over € * and one
defines the #H,-norm (still from Hardy).
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N.S.i.p Vector function norms

L>-gain
Various -
structures of
eeba Let a mathematical operator R be defined over the following
About
Sl sets : ] )
Eigenstructure R : ,Czw — ,Czw
af,s.‘;g.,mﬁe.m;,, W(t) sy e(t)
Then,
Model | | | |
reduction e >
Towards gﬁz (R) = Supn | | W| | (55)
LMI-based WEsz 2
synthesis

About norms

is the Lo-gain of R which corresponds to the highest energy
gain associated with R.
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N.S'p Matrix norm

omiERs

There are so many but one is particularly interesting.

Various
structures of
feedback

- Singular values of a matrix

coupling

fosenee  Any matrix M € € ™" can be factorized as follows (singular
value decomposition) :

Mods M= UZW. (56)
reduction

Towards UecC™Met We™" are such that

synthesis

Uu' =1lp et WW =1, (57)
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and %, if g = min{m, n}, complies with

Various

structures of

feedback [ o 0 A 0 0

About 0 o2 -+ 0|0 _

coupling Y = . . . . . Sl g=m,

Eigenstructure
assignment L O 0 ] 0

Eigenstructure and

rToy O - 0

State feedback

Output feedback 0 oo e 0 (58)
Mzt Y = : o : si g =n,

reduction . . . .

Towards 0 0 9q

LMI-based L O 0 .. 0

synthesis

ﬁk??u(n?rtr!s ” y = diag{g—1 S ,O'q} si g=m=n
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P Matrix norm

o; are the singular values of M :

Various

fosdback (M) =01 2022+ 2 0qg=0(M)=0. (59)
About

coupling

e o rank(M) = number of non-zero singular values =

number of linearly independant rows or columns.
9@ M such that rank(M) < min{m; n} is rank deficient,

oo otherwise it is full rank.

Towards o M square and rank deficient cannot be inverted and
LMI-based .

synthesis owns n — r zero singular values.

About norms

o o = eigenvalues of MM’ (if m < n) or M'M (if n < m).
o o M Hermitian = o; = |\l
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
E and

O

Model
reduction

Towards
LMI-based
synthesis
About norms

Matrix inequalities

Nﬁi.p Matrix norm

(M) is a norm called 2-norm because it is induced by the
Euclidean vector norm in the following way :

_ Mx x' M’ Mx
(M) = [IM]]2 = max (%) = max {
x#£0eC” 2 x£0€eC” x'x

(60)

Besides
|[Mx||2

[1X1l2

shows that the gain from x to (Mx) lies in the range
[o(M) ;5(M)]

a(M) < < a(M). (61)
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Transfer matrix norm

In this part, the matrices whose norm is defined depend

Various on s.

structures of

feedback

Abou Singular value of transfer matrix

coupling . ; R . Ne X Ny
Censrewe I WIS @n input harmonic signal vector of a plant G(s) € €™
assignment and e is the output harmonic signal vector. Then, at a given

frequency w, the gain from w to e complies with

Model . . .
reduction : lle(iw)ll2 _ [IGllw)w(iw)l2 _ _ ~«
a(G(iw)) < - = - < 7(G(iw)). (62)
o 0D = Twa)l; ~ ey = 7D
synthesis
{fmi.norms Lower and upper bounds of the gain (in the sense of the 2-norm)

alities

are given by the minimum and maximum singular values of G(iw).
These bounds also depend on w.
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N.S.'.p L+ — Hoo-norm of a transfer

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms

Let RL2e*™ (resp. RHIe*™), be the set of proper transfer
matrices G(s) € C"*™ (i.e. with finite direct transmission)
and with no pole on the imaginary axis Z (resp. with no pole
over € " UZ). Then the L, (resp. Hoo-norm) simply
corresponds to the frequency for which the transfer is the
highest in the sense of the 2-norm. Hence :

1Gllec = sup||G(iw)[l2 = sup (G(iw)). ~ (63)
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms

Matrix inequalities

1S 'P Transfer matrix norm

omiERs

20l0g(l|Gllop) === - 20log(5(G(iw)))
m !

Gain (d

20Iog(g/( G(iw)))

Pulsation w (rad/s)

FIGURE: Gain Bode diagramm in the MIMO case

The actual transfer lies somewhere between both curves.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -desigr

Pole placement
Mixt synthesis

Insights into
robustness

Energetic interpretation

Let S be a stable plant whith transfer matrix G(s).

e
1Glloo = Gy(S) = sup  16ll2.
weHy(tyw || W] 2

meaning that the H..-norm is the £,-gain
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
Eigenstructure and

Model
reduction

Towards
LMI-based
synthesis
About norms
nequalities

5 .P Lo/ Ho-norm of a transfer

Let RL3**™ (resp. RH4e*™), be the set of strictly proper
transfer matrices G(s) € € "**"™ (i.e. with no direct
transmission) and with no pole on the imaginary axis Z
(resp. with no pole over € ™ U 7). Then the £, (resp.
‘Ho-norm) is defined by

oo 1/2
1Gll> = ( 217 /_ mtrace(G’(iw)G(iw))dw) o (64)

1/2

1 oo Min{nw;ne}
G2 = ( 5/ > (U,'(G(iw)))-?dw> . (65)
0=t
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N-S-'-p Ha-norm

omiERs

Energetic interpretation

A Assume that &;(t) € £2° is the response to (only) a Dirac impulse

structures of on the /™ entry in w. One can prove that
feedback

About

Z &3 = 11Gl3. (66)

Eigenstructure
assignment

ture and

The Ho-norm is related to the sum off all input energies induced
: by these impulses.
Model In the SISO case, it means that the H, norm if the energy of the
educton impulse response.

Towards
LMI-based
synthesis
About norms

Matrix inequalities

Time domain : |G| = \/ / " trace(e(t)e (f))dt.  (67)
0

119/197



Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms

Matrix inequalities

Stochastic interpretation

If the w; are white noises scaled such that
W(iw)W'(iw) = I 5,, then the expectation of the inner
product of the induced input vector checks

ZS (1) = |IGll5. (68)

Remark : For this reason the so-called H,-problem can be

related to the celebrated LQG-problem
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N.S.'.p Lo/ Ho-norm

omiERs

Various
structures of

feedback Ho-norms in terms of gain

About
coupling

Eigenstructure Remlndlng that the Hoo-norm 's the the Lz-galn then the
assignment H2'norm checks

Eigenstructure and
its influence

State feedba
Output feedback

IEll2
Gl = su 69

Model
reduction W(s)eH

ik which, unlike for the H..-norm, is not very meaningful.
synthesis
About norms

Matrix inequalities
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Ho-norm

Various

structures of ‘Ho-norms and grammians

feedback

About

coupling Remember the controllability and observability grammians :

Eigenstructure
assignment
E

0

e that satisfy

Towards
LMI-based
synthesis
About norms

Matrix inequalities

S W= [CeMeETea o wo= [ eMicTeetar

0
(70)

r_ /
{AWC+ WA = —BB, 1)

A/ Wo + WoA — _C,C
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Ho-norm

Lo ‘Ho-norms and grammians (cont’d)

structures of

feedback

Ab

cojs\tmg Then

Eigenstructure

assignment |G|l = +\/trace(B'W,B) = \/trace(CW,C"). (72)
This provides an analytical expression of the Hx-norm

Model which is valid for calculation.

reduction

Towards . i

S Unlike the H..-norm, the H,-norm can be computed directly

Hoout rerms through its analytic expression.

Matrix inequalities
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N.S.'.p LMI approach

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis

For simplicity, only real matrices are considered.

Matrix inequalities

This is related to the notion of sign definition (partial order of
Léwner).

M c IR™"is positive definite (M > 0) (resp. semi-positive
definite (M > 0)) iff

x"Mx > 0 (resp.>0) Vx#0e R". (73)

M is negative definite (M < 0) (resp. semi-negative definite
(M < 0)) iff (—M) > 0 (resp. (—M) > 0).
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N.S.'.p Matrix inequalities (MI)

Various In practice mostly symmetric matrices are handled so sign

o definition is now considered only for those matrices.

About With this assumption, one gets

coupling

asugnment M < ()0 < Amax(M) < (£)0

e (74)

M> (>)0< Apin(M) > (>)0

o A straightforward notation is

Towards

M < ()N < M- N < (X)0.
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N.%i.p LMI bases

omiERs

Various

structures of Example Of MI :

feedback

Ab _ T _ 3 \T AT B T(aB\T
e M=M" = AX° + (X°)'A" + e°YY'(e°) <0
Eigenstructure . .

assignment with, for instance, X and Y that are unknown.

ture and

Among all possible Ml only two will be considered because

S they are often encountered :

Towards o LMI : Linear matrix inequalities, that can be solved,
-base

synthesis

Jces o BMI : Bilinear matrix inequalities.
Matrix inequalities

H o -desigr

Pole pl
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S 'P Properties of Ml

omiERs

R o If My < 0 and M, < 0 then one can stack these

eeaback properties in one single Ml :

About

coupling

Eigenstructure M1 © < 0 (76)
assignment O M2 :

o If M = MT is such that

Model

reduction M M

owards M = ! 2 :| < O, 77
IM\—b:sed |: M2T MS ( )
synthesis

then M; < 0 and M3 < 0 but the reverse may be false.

Matrix inequalities
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P LMI

LMI are interesting because they can be solved !

The most famous LMI come from...

Theorem
Let the autonomous continuous (resp. discrete) model

X = AX (resp. Xki1 = AXk)

This model is asymptotically stable iff 3P = PT > 0 such
that

ATP + PA <0, (resp. —P + ATPA < 0).

(Lyapunov’s inequality and its discrete counterpart due to
Stein).
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
s €

Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -desigr

Pole p

— BMI

Consider the next MI with respectto X and Y :

AX + XTAT + XBY + Y'B™XT >0

Because of the two last terms, it is bilinear.

Unfortunately those BMI are very difficult to solve in spite of
some existing software.

Some crucial control problems are unfortunately very easily
formulated as BMI, not as LMI (e.g. static output feedback
stabilization).
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Nos'p A useful tool !

Schur's lemma

Various

structures of Let S, Q - QT and R - RT be matrICGS

feedback

About
coupling

Eigenstructure |: Q S R < 0

] <0 < (78)

assignment
T
s R Q- SR'ST <0

Voge This lemma enables to handle Stein’s inequality as an LMI
wrt A:

Towards
LMI-based
synthesis

About norms

~P+ATPA O ] _, —P ATP
0 —P PA —P

| <o
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N.S.i.p Standard H,-problem

The H,-problem is basically a disturbance rejection
Various prOblem '
structures of The studied feedback system matches the next figure :

feedback

About

coupling

Eigenstructure w [ = = = | .

assignment MO . le

i P(s) |

Model

reduction | K(s) I

Towards I F( P(s)’ K(s))
LMI-based I

synthesis - __ _
About norms

where P(s) is the process model, K(s) is the controller
model and F(P(s), K(s)) is the closed-loop model.
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Various
structures of
feedback

About
coupling

Eigenstructure

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design
Pole placement

) The process

@ u : control vector issued from control law ;

o w : disturbance to be rejected (in practice, not
actual exogeneous signals) ;

o y : measured ouput for the purpose of control;
o e : vector of signals to be controlled.

(5] - ol 5 ) v o[ 13

The idea is to reduce the transfer from w to e.

always
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N.S.'.p The process

Various

fosdback P(s) = D + C(sl — A)~'B, with (79)

About C D D

coupling B — B B : — e :| : D — |: ew eu :| )

Eigenstructure [ " Y } |: Cy DyW D}”—’

as}swgnmeﬂmw (80
' Or in other words

rodution x(t) = Ax(t) + Bww(t) + Buu(t)

Towards e( t) = CeX( t) + DeW W( t) + DeUU( t)

synihesis. y(t) = Cyx(t) + Dyww(t) + Dyu(t)

H x(t) € R™, w(t) e R™, u(t) € R™, e(t)c R™ety(t)e R™.

Pol
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Various
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feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design

Pole placement

) The process

Assumptions
o A1:(A;By) and (A; Cy) are respectively stabilisable
and detectable ;
0 A2: Dy, =Op, pn,;
0 A3 : Deyw = Op, p, (only for Ho-problem).
A1 is rather classical and completely compulsory.

A2 is just technical and induces no loss of generality. A3 is
necessary for the Ho-norm to be defined.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
E e and

Model
reduction

Towards
LMI-based
synthesis
About norms

Static controller

One considers a static state feedback controller

u= Kx. (81)

In such a case, since y = x, the process model reduces to

{)’((t) = A+ Buw(t) + Buu(t) g

e(f) = Cox(t) + Deww(t) + Deyu(t).
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N.S.'.p Dynamic controller

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards

LMI-based

synthesis
About norms
Aatrix inequalities
H o -design

Pol nt

One considers a dynamic output feedback controller

Xe(t) = Acxe(t) + Bey(t)
{ u(t) = Ccxc(t) + Dcy(t) (83)

where x.(t) € IR". Thus,
K(S) == Dc + Cc(S“n - Ac)_1 BC' (84)

In the H>-case (not studied in these frames), one has to
consider a strictly proper controller i.e. D; = Op, p, -
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Closed-loop model

. What is the state-space model of F(P(s), K(s)) ?
feedback
o phng With static controller

Eigenstructure
assignment

and

S H _ [Af\Bfo} _ [ A+ BuK | BwHX]
Towards e B Cf ‘ Df w B Ce‘|‘ DGUK ‘ Dew w ’

LMI-based
synthesis
About n 3

Under Assumption Ay :

In the Ho-case, Dy = 0.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

ture and

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design
Pole pl ont

X L Closed-loop model

With dynamic controller

Still under Assumption A, :

AREEE
| | C| Dy °c 1
e w
A+B,D:C, ByCo | B+ ByD.Dy, X
BC Cy Ac BCDyW XC
Ce + DeuDc Cy De,Cc | Dew + DechDyw w

In the Ho-case, D = 0.
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N.S.'.I—_> H.-problem

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Output feedback

Model
reduction

Towards
LMI-based

synthesis
About norms
Matrix inequalities
H o -design

Problem

Let P(s) and~, > 0 be given. Also let assumptions Ay to A3
hold. Find a stabilizing (static or dynamic) feedback such
that ||F(P(s), K(s))lle < 7e-

If @ = 00, then Assumption Az can be omitted.

With no additional constraints (such as weighting matrices),
the problem is referred to as standard.

141/197



‘H.-problem

Various
structures of 7‘[2 or Hoo '?
feedback -

About

coupling ... hot exactly the same philosophy.

Eigenstructure
assignment

In the H.-case, one looks after the L£>-gain i.e. the highest
possible energy transfer or, from the frequency viewpoint,

odel the energy transfer at the worst frequency.

reduction

e In the H-case, one considers energy transfer over the
synthesis

whole frequency range, not focusing on the worst one.

About norms

Matrix inequalities

H o -design
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‘H.-synthesis

Various
structures of
feedback

About

coupling In the following frames, some solutions are given for

B o the H,-design by state static feedback,

Eigenstructure and
ts e

0 the H.-design by state static feedback,
0 the H.-design by output dynamic feedback,

Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms

ualities
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@.S.i.p “H, static design”

e MomIERs.

Property of the closed-loop model

%/{7%%iisris of Lem me
About Under assumptions A1-A3, the Hy-norm of F(P(s), K(s)) is
e less than v, > 0 iff there exist two symmetric positive

S definite matrices {Xo; T} € { IR™"}2, such that (primal and
e dual versions)

State oack
Output feedback

Model T T
reduction Bf XoBr < T, CfXZCf < T,

Towards T T =

LMI-based A Xo + XA G } <0, or [ A Xo "rTXgAf By } e
synthesis Cs i | e Bf _ "

About norms

Howin trace(T) = 2%, trace(T) = 722

Pole placement
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e MomIERs.

Various
structures of
feedback

About
coupling

Eigenstructure
asswgnmem

Model
reduction

Towards

LMI-based
synthesis
About norms

fatrix inequalities
H o -design
Pole placement

P “H. static design”

The idea is that X5 is a matrix upper bound of either the
observability grammian (Xo > W, : primal version) or of the
controllability grammian (Xo > W, : dual version). So the
Lyapunov equations used to calculate the grammians are
here replaced by LMls.

The dual version enables ones to derive some K.
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N.S"p “Ho static design”

Theorem

There exists u = Kx, K € IR™*" such that the H»-norm of
F(P(s),K(s)) is less than ~- iff there exist two symmetric
positive definite matrices {X; T} € { IR"*"2, and a matrix
L € IR™*" such that

AXo + B,L+ X:AT +L7B] B,
BT 1 < 07
w Ny
—-T CeXo + Doyl -0
X2Cf +LTD}, ~Xo ’
iond trace(T) = 2.
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If'.s.i.p “H, static design”

omiERs

Various

structures of In this event, K is given by

feedback

About
coupling K — LX2—1
Eigenstructure

assignment
E and

O

o Notice that with various LMI solvers, it is possible to

Model minimize ~» while satisfying the LMI constraints.
reduction . . . .
S o Also notice that X, can be inverted since it is positive
il baced definite

synthesis )

e

Pole placement
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“H .. static design”

VEWRIE Property of the closed-loop model

structures of
feedback

Lemme

(Bounded real lemma) Under assumptions A1-A2, the
e © Hoo-norm of F(P(s), K(s)) is less than ., > 0 iff there
R exists a symmetric positive definite matrix X, € IR"™",
such that (primal and dual versions)

About
coupling

Model
o Al X + XocAr X By c/
LMI-based B,Z—Xoc — Yoo “ Nw DfT < 0, (85)

synthesis

Cr Di —vyalp,
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NoI— “1.. static design”

omiERs

Various
structures of

feedback or in dual version :
About

coupling AXoo + XooAfT B; X CfT

ST Bl ~wln, D] | <0 (80)
Egestuchre CiXoo Dy —Yooll ne

Model
reduction

Towards

LM1-based Once again, the dual version is useful to derive a static state
Seee feedback control law.
i
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(f?l,s.ifp “H. static design”

Various
structures of
feedback

About
coupling

Eigenstructure

assignment
Eigenstructure and
ts inf e

State vack
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H. o -design
Pole|placement

Theorem

There exists u = Kx, K € IR™*" such that the H..-norm of
F(P(s),K(s)) is less than ~~, > 0 iff there exist a symmetric
positive definite matrix X, € IR"™", and a matrix

L € IR™*" such that

AXoo + Bul + Xoc AT +LTB] (o) (o)
By —voolny (o) <0. (87)
CeXoo + Deul Dew —Yooll ne
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If'.s.i.p “H.. static design”

omiERs

Various

structures of In this event, K is given by

feedback

About

coupling K — LX30_1-
Eigenstructure

assignment
E

ture and

o Notice that with various LMI solvers, it is possible to

Model minimize v, while satisfying the LMI constraints.
reduction . . L. .
S o Also notice that X, can be inverted since it is positive
il baced definite

synthesis )

Hosoin

Pole placement
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N.S.i.p “H~, dynamic design”

A first procedure

Various

structures of . .

feedback Condition for solvability

i Under assumptions A;-As, the H., dynamic problem can be

Eigenstructure solved ﬂ there exist R = RT and S = ST such that

assignment

Eigenstructure and
its influence
State feedback r AR + RAT RC;— Bw
N (0}
Output feedback ,?(ij)? |© :| R —’Yool e DeW |: @H I i| <0
Model w Dl, —Yooll nyy w
reduction -~ ATS + SA SBW C;'
Ns T T Ns O 0
Towards B S — Yoo I Ny Dew ©) ] <
LMI-based L @) “ Ne vl Ne
synthesis _ ew ool ne
About norms R n >0
Matrix inequalities ] n =
H o -design -
Pol plcement (88)
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N.S'p “H., dynamic design”

omiERs

Various Where Span(NR) = Ker([BZ— D;-U]) and
structures of Span(NS) — Ker([Cy Dyw])-

feedback

About
coupling Moreover, a nth-order controller exists iff

Eigenstructure
assignment

rang(l, — RS) = n. (89)

Model . . .
reduction e It is also possible to achieve

Towards
P min Yoo under the LMI constraints.
About rorms R=RT.5=8T

H o -design
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“H .. dynamic design”

How to recover K(s) ?

Various
structures of
eedbac Achieve the singular value decomposition of (I , — RS) in

About

coupling order to obtain {M; N} € { IR"*"}2 such that

Eigenstructure

MNT =1, — RS.

Model S N

reguiuon Then Xoo - NT _M_1 HN

Towards

LMI-based . . s

synthesis is solution to the condition of the bounded real lemma

About ne

(primal version) which therefore becomes an LMI (thus
solvable) w.r.t. (A¢, Be, Cc, D).
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Various A Second procedure

structures of
feedback

About Assume that X, and its inverse are patitionned as follows

coupling

Eigenstructure

asswgnmeﬂmw )(oo _ |: R M :| ’ X_1 — |: S N :|

MT U o0 NT Vv
with Re IR™"and S € IR™".

Model
reduction

Towards From X, X' = Il 5, it comes

LMI-based

synthesis

About norms

MNT = I, — RS.
H o -design
Pole pl ont
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Various
structures of
feedback

About
coupling

Eigenstructure

Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design

Pol nt

“H .. dynamic design”

Also define the new “controller variables” according to the
following system :

B = NB.+ SB,De,

cC = MT + D.CyR,

A = NAMT + NB.C/R+

SB,C.-MT + S(A+ B,D.Cy)R.
This system is such that given matrices

o A, Band(C,
o R, S,Mand N,
o D, (direct transfer of the controller to be found),

then A., B. and C. can always be computed and even
uniquely determined.
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NoI— “H.. dynamic design”

omiERs

Various

geeset Condition for solvability

About Under assumptions A¢-Az, the H., dynamic problem can be
e solved iff there exist R = RT, S= ST, A, B, C and D, such
Eigenstructure

assignment that

Sgorametrs s R

State ﬁc;;dhjack n > O,

Output feedback II n S

Model T

reduction |: ¢11 CD21 :| < 0

Toward

U?AIi)a:ed ¢21 (D22

synthesis

Matrix inequalities
H o -design
Pole placement
Mixt synthesis

Insights into
robustness
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“H .. dynamic design”

with

Various
structures of
feedback

About q)11 == AR + RAT + BuC + CTBZ- BW + BchDyW

coupling T
Eigenstructure (BW + BUDCD}’W)

assignment
Eig re and

i

Yoo II Nw

o1 = | A+ (A+ByD:C))T  SBy +BDyy ,
= Ceft+DeuC Dew+ DeuDeDpo
Towards

LMI-based

synthesis

About

®pp = | ATS+ SA+BCy+ CJBT (Ce+ DeyD:Cy)"
Ce + DechCy — Yoo Il Ne

alities

H o -design

Pole placement
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

State feedbac
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities

H o -design

Pole placement

How to recover K(s) ?

Given a solution to the previous LMI system, one has to
compute :

T=1,-RS,
for example by using a SVD factorization, and
= N=Y(B - SB,D,),
(C = DeCyR)VIT,

SB,C.MT — S(A+ ByD:.Cy)R)VT.
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“H .. dynamic design”

omiERs

Various Example

structures of
feedback

About _ b Z
coupling W_|:V:| e:|:u:|

Eigenstructure + X 1 X — >
assignment b - > s z P(S)

its influence

State feedback
Output feedback

u

Model K(8)l< R=— K(s)

reduction y

Towards
LMI-based
synthesis

Find the state-space model, write the LMI system, deduce

Matrix inequalities

H.q-doon the minimum value of 7., and explain how to recover K(s).

Pole placement
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N.S.i-p “H., dynamic design”

Various

e State-space model :
feedback

About
coupling

‘]
Eigenstructure X = [0]x + [ 10 ] |: 4 + [Mu

assignment

{

St feedback

;)Tmm 188d;)£:l,K z :| 1 0 0 b 0
Model |:u'—|:0:|X+|:0 0:||:V:|+|:1:|u
reduction

Towards b

LMI-based y=[0x+[0 1] [ } + [0]u.
synthesis v

About norms

Matrix inequalities
H o -design
mea i
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“H .. dynamic design”

R which correspond to these matrices :

feedback

About A:O BW:[1 0] BU:1
coupling

Eigenstructure 1 0 0 0
assignment

ST oo [1] ow[09] w0
!Z‘f.i‘uon Cy =1 Dyw = [ 0 1 ] Dyu =0.
Towards

LMI-based Assumptions Ay and A, are easily verified. The first

synthesis

Aooi orms procedure is now applied.
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
Eigenstructure and

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design

Pole placement

“H .. dynamic design”

[B] D&l =11101]=[Cy Dyw] =

10
Nr=Ng=| 0 1
10

A is scalar then so are R and S. The first LMI to be solved is

1 0]0 07’7 o0] R 0 1 0 1 0]0 0

0 1]/0 0 Rl 7w 0 0 0 0 1]/0 0

-1 0|0 0 0| 0 -] © 0 -1 0|0 0

0 01 0 i 0 0 | 7 O 0 01 0

0 0 ‘ 0 1 ol o 0 0 —7eo 0 0 ‘ 0 1
<0
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N.S' “H.. dynamic design”

Various which becomes
structures of
feedback
ou —
coupling =3 "1:1‘ goo _2 g < 0.
Eigenstructure 0 0 OOo —
assignment o0

St feedback

and, by Schur’s lemma, is equivalent to

Output feedback
Model
reduction ’700 > 0)

Towards
LMI-based

synthesis ’Yooz - 1 - RZ > 0
About norms

Matrix inequalities

H o -design

Pole plac
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“H .. dynamic design”

Various

e In a totally similar way, the 2nd inequality reduces to

feedback

About

coupling ’7002 —1- 82 > 0.
Eigenstructure R 1

assignment whereas the 3rd one , i.e. |: 1 S

} > 0 leads to

Mode\’ R >0 S>0

reduction

Towards

LM\{—?ased RS— 1 Z 0 RS— 1 Z O
synthesis

About norms

Matrix inequalities

H o -design
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
ts e

Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms

ualities

“H .. dynamic design”

The whole of constraints yields

Y2 —1 > min (max{R?; S?}).
R.S

which shows that the optimum is reached for

R=S=1=,=V2

But in this case, the optimal controller is not of order n = 1.
Anyway, for a suboptimal case RS # 1, one gets

M= -N=+RS—1,
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Nos' “H., dynamic design”

omiERs

Various
structures of
feedback

About

coupling N X B S _m

e “|l-vRE=T R

N Once X, it suffices to use its value in the condition of the
Mode‘ bounded real lemma which becomes an LMI that can be
reduction solved by any LMI software.

Towards
LMI-based
synthesis

About norms

Matrix inequalities
H o -design
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Pole placement

Vari H

starustisres of LMI reg|0n

feedback

i Any set D C € defined by

Eigenstructure

e D={zecCla+ pz+ 872 <0} (91)

s where a = oT € IR and 8 € IR’/ is an open LMI-region
p g

Model of order /.

reduction

Towards . .

S These regions are always convex and, if « and ( are real (as

About norms

in the above definition), and symmetric w.r.t. the real axis.

H o -desigr
Pole placement
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omiERs

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
H o -design
Pole placement
Mixt synthesis.

Insights into
robustness

Pole placement
p P

Intersection of LMI regions... is an LMI-region.

Im(s)
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
its influence

State feedback
Output feedback

Model
reduction

Towards
LMI-based
synthesis
About norms
Matrix inequalities
P o -desigr

Pole placement
Mixt synthesis
Insights into
robustness

Pole placement

LMI formulation of a disc
... of center p and radius r.

z—pl <re (z2-p)(E-p)—r* <0
1
P
Applying Schur’s lemma, it comes

& —r+ (z—p)=(z—p) <O.

—r zZ—p
Z—p —r

_ | -r =, _ _ (01
=[5 2o o= [33]

]:a+ﬁz+ﬁTE<O@
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N'SIP D-stability

Various A matrix (or by extension a model) is said D-stable when its
tructur f . . . .

eedback eigenvalues lie inside D.

About

coupling

Eigenstructure Theorem

assignment

Let D be an LMI-region. A matrix A is D-stable iff
IXp = Xp' > 0 such that

Model

reduction

e, Mp(A Xp) = a® Xp + B® (AXp) + BT ® (XpAT) < 0.
synthesis -
PR This is an LMI w.r.t. Xp or w.r.t. A.

H o -desiar

Pole placement
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N.S.'.I—_> D-stabilization by state feedback

Various One considers a static state feedback control law.
structures of

feedback

Abou

e Theorem

Eigensirucire Let D be an LMI-region. P(s) is D-stabilizable by state
P feedback iff 3IXp = XpT > 0 and L such that

\"\ggﬁi‘uon MD(Aa BU) XD) L) =a® XD aF ﬁ ® (AXD) + 67- ® (XDAT)+

Dl pased B®(BuL)+ 8" ®(L"B]) <0.
synthesis

In this event, K is given by K = LXp~1.
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N.S.'.p D-stabilization by dynamic output feedback

Varows Let us forget about disturbance rejection an assume that the
feedback plant P(s) is restricted to the classic state-space model

About

coupling X _ AX + Buu7

Eigenstructure

asswgnmem y = CyX7

(i.e. with D, = 0) controlled by a dynamic nth-order output
feedback control law

Output feedback

Model

reduction .

Towards { XC == ACX + ch,
LMI-based

symh;ssé u == ch + DCy.
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N.S'p D-stabilization by dynamic output feedback

Various

rcesol Then as seen in the first part of these slides, the
About closed-loop model is

coupling

Eigenstructure 2 A

assignment é‘ = f§

with ¢ = [ x' x; ] and

Model

rengitwon A — A + BchCy ‘ BUCC
Towards f BC Cy ‘ AC
LMI-based

synthesis
Ab orms
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment
Eig e and

Model
reduction

Towards
LMI-based
synthesis

D-stabilization by dynamic output feedback

Given an LMI region characterized by o = o and g, the
purpose is then to find Xp = Xp > 0 and A, B:, Ce, D¢
such that

Mp(Ar, Xp) = a® Xp + 8@ (AXp) + 8T © (XpAT) < 0.

Unfortunately, it is a BMI which is not so easy to transform
into an LMI... but it is possible.
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N.S.'.p D-stabilization by dynamic output feedback

- The idea is the same as for the second procedure solving
Srucesol the H.-problem. Assume that Xp and its inverse are
- patitionned as follows
coupling
Eigenstructur
as%\egwnsrlr:e(r:w[[ : XD — RT M X—1 — ST N
m" u | P N' VvV

with Re IR"™"and S e IR™",
Model
reduction

Towards From XpX5' = I 25, it comes
LMI-based
synthesis

MNT = I, — RS.
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@.S'p D-stabilization by dynamic output feedback

Once again, define the new “controller variables” according

R to the following system :

structures of

- s - Wi ssmo,
coupling C = MT —+ DCC}/R7
Eigenstructure A = N MT + N CyR_|_

assignment
Eigenstructure and

SB,C.MT + S(A+ B,D,;C,)R.

This system is such that given matrices

Model

reduction Q A, B and C,

—[iﬂvYagS:Cd Qo R! Ss M and Ns

synthesis .

o D, (direct transfer of the controller to be found),

then A., B. and C. can always be computed and even
uniquely determined.
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@.S'p D-stabilization by dynamic output feedback

Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms

Theorem

Let D be an LMI-region. P(s) is D-stabilizable by dynamic
output feedback iff 3, R = RT, S= ST A, B, C and D, such

that .
n
{n,, s}>0’
R I T o T
a® +800+8T o <0,
I, S
with

o [ AR+B.C A+ B,D:Cy
- A SA+ BC,.
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D-stabilization by dynamic output feedback

Various

rcesol If the LMI system is found feasible, then D, is found and the
About other matrices of the controller are obtained by

coupling

et T=1,-RS.

= = (B - SBch)7

\"\ggii‘uon = (C - DCCyR) _T7

Towards =] —1 (A — Cy R—

LMI-based T =1
s.ymhosws SBU - S(A + BUDCCy)R) .

bout norms
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Mixt synthesis

) Mixt synthesis

One still considers a static state feedback control law.

Theorem

Let D be an LMI-region. P(s) is D-stabilizable by state
feedback that ensures ||F(P(s), K)|le < 7o V ® € {o0; 2} if
HX =XT>0,T=TT;L} such that

AX + ByL + XAT + LTB] (o) (o)
ZOO(P(S)7X7 Lv’YOO) = BVTV. —’Yoolnw (.) <C
CeX + Deul Dew —Yooll ne
AX +ByL+ XA +L'B, B
Z9,(P(s), X, L) = { ! Bl Y <o
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N.S'p Mixt synthesis

Various
T CeX + Deyl
truct f —
feedback 2 (PO X LTV = xerv1mpl, -1, <0
About
coupling trace(T) < ’722

Eigenstructure MD(A, Bth7 L) — OK®X+5®(AX)+5T®(XAT)+6®(BuL)+5T®(LTBZ—) <0.

assignment
Eigenstructure and

In this event, K is given by K = LX~1.

Model -/
reduction
Towards . . .
S e A great interest in LMl is that one can stack several LMI
et roms constraints with preserving the LMI nature of the problem
- but...

Pole placement
Mixt synthesis
Insights into
robustness
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Various
structures of
feedback

About
coupling

Eigenstructure

Model
reduction

Towards
LMI-based
synthesis
About norms

nequalities

Pole placement
Mixt synthesis
Insights into
robustness

— Mixt synthesis

o ...The condition is only sufficient because one imposes
the constraint

X =Xo = X = Xp,

with also a single L. This is referred to as the Lyapunov
Shaping Paradigm.

o In such a mixt synthesis only one criterion is minimized
(either ~2 or 7,) and the other one is arbitrarily chosen.
Another possibility is to minimize a weighted objective
function.

o The design of dynamic controllers is also possible but
harder and not detailed here. Nevertheless, it relies on
previously notions here introduced here.
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N.S'p Introduction to robust control

Polytopic uncertainty

Various
structures of
feedback

(...still considering state feedback)

About
coupling

(oo The process model is assumed to be uncertain (not
precisely known) but also assumed to belong to a family of
models defined by

Model
reduction

e ey [ A Bul) B T _
S om0 =[50 ond) ouh | - Xem

b orms

Insights into
robustness
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N.S‘.'.p Polytopic uncertainty

in which T contains the coefficients of a
convex combination (i.e. 7, > 0 and Z ) and M; are

the vertices of a so-called polytope of matrlces

M [ é DB!w Bfu :| (92)

Jew Jeu

Remarque

There are many possible descriptions of uncertainties either
in the frequency domain (i.e. affecting the transfer matrix) or
in the time domain (i.e. affecting the state-space model).
Here only few time-domain uncertainties are introduced.

Insights into
robustness
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Eigenstructure and
Is :

Output feedback

Model
reduction

Towards
LMI-based
synthesis

bout norms

synthesis
Insights into
robustness

Polytopic uncertainty

Why polytopic uncertainty ?

It has a very interesting special case i.e the affine
parametric uncertainty :

p
M= M, + Z( N;), (93)

i=1
My is the nominal part, the matrices N; are known and the §;
are unknown parameters obeying

5 <6 Vie{l,.ph (94)

In this case, the polytope has N = 2P vertices.

Imin =
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I— Polytopic uncertaint
p ytop y

Various Example :

structures of

feedback 1+ 3 | ‘ <05
About M:[ 1 242 0} where { | \%0,2. &
coupling

Eigenstructure

1 0 3 1.0 0 01 0
assignment _ . _ . _
MO—[1 -2 o}'M—[ozo}'N?_[ooo}

cture ar

which corresponds to the polytopic description :

Model

reduction [My| Mz |M3|My] =

T d

e -0,5 0,2 3|-0,5 -0,2 3|-1,5 0,2 3| -1,5 -0,2 3
1 -1 0] 1 -1 0] 1 -3 0| 1 -3 0

Insights into
robustness
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms

nsi
robustness

Polytopic uncertainty

Yes, but, once again, why polytopic uncertainty ?
Simply because it is easily handled through LMI machinery.

For example, assume one wants to analyze the robust
stability of a polytopic matrix A with two vertices A; and A..
This matrix is robustly stable if 3P = PT > 0 such that

ATP4+PA <0 & AIP+PA;<O.

The condition is only sufficient since only one unique P is
considered and it is not a function of the uncertainty (one
talks about quadratic stability).
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@.—‘"P Robust mixt synthesis

Theorem

Consider an uncertain process model P(s, r) and some
LMlI-region D. There exists a D-stabilizing state feedback K
that ensures ||F(P(S), K)|le < 7o V ® € {00; 2} if

HX =XT>0,T=TT,;L} such that

Zoo = Z(P(8),X,L,70) < O
2z, = Z(F(P(s).X,L)) < 0
2z, = 2(F(P(s) X.L.T) < 0 ,

trace(T) < 722
Mp = MD(A +BU,X,L) <0
In this event, K is given by K = LX~1.

Insights into
robustness
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feedback

About
coupling

Eigenstructure
assignment

Eigenst
ts influe

Dutput feedback

Model
reduction

Towards

LMI-based
synthesis
About norms

Insights into
robustness

NuSii—_) Robust mixt synthesis

There are two reasons why the condition is conservative :
o Lyapunov shaping paradigm,
o Quadratic stability.

Avoiding the shaping paradigm is quite difficult but there
exist techniques that consider a matrix X(7) (i.e. which is
dependent on the uncertainty).
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Various
structures of
feedback

About
coupling

Eigenstructure
assignment

Model
reduction

Towards
LMI-based
synthesis
About norms

nsi
robustness

Robustness and H.

Many authors consider that H., approach belongs to the
realm of robust control whereas it is simply disturbance
rejection.

The reason is as follows :
Consider the uncertain matrix (Linear Fractional Transform
(LFT)-based uncertainty) :

A=A+BAC (95)
where A = A(l — DA)~" and [|A|] < p, with A complex
(this special LFT is called norm-bounded uncertainty).
Problem : find the largest value of p such that A is Hurwitz
for all /. This value is the so-called complex stability radius.
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N.S.'.I—_> Robustness and #...

Surprisingly, it has been proved that the complex stability
radius is exactly the reciprocal of the H..-norm of the

Various realization (A, B, C, D).

structures of

feedback

s = The bounded real lemma enables ones to compute this
coenene  Fadius with no conservativeness.

= o However, one shall mention that it is anyway

conservative in pratice since the actual realness of the
uncertainty is not taken into account.

Output feedback

Model

reduction o Notice that, in this case, quadratic stability is not

Lo pessimistic (P(/\) is not needed but P suffices).

synthesis o ltis also possible to consider static or dynamic

g synthesis even when the uncertanty is polytopic
LFT-based.

o There exist discrete counterparts to all these results...
See all the possibilities !

Insi into
robustness
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N.S.i.p References

There are so many (I used quite many in French but...)
@ S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan

Linear Matrix Inequalities in System and Control.

Volume 15 of SIAM Studies in Applied Mathematics, USA, 1994, perhaps
still the ultimate reference for LMI in control.

P. Gahinet and P. Apkarian

A LMI approach To H control.

International Journal of Robust and Nonlinear Control, Vol 4, p.421-448,
1994, for the solution to dynamic H.-problem.

M. Chilali and P. Gahinet

Hoo design with pole placement constraints.

IEEE Transactions on Automatic Control, Vol 41(3), p.358-367, 1996, for the
pole placement in LMI-regions and insights into mixed synthesis.
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L) References (2)

Q P Khargonekar, I. R. Petersen and K. Zhou,.
Robust stabilization of uncertain linear systems : Quaditric stabilizability and
Hoo control.
IEEE Transactions on Automatic Control, Vol 35, p.356-361, 1990, for the
robust stability against norm-bounded uncertainty.

O C. Scherer and S. Weiland.
Lectures Notes DISC Course on Linear Matrix Inequalities in Control
available for downloading from the web, very general and elegant approach
covering many of the aspects of these slides and much more.

... and all the references therein.
See also the very good frames proposed by D. Henrion on

his web page :
http://www.laas.fr/~henrion
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Hoping you enjoyed these
frames, the control community
now needs you to investigate
many of the problems that are
still unsolved!
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