
Robust control, multidimensional systems and
multivariable Nevanlinna-Pick interpolation

Joseph A. Ball and Sanne ter Horst

Dedicated to Israel Gohberg on the occasion of his 80th birthday

Abstract. The connection between the standard H∞-problem in control the-
ory and Nevanlinna-Pick interpolation in operator theory was established in
the 1980s, and has led to a fruitful cross-pollination between the two fields
since. In the meantime, research in H∞-control theory has moved on to the
study of robust control for systems with structured uncertainties and to var-
ious types of multidimensional systems, while Nevanlinna-Pick interpolation
theory has moved on independently to a variety of multivariable settings. Here
we review these developments and indicate the precise connections which sur-
vive in the more general multidimensional/multivariable incarnations of the
two theories.
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1. Introduction

Starting in the early 1980s with the seminal paper [139] of George Zames, there
occurred an active interaction between operator theorists and control engineers in
the development of the early stages of the emerging theory of H∞-control. The
cornerstone for this interaction was the early recognition by Francis-Helton-Zames
[65] that the simplest case of the central problem of H∞-control (the sensitivity
minimization problem) is one and the same as a Nevanlinna-Pick interpolation



problem which had already been solved in the early part of the twentieth century
(see [110, 105]). For the standard problem of H∞-control it was known early on
that it could be brought to the so-called Model-Matching form (see [53, 64]). In
the simplest cases, the Model-Matching problem converts easily to a Nevanlinna-
Pick interpolation problem of classical type. Handling the more general problems
of H∞-control required extensions of the theory of Nevanlinna-Pick interpolation
to tangential (or directional) interpolation conditions for matrix-valued functions;
such extensions of the interpolation theory were pursued by both engineers and
mathematicians (see e.g. [26, 58, 90, 86, 87]). Alternatively, the Model-Matching
problem can be viewed as a Sarason problem which is suitable for application of
Commutant Lifting theory (see [125, 62]). The approach of [64] used an additional
conversion to a Nehari problem where existing results on the solution of the Nehari
problem in state-space coordinates were applicable (see [69, 33]). The book of
Francis [64] was the first book on H∞-control and provides a good summary of
the state of the subject in 1987.

While there was a lot of work emphasizing the connection of the H∞-problem
with interpolation and the related approach through J-spectral factorization ([26,
90, 91, 86, 87, 33, 24]), we should point out that the final form of the H∞-theory
parted ways with the connection with Nevanlinna-Pick interpolation. When cal-
culations were carried out in state-space coordinates, the reduction to Model-
Matching form via the Youla-Kučera parametrization of stabilizing controllers
led to inflation of state-space dimension; elimination of non-minimal state-space
nodes by finding pole-zero cancellations demanded tedious brute-force calcula-
tions (see [90, 91]). A direct solution in state-space coordinates (without reduc-
tion to Model-Matching form and any explicit connection with Nevanlinna-Pick
interpolation) was finally obtained by Ball-Cohen [24] (via a J-spectral factor-
ization approach) and in the more definitive coupled-Riccati-equation form of
Doyle-Glover-Khargonekar-Francis [54]. This latter paper emphasizes the parallels
with older control paradigms (e.g., the Linear-Quadratic-Gaussian and Linear-
Quadratic-Regulator problems) and obtained parallel formulas for the related H2-
problem. The J-spectral factorization approach was further developed in the work
of Kimura, Green, Glover, Limebeer, and Doyle [87, 70, 71]. A good review of the
state of the theory to this point can be found in the books of Zhou-Doyle-Glover
[141] and Green-Limebeer [72].

The coupled-Riccati-equation solution however has now been superseded by
the Linear-Matrix-Inequality (LMI) solution which came shortly thereafter; we
mention specifically the papers of Iwasaki-Skelton [78] and Gahinet-Apkarian [66].
This solution does not require any boundary rank conditions entailed in all the ear-
lier approaches and generalizes in a straightforward way to more general settings
(to be discussed in more detail below). The LMI form of the solution is particu-
larly appealing from a computational point of view due to the recent advances in
semidefinite programming (see [68]). The book of Dullerud-Paganini [57] gives an
up-to-date account of these latest developments.
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Research in H∞-control has moved on in a number of different new direc-
tions, e.g., extensions of the H∞-paradigm to sampled-data systems [47], nonlinear
systems [126], hybrid systems [23], stochastic systems [76], quantum stochastic sys-
tems [79], linear repetitive processes [123], as well as behavioral frameworks [134].
Our focus here will be on the extensions to robust control for systems with struc-
tured uncertainties and related H∞-control problems for multidimensional (N -
D) systems—both frequency-domain and state-space settings. In the meantime,
Nevanlinna-Pick interpolation theory has moved on to a variety of multivariable
settings (polydisk, ball, noncommutative polydisk/ball); we mention in particular
the papers [1, 49, 113, 3, 35, 19, 20, 21, 22, 30].

As the transfer function for a multidimensional system is a function of sev-
eral variables, one would expect that the same connections familiar from the 1-
D/single-variable case should also occur in these more general settings; however,
while there had been some interaction between control theory and several-variable
complex function theory in the older area of systems over rings (see [83, 85, 46]),
to this point, with a few exceptions [73, 74, 32], there has not been such an interac-
tion in connection with H∞-control for N -D systems and related such topics. With
this paper we wish to make precise the interconnections which do exist between
the H∞-theory and the interpolation theory in these more general settings. As we
shall see, some aspects which are taken for granted in the 1-D/single-variable case
become much more subtle in the N -D/multivariable case. Along the way we shall
encounter a variety of topics that have gained attention recently, and sometimes
less recently, in the engineering literature.

Besides the present Introduction, the paper consists of five sections which we
now describe:

(1) In Section 2 we lay out four specific results for the classical 1-D case;
these serve as models for the type of results which we wish to generalize to the
N -D/multivariable settings.

(2) In Section 3 we survey the recent results of Quadrat [117, 118, 119, 120,
121, 122] on internal stabilization and parametrization of stabilizing controllers in
an abstract ring setting. The main point here is that it is possible to parametrize
the set of all stabilizing controllers in terms of a given stabilizing controller even
in settings where the given plant may not have a double coprime factorization—
resolving some issues left open in the book of Vidyasagar [136]. In the case where
a double-coprime factorization is available, the parametrization formula is more
efficient. Our modest new contribution here is to extend the ideas to the setting
of the standard problem of H∞-control (in the sense of the book of Francis [64])
where the given plant is assumed to have distinct disturbance and control inputs
and distinct error and measurement outputs.

(3) In Section 4 we look at the internal-stabilization/H∞-control problem for
multidimensional systems. These problems have been studied in a purely frequency-
domain framework (see [92, 93]) as well as in a state-space framework (see [81, 55,
56]). In Subsection 4.1, we give the frequency-domain formulation of the problem.
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When one takes the stable plants to consist of the ring of structurally stable ra-
tional matrix functions, the general results of Quadrat apply. In particular, for
this setting stabilizability of a given plant implies the existence of a double co-
prime factorization (see [119]). Application of the Youla-Kučera parametrization
then leads to a Model-Matching form and, in the presence of some boundary rank
conditions, the H∞-problem converts to a polydisk version of the Nevanlinna-Pick
interpolation problem. Unlike the situation in the classical single-variable case,
this interpolation problem has no practical necessary-and-sufficient solution crite-
rion and in practice one is satisfied with necessary and sufficient conditions for the
existence of a solution in the more restrictive Schur-Agler class (see [1, 3, 35]).

In Subsection 4.2 we formulate the internal-stabilization/H∞-control prob-
lem in Givone-Roesser state-space coordinates. We indicate the various subtleties
involved in implementing the state-space version [104, 85] of the double-coprime
factorization and associated Youla-Kučera parametrization of the set of stabiliz-
ing controllers. With regard to the H∞-control problem, unlike the situation in
the classical 1-D case, there is no useable necessary and sufficient analysis for so-
lution of the problem; instead what is done (see e.g. [55, 56]) is the use of an
LMI/Bounded-Real-Lemma analysis which provides a convenient set of sufficient
conditions for solution of the problem. This sufficiency analysis in turn amounts
to an N -D extension of the LMI solution [78, 66] of the 1-D H∞-control problem
and can be viewed as a necessary and sufficient analysis of a compromise problem
(the “scaled” H∞-problem).

While stabilization and H∞-control problems have been studied in the state-
space setting [81, 55, 56] and in the frequency-domain setting [92, 93] separately,
there does not seem to have been much work on the precise connections between
these two settings. The main point of Subsection 4.3 is to study this relationship;
while solving the state-space problem implies a solution of the frequency-domain
problem, the reverse direction is more subtle and it seems that only partial results
are known. Here we introduce a notion of modal stabilizability and modal detectabil-
ity (a modification of the notions of modal controllability and modal observability
introduced by Kung-Levy-Morf-Kailath [88]) to obtain a partial result on relat-
ing a solution of the frequency-domain problem to a solution of the associated
state-space problem. This result suffers from the same weakness as a correspond-
ing result in [88]: just as the authors in [88] were unable to prove that minimal
(i.e., simultaneously modally controllable and modally observable) realizations for
a given transfer matrix exist, so also we are unable to prove that a simultaneously
modally stabilizable and modally detectable realization exists. A basic difficulty
in translating from frequency-domain to state-space coordinates is the failure of
the State-Space-Similarity theorem and related Kalman state-space reduction for
N -D systems. Nevertheless, the result is a natural analogue of the corresponding
1-D result.

There is a parallel between the control-theory side and the interpolation-
theory side in that in both cases one is forced to be satisfied with a compromise
solution: the scaled-H∞ problem on the control-theory side, and the Schur-Agler
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class (rather than the Schur class) on the interpolation-theory side. We include
some discussion on the extent to which these compromises are equivalent.

(4) In Section 5 we discuss several 1-D variations on the internal-stabilization
and H∞-control problem which lead to versions of the N -D/multivariable prob-
lems discussed in Section 4. It was observed early on that an H∞-controller has
good robustness properties, i.e., an H∞-controller not only provides stability of the
closed-loop system associated with the given (or nominal) plant for which the con-
trol was designed, but also for a whole neighborhood of plants around the nominal
plant. This idea was refined in a number of directions, e.g., robustness with respect
to additive or multiplicative plant uncertainty, or with respect to uncertainty in a
normalized coprime factorization of the plant (see [100]). Another model for an un-
certainty structure is the Linear-Fractional-Transformation (LFT) model used by
Doyle and coworkers (see [97, 98]). Here a key concept is the notion of structured
singular value µ(A) for a finite square matrix A introduced by Doyle and Safonov
[52, 124] which simultaneously generalizes the norm and the spectral radius de-
pending on the choice of uncertainty structure (a C∗-algebra of matrices with a
prescribed block-diagonal structure); we refer to [107] for a comprehensive survey.
If one assumes that the controller has on-line access to the uncertainty parameters
one is led to a gain-scheduling problem which can be identified as the type of mul-
tidimensional control problem discussed in Section 4.2—see [106, 18]; we survey
this material in Subsection 5.1. In Subsection 5.2 we review the purely frequency-
domain approach of Helton [73, 74] toward gain-scheduling which leads to the
frequency-domain internal-stabilization/H∞-control problem discussed in Section
4.1. Finally, in Section 5.3 we discuss a hybrid frequency-domain/state-space model
for structured uncertainty which leads to a generalization of Nevanlinna-Pick in-
terpolation for single-variable functions where the constraint that the norm be
uniformly bounded by 1 is replaced by the constraint that the µ-singular value be
uniformly bounded by 1; this approach has only been analyzed for very special
cases of the control problem but does lead to interesting new results for oper-
ator theory and complex geometry in the work of Bercovici-Foias-Tannenbaum
[38, 39, 40, 41], Agler-Young [5, 6, 7, 8, 9, 10, 11, 12, 13], Huang-Marcantognini-
Young [77], and Popescu [114].

(5) The final Section 6 discusses an enhancement of the LFT-model for struc-
tured uncertainty to allow dynamic time-varying uncertainties. If the controller is
allowed to have on-line access to these more general uncertainties, then the so-
lution of the internal-stabilization/H∞-control problem has a form completely
analogous to the classical 1-D case. Roughly, this result corresponds to the fact
that, with this noncommutative enhanced uncertainty structure, the a priori up-
per bound µ̂(A) for the structured singular value µ(A) is actually equal to µ(A),
despite the fact that for non-enhanced structures, the gap between µ and µ̂ can
be arbitrarily large (see [133]). In this precise form, the result appears for the
first time in the thesis of Paganini [108] but various versions of this type of result
have also appeared elsewhere (see [37, 42, 60, 99, 129]). We discuss this enhanced
noncommutative LFT-model in Subsection 6.1. In Subsection 6.2 we introduce a
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noncommutative frequency-domain control problem in the spirit of Chapter 4 of
the thesis of Lu [96], where the underlying polydisk occurring in Section 4.1 is now
replaced by the noncommutative polydisk consisting of all d-tuples of contraction
operators on a fixed separable infinite-dimensional Hilbert space K and the space
of H∞-functions is replaced by the space of scalar multiples of the noncommuta-
tive Schur-Agler class introduced in [28]. Via an adaptation of the Youla-Kučera
parametrization of stabilizing controllers, the internal-stabilization/H∞-control
problem can be reduced to a Model-Matching form which has the interpretation
as a noncommutative Sarason interpolation problem. In the final Subsection 6.3,
we show how the noncommutative state-space problem is exactly equivalent to the
noncommutative frequency-domain problem and thereby obtain an analogue of
the classical case which is much more complete than for the commutative-variable
case given in Section 4.3. In particular, if the problem data are given in terms
of state-space coordinates, the noncommutative Sarason problem can be solved
as an application of the LMI solution of the H∞-problem. While there has been
quite a bit of recent activity on this kind of noncommutative function theory (see
e.g. [14, 22, 75, 82, 115, 116]), the noncommutative Sarason problem has to this
point escaped attention; in particular, it is not clear how the noncommutative
Nevanlinna-Pick interpolation problem studied in [22] is connected with the non-
commutative Sarason problem.

Finally we mention that each section ends with a “Notes” subsection which
discusses more specialized points and makes some additional connections with
existing literature.
Acknowledgement. The authors thank Quanlei Fang and Gilbert Groenewald for
the useful discussions in an early stage of preparation of the present paper. We
also thank the two anonymous reviewers for their thorough readings of the first
version and constructive suggestions for the preparation of the final version of this
paper.

2. The 1-D systems/single-variable case

Let C[z] be the space of polynomials with complex coefficients and C(z) the quo-
tient field consisting of rational functions in the variable z. Let RH∞ be the
subring of stable elements of C(z) consisting of those rational functions which are
analytic and bounded on the unit disk D, i.e., with no poles in the closed unit
disk D. We assume to be given a plant G =

[
G11 G12
G21 G22

]
: W ⊕U → Z ⊕ Y which is

given as a block matrix of appropriate size with entries from C(z). Here the spaces
U , W, Z and Y have the interpretation of control-signal space, disturbance-signal
space, error-signal space and measurement-signal space, respectively, and consist
of column vectors of given sizes nU , nW , nZ and nY , respectively, with entries
from C(z). For this plant G we seek to design a controller K : Y → U , also given
as a matrix over C(z), that stabilizes the feedback system Σ(G,K) obtained from
the signal-flow diagram in Figure 1 in a sense to be defined precisely below.
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Figure 1. Feedback with tap signals

Note that the various matrix entries Gij of G are themselves matrices with entries
from C(z) of compatible sizes (e.g., G11 has size nZ ×nW) and K is a matrix over
C(z) of size nU × nY .

The system equations associated with the signal-flow diagram of Figure 1 can
be written as I −G12 0

0 I −K
0 −G22 I

zu
y

 =

G11 0 0
0 I 0
G21 0 I

wv1

v2

 . (2.1)

Here v1 and v2 are tap signals used to detect stability properties of the internal
signals u and y. We say that the system Σ(G,K) is well-posed if there is a well-
defined map from

[
w
v1
v2

]
to
[ z
u
y

]
. It follows from a standard Schur complement

computation that the system is well-posed if and only if det(I −G22K) 6= 0, and
that in that case the map from

[
w
v1
v2

]
to
[ z
u
y

]
is given byzu

y

 = Θ(G,K)

wv1

v2


where

Θ(G,K) :=

I −G12 0
0 I −K
0 −G22 I

−1 G11 0 0
0 I 0
G21 0 I

 =

[
G11 +G12K(I −G22K)−1G21 G12[I +K(I −G22K)−1G22] G12K(I −G22K)−1

K(I −G22K)−1G21 I +K(I −G22K)−1G22 K(I −G22K)−1

(I −G22K)−1G21 (I −G22K)−1G22 (I −G22K)−1

]

=

[
G11 +G12(I −KG22)−1KG21 G12(I −KG22)−1 G12(I −KG22)−1K

(I −KG22)−1KG21 (I −KG22)−1 (I −KG22)−1K
[I +G22(I −KG22)−1K]G21 G22(I −KG22)−1 I +G22(I −KG22)−1K

]
.

(2.2)

We say that the system Σ(G,K) is internally stable if Σ(G,K) is well-posed and,
in addition, if the map Θ(G,K) maps RH∞W ⊕RH∞U ⊕RH∞Y into RH∞Z ⊕RH∞U ⊕
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RH∞Y , i.e., stable inputs w, v1, v2 are mapped to stable outputs z, u, y. Note that
this is the same as the condition that the entries of Σ(G,K) be in RH∞.

We say that the system Σ(G,K) has performance if Σ(G,K) is internally
stable and in addition the transfer function Tzw from w to z has supremum-norm
over the unit disk bounded by some tolerance which we normalize to be equal to
1:

‖Tzw‖∞ := sup{‖Tzw(λ)‖ : λ ∈ D} ≤ 1.
Here ‖Tzw(λ)‖ refers to the induced operator norm, i.e., the largest singular value
for the matrix Tzw(λ). We say that the system Σ(G,K) has strict performance if in
addition ‖Tzw‖∞ < 1. The stabilization problem then is to describe all (if any exist)
internally stabilizing controllers K for the given plant G, i.e., all K ∈ C(z)nU×nY so
that the associated closed-loop system Σ(G,K) is internally stable. The standard
H∞-problem is to find all internally stabilizing controllers which in addition achieve
performance ‖Tzw‖∞ ≤ 1. The strictly suboptimal H∞-problem is to describe all
internally stabilizing controllers which also achieve strict performance ‖Tzw‖∞ < 1.

2.1. The model-matching problem

Let us now consider the special case where G22 = 0, so that G has the form
G =

[
G11 G12
G21 0

]
. In this case well-posedness is automatic and Θ(G,K) simplifies to

Θ(G,K) =

 G11 +G12KG21 G12 G12K
KG21 I K
G21 0 I

 .
Thus internal stability for the closed-loop system Σ(G,K) is equivalent to stability
of the four transfer matrices G11, G12, G21 and K. Hence internal stabilizability
of G is equivalent to stability of G11, G12 and G21; when the latter holds a given
K internally stabilizes G if and only if K itself is stable.

Now assume that G11, G12 and G21 are stable. Then the H∞-performance
problem for G consists of finding stable K so that ‖G11 + G12KG21‖∞ ≤ 1. Fol-
lowing the terminology of [64], the problem is called the Model-Matching Problem.
Due to the influence of the paper [125], this problem is usually referred to as the
Sarason problem in the operator theory community; in [125] it is shown explicitly
how the problem can be reduced to an interpolation problem.

In general control problems the assumption that G22 = 0 is an unnatural
assumption. However, after making a change of coordinates using the Youla-Kučera
parametrization or the Quadrat parametrization, discussed below, it turns out that
the general H∞-problem can be reduced to a model-matching problem.

2.2. The frequency-domain stabilization and H∞ problem

The following result on characterization of stabilizing controllers is well known
(see e.g. [64] or [136, 137] for a more general setting).

Theorem 2.1. Suppose that we are given a rational matrix function G =
[
G11 G12
G21 G22

]
of size (nZ + nY) × (nW + nU ) with entries in C(z) as above. Assume that G is
stabilizable, i.e., there exists a rational matrix function K of size nU × nY so that
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the nine transfer functions in (2.2) are all stable. Then a given rational matrix
function K stabilizes G if and only if K stabilizes G22, i.e., Θ(G,K) in (2.2) is
stable if and only if

Θ(G22,K) : =
[
I +K(I −G22K)−1 K(I −G2K)−1

(I −G22K)−1 (I −G22K)−1

]
=
[

(I −KG22)−1 (I −KG22)−1K
G22(I −KG22)−1 I +G22(I −KG22)−1K

]
is stable. Moreover, if we are given a double coprime factorization for G22, i.e.,
stable transfer matrices D, N , X, Y , D̃, Ñ , X̃ and Ỹ so that the determinants of
D, D̃, X and X̃ are all nonzero (in RH∞) and

G22 = D−1N = ÑD̃−1,

[
D −N
−Ỹ X̃

][
X Ñ

Y D̃

]
=
[
InY 0
0 InU

]
(2.3)

(such double coprime factorizations always exists since RH∞ is a Principal Ideal
Domain), then the set of all stabilizing controllers K is given by either of the
formulas

K = (Y + D̃Λ)(X + ÑΛ)−1 = (X̃ + ΛN)−1(Ỹ + ΛD),

where Λ is a free stable parameter from RH∞L(U,Y) such that det(X + ÑΛ) 6= 0 or

equivalently det(X̃ + ΛN) 6= 0.

Through the characterization of the stabilizing controllers, those controllers
that, in addition, achieve performance can be obtained from the solutions of a
Model-Matching/Sarason interpolation problem.

Theorem 2.2. Assume that G ∈ C(z)(nZ+nY)×(nW+nU ) is stabilizable and that G22

admits a double coprime factorization (3.9). Let K ∈ C(z)nU×nY . Then K is a
solution to the standard H∞ problem for G if and only if

K = (Y + D̃Λ)(X + ÑΛ)−1 = (X̃ + ΛN)−1(Ỹ + ΛD),

where Λ ∈ RH∞L(U,Y) so that det(X + ÑΛ) 6= 0, or equivalently det(X̃ + ΛN) 6= 0,

is any solution to the Model-Matching/Sarason interpolation problem for G̃11, G̃12

and G̃21 defined by

G̃11 := G11 +G12Y DG21, G̃12 := G12D̃, G̃21 := DG21,

i.e., so that
‖G̃11 + G̃12ΛG̃21‖∞ ≤ 1.

We note that in case G̃12 is injective and G̃21 is surjective on the unit circle,
by absorbing outer factors into the free parameter Λ we may assume without loss
of generality that G̃12 is inner (i.e., G̃12(z) is isometric for z on unit circle) and
G̃21 is co-inner (i.e., G̃21(z) is coisometric for z on the unit circle). Let Γ: L2

W 	
G̃∗21H

2⊥
U → L2

Z	G̃12H
2
U be the compression of multiplication by G̃11 to the spaces
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L2
W 	 G̃∗21H

2⊥
U and L2

Z 	 G̃12H
2
U , i.e., Γ = PL2

Z	G̃12H2
U
G̃11|L2

W	G̃∗21H2⊥
Y

. Then, as a
consequence of the Commutant Lifting theorem (see [63, Corollary 10.2 pages 40–
41]), one can see that the strict Model-Matching/Sarason interpolation problem
posed in Theorem 2.2 has a solution if and only if ‖Γ‖op < 1. Alternatively, in
case G̃12 and G̃21 are square and invertible on the unit circle, one can convert
this Model-Matching/Commutant-Lifting problem to a bitangential Nevanlinna-
Pick interpolation problem (see [26, Theorem 16.9.3]), a direct generalization of
the connection between a model-matching/Sarason interpolation problem with
Nevanlinna-Pick interpolation as given in [125, 65] for the scalar case, but we will
not go into the details of this here.

2.3. The state-space approach

We now restrict the classes of admissible plants and controllers to the transfer
matrices whose entries are in C(z)0, the space of rational functions without a
pole at 0 (i.e., analytic in a neighborhood of 0). In that case, a transfer matrix
F : U → Y with entries in C(z)0 admits a state-space realization: There exists a
quadruple {A,B,C,D} consisting of matrices whose sizes are given by[

A B
C D

]
:
[
X
U

]
→
[
X
Y

]
, (2.4)

where the state-space X is finite dimensional, so that

F (z) = D + zC(I − zA)−1B

for z in a neighborhood of 0. Sometimes we consider quadruples {A,B,C,D} of
operators, of compatible size as above, without any explicit connection to a transfer
matrix, in which case we just speak of a realization.

Associated with the realization {A,B,C,D} is the linear discrete-time system
of equations

Σ :=
{
x(n+ 1) = Ax(n) +Bu(n),
y(n) = Cx(n) +Du(n). (n ∈ Z+)

The system Σ and function F are related through the fact that F is the transfer-
function of Σ. The two-by-two matrix (2.4) is called the system matrix of the
system Σ.

For the rest of this section we shall say that an operator A on a finite-
dimensional state space X is stable if all its eigenvalues are in the open unit disk,
or, equivalently, ‖Anx‖ → 0 as n→∞ for each x ∈ X . The following result deals
with two key notions for the stabilizability problem on the state-space level.

Theorem 2.3. (I) Suppose that {A,B} is an input pair, i.e., A,B are operators
with A : X → X and B : U → X for a finite-dimensional state space X and a
finite-dimensional input space U . Then the following are equivalent:

1. {A,B} is operator-stabilizable, i.e., there exists a state-feedback operator
F : X → U so that the operator A+BF is stable.
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2. {A,B} is Hautus-stabilizable, i.e., the matrix pencil
[
I − zA B

]
is surjec-

tive for each z in the closed unit disk D.
3. The Stein inequality

AXA∗ −X −BB∗ < 0

has a positive-definite solution X. Here Γ < 0 for a square matrix Γ means
that −Γ is positive definite.
(II) Dually, if {C,A} is an output pair, i.e., C,A are operators with A : X →

X and C : X → Y for a finite-dimensional state space X and a finite-dimensional
output space Y, then the following are equivalent:

1. {C,A} is operator-detectable, i.e., there exists an output-injection operator
L : Y → X so that A+ LC is stable.

2. {C,A} is Hautus-detectable, i.e., the matrix pencil
[
I−zA
C

]
is injective for

all z in the closed disk D.
3. The Stein inequality

A∗Y A− Y − C∗C < 0

has a positive definite solution Y .

When the input pair {A,B} satisfies any one (and hence all) of the three
equivalent conditions in part (I) of Theorem 2.3, we shall say simply that {A,B} is
stabilizable. Similarly, if (C,A) satisfies any one of the three equivalent conditions
in part (II), we shall say simply that {C,A} is detectable. Given a realization
{A,B,C,D}, we shall say that {A,B,C,D} is stabilizable and detectable if {A,B}
is stabilizable and {C,A} is detectable.

In the state-space formulation of the internal stabilization/H∞-control prob-
lem, one assumes to be given a state-space realization for the plant G:

G(z) =
[
D11 D12

D21 D22

]
+ z

[
C1

C2

]
(I − zA)−1

[
B1 B2

]
(2.5)

where the system matrix has the formA B1 B2

C1 D11 D12

C2 D21 D22

XW
U

→
XZ
Y

 . (2.6)

One then seeks a controller K which is also given in terms of a state-space real-
ization

K(z) = DK + zCK(I − zAK)−1BK

which provides internal stability (in the state-space sense to de defined below)
and/or H∞-performance for the closed-loop system. Well-posedness of the closed-
loop system is equivalent to invertibility of I − D22DK . To keep various for-
mulas affine in the design parameters AK , BK , CK , DK , it is natural to assume
that D22 = 0; this is considered not unduly restrictive since under the assump-
tion of well-posedness this can always be arranged via a change of variables
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(see [78]). Then the closed loop system Θ(G,K) admits a state space realization
{Acl, Bcl, Ccl, Dcl} given by its system matrix

[
Acl Bcl
Ccl Dcl

]
=

 A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21

 (2.7)

and internal stability (in the state-space sense) is taken to mean that Acl =[
A+B2DKC2 B2CK

BKC2 AK

]
should be stable, i.e., all eigenvalues are in the open unit disk.

The following result characterizes when a given G is internally stabilizable in
the state-space sense.

Theorem 2.4. (See Proposition 5.2 in [57].) Suppose that we are given a sys-
tem matrix as in (2.6) with D22 = 0 with associated transfer matrix G as in
(2.5). Then there exists a K(z) = DK + zCK(I − zAK)−1BK which internally
stabilizes G (in the state-spaces sense) if and only if {A,B2} is stabilizable and
{C2, A} is detectable. In this case one such controller is given by the realization
{AK , BK , CK , DK} with system matrix

[
AK BK
CK DK

]
=
[
A+B2F + LC2 −L

F 0

]

where F and L are state-feedback and output-injection operators chosen so that
A+B2F and A+ LC2 are stable.

In addition to the state-space version of the stabilizability problem we also
consider a (strict) state-space H∞ problem, namely to find a controller K given
by a state-space realization {AK , BK , CK , DK} of compatible size so that the
transfer-function Tzw of the closed loop system, given by the system matrix (2.7),
is stable (in the state-space sense) and has a supremum norm ‖Tzw‖∞ of at most
1 (less than 1).

The definitive solution of the H∞-control problem in state-space coordi-
nates for a time was the coupled-Riccati-equation solution due to Doyle-Glover-
Khargonekar-Francis [54]. This solution has now been superseded by the LMI
solution of Gahinet-Apkarian [66] which can be stated as follows. Note that the
problem can be solved directly without first processing the data to the Model-
Matching form.

Theorem 2.5. Let {A,B,C,D} =
{
A, [B1 B2 ] , [C1 C2 ] ,

[
D11 D12
D21 0

]}
be a given real-

ization. Then there exists a solution for the strict state-space H∞-control problem
associated with {A,B,C,D} if and only if there exist positive-definite matrices

12



X,Y satisfying the LMIs[
Nc 0
0 I

]∗ AY A∗ − Y AY C∗1 B1

C1Y A
∗ C1Y C

∗
1 − I D11

B∗1 D∗11 −I

[Nc 0
0 I

]
< 0, Y > 0, (2.8)

[
No 0
0 I

]∗ A∗XA−X A∗XB1 C∗1
B∗1XA B∗1XB1 − I D∗11

C1 D11 −I

[No 0
0 I

]
< 0, X > 0, (2.9)

and the coupling condition [
X I
I Y

]
≥ 0. (2.10)

Here Nc and No are matrices chosen so that

Nc is injective and ImNc = Ker
[
B∗2 D∗12

]
and

No is injective and ImNo = Ker
[
C2 D21

]
.

We shall discuss the proof of Theorem 2.5 in Section 4.2 below in the context
of a more general multidimensional-system H∞-control problem.

The next result is the key to transferring from the frequency-domain version
of the internal-stabilization/H∞-control problem to the state-space version.

Theorem 2.6. (See Lemma 5.5 in [57].) Suppose that the realization {A,B2, C2, 0}
for the plant G22 and the realization {AK , BK , CK , DK} for the controller K are
both stabilizable and detectable. Then K internally stabilizes G22 in the state-space
sense if and only if K stabilizes G22 in the frequency-domain sense, i.e., the closed-
loop matrix Acl =

[
A+B2DKC2 B2CK

BKC2 AK

]
is stable if and only if the associated transfer

matrix

Θ(G22,K) =
[
I DK

0 I

]
+ z

[
DKC2 CK
C2 0

]
(I − zAcl)−1

[
B2 B2DK

0 BK

]
has all matrix entries in RH∞.

2.4. Notes

In the context of the discussion immediately after the statement of Theorem 2.2,
in case G̃12 and/or G̃21 drop rank at points on the unit circle, the Model-Matching
problem in Theorem 2.2 may convert to a boundary Nevanlinna-Pick interpolation
problem for which there is an elaborate specialized theory (see e.g. Chapter 21 of
[26] and the more recent [43]). However, if one sticks with the strictly suboptimal
version of the problem, one can solve the problem with the boundary interpolation
conditions if and only if one can solve the problem without the boundary inter-
polation conditions, i.e., boundary interpolation conditions are irrelevant as far as
existence criteria are concerned. This is the route taken in the LMI solution of
the H∞-problem and provides one explanation for the disappearance of any rank
conditions in the formulation of the solution of the problem. For a complete anal-
ysis of the relation between the coupled-Riccati-equation of [54] versus the LMI
solution of [66], we refer to [127].
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3. The fractional representation approach to stabilizability and
performance

In this section we work in the general framework of the fractional representation
approach to stabilization of linear systems as introduced originally by Desoer,
Vidyasagar and coauthors [50, 137] in the 1980s and refined only recently in the
work of Quadrat [118, 121, 122]. For an overview of the more recent developments
we recommend the survey article [117] and for a completely elementary account
of the generalized Youla-Kučera parametrization with all the algebro-geometric
interpretations stripped out we recommend [120].

The set of stable single-input single-output (SISO) transfer functions is as-
sumed to be given by a general ring A in place of the ring RH∞ used for the
classical case as discussed in Section 2; the only assumption which we shall im-
pose on A is that it be a commutative integral domain. It therefore has a quotient
field K := Q(A) = {n/d : d, n ∈ A, d 6= 0} which shall be considered as the set
of all possible SISO transfer functions (or plants). Examples of A which come up
include the ring Rs(z) of real rational functions of the complex variable z with no
poles in the closed right half plane, the Banach algebra RH∞(C+) of all bounded
analytic functions on the right half plane C+ which are real on the positive real
axis, and their discrete-time analogues: (1) real rational functions with no poles in
the closed unit disk (or closed exterior of the unit disk depending on how one sets
conventions), and (2) the Banach algebra RH∞(D) of all bounded holomorphic
functions on the unit disk D with real values on the real interval (−1, 1). There
are also Banach subalgebras of RH∞(C+) or RH∞(D) (e.g., the Wiener algebra
and its relatives such as the Callier-Desoer class—see [48]) which are of interest.
In addition to these examples there are multivariable analogues, some of which we
shall discuss in the next section.

We now introduce some notation. We assume that the control-signal space
U , the disturbance-signal space W, the error-signal space Z and the measurement
signal space Y consist of column vectors of given sizes nU , nW , nZ and nY , respec-
tively, with entries from the quotient field K of A:

U = KnU , W = KnW , Z = KnZ , Y = KnY .

We are given a plant G =
[
G11 G12
G21 G22

]
: W ⊕ U → Z ⊕ Y and seek to design a

controller K : Y → U that stabilizes the system Σ(G,K) of Figure 1 as given in
Section 2. The various matrix entries Gij of G are now matrices with entries from
K (rather than RH∞ as in the classical case) of compatible sizes (e.g., G11 has
size nW × nU ) and K is a matrix over K of size nU × nY . Again v1 and v2 are tap
signals used to detect stability properties of the internal signals u and y.

Just as was explained in Section 2 for the classical case, the system Σ(G,K)
is well-posed if there is a well-defined map from

[
w
v1
v2

]
to
[ z
u
y

]
and this happens

exactly when det(I −G22K) 6= 0 (where the determinant now is an element of A);
14



when this is the case, the map from
[
w
v1
v2

]
to
[ z
u
y

]
is given byzu

y

 = Θ(G,K)

wv1

v2


where Θ(G,K) is given by (2.2). We say that the system Σ(G,K) is internally
stable if Σ(G,K) is well-posed and, in addition, if the map Θ(G,K) maps AnW ⊕
AnU ⊕AnY into AnZ ⊕AnU ⊕AnY , i.e., stable inputs w, v1, v2 are mapped to stable
outputs z, u, y. Note that this is the same as the entries of Σ(G,K) being in A.

To formulate the standard problem of H∞-control, we assume that A is
equipped with a positive-definite inner product making A at least a pre-Hilbert
space with norm ‖ · ‖A; in the classical case, one takes this norm to be the L2-
norm over the unit circle. Then we say that the system Σ(G,K) has performance
if Σ(G,K) is internally stable and in addition the transfer function Tzw from w to
z has induced operator norm bounded by some tolerance which we normalize to
be equal to 1:

‖Tzw‖op := sup{‖z‖AnZ : ‖w‖AnW ≤ 1, v1 = 0, v2 = 0} ≤ 1.

We say that the system Σ(G,K) has strict performance if in fact ‖Tzw‖op < 1.
The stabilization problem then is to describe all (if any exist) internally stabilizing
controllers K for the given plant G, i.e., all K ∈ KnU×nY so that the associated
closed-loop system Σ(G,K) is internally stable. The standard H∞-problem is to
find all internally stabilizing controllers which in addition achieve performance
‖Tzw‖op ≤ 1. The strictly suboptimal H∞-problem is to describe all internally
stabilizing controllers which achieve strict performance ‖Tzw‖op < 1.

The H∞-control problem for the special case where G22 = 0 is the Model-
Matching problem for this setup. With the same arguments as in Subsection 2.1
it follows that stabilizability forces G11, G12 and G21 all to be stable (i.e., to have
all matrix entries in A) and then K stabilizes exactly when also K is stable.

3.1. Parametrization of stabilizing controllers in terms of a given stabilizing con-
troller

We return to the general case i.e., G =
[
G11 G12
G21 G22

]
: W⊕U → Z ⊕Y. Now suppose

we have a stabilizing controller K ∈ KnU×nY . Set

U = (I −G22K)−1 and V = K(I −G22K)−1. (3.1)

Then U ∈ AnY×nY , V ∈ AnU×nY , detU 6= 0 ∈ A, K = V U−1 and U −G22V = I.
Furthermore, Θ(G,K) can then be written as

Θ(G,K) = Θ(G;U, V ) :=

 G11 +G12V G21 G12 +G12V G22 G12V
V G21 I + V G22 V
UG21 UG22 U

 . (3.2)

It is not hard to see that if U ∈ AnY×nY and V ∈ AnU×nY are such that detU 6= 0,
U − G22V = I and (3.2) is stable, i.e., in A(nZ+nU+nY)×(nW+nU+nY), then K =
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V U−1 is a stabilizing controller. A dual result holds if we set

Ũ = (I −KG22)−1 and Ṽ = (I −KG22)−1K. (3.3)

In that case Ũ ∈ AnU×nU , Ṽ ∈ AnU×nY , det Ũ 6= 0 ∈ A, K = Ũ−1Ṽ , Ũ−Ṽ G22 = I
and we can write Θ(G,K) as

Θ(G,K) = Θ(G; Ũ , Ṽ ) =

G11 +G12Ṽ G21 G12Ũ G12Ṽ

Ṽ G21 Ũ Ṽ

(I +G22Ṽ )G21 G22Ũ I +G22Ṽ

 , (3.4)

while conversely, for any Ũ ∈ AnU×nU and Ṽ ∈ AnU×nY with det Ũ 6= 0 and
Ũ − Ṽ G22 = I and such that (3.4) is stable, we have that K = Ũ−1Ṽ is a
stabilizing controller.

This leads to the following first-step more linear reformulation of the defini-
tion of internal stabilization.

Theorem 3.1. A plant G defined by a transfer matrix G ∈ K(nZ+nY)×(nW+nU ) is
internally stabilizable if and only if one of the following equivalent assertions holds:

1. There exists L = [ VU ] ∈ A(nU+nY)+nY with detU 6= 0 such that:
(a) The block matrix (3.2) is stable (i.e., has all matrix entries in A), and
(b)

[
−G22 I

]
L = I.

Then the controller K = V U−1 internally stabilizes the plant G and we have:

U = (I −G22K)−1, V = K(I −G22K)−1.

2. There exists L̃ = [ Ũ −Ṽ ] ∈ AnU×(nU+nY) with det Ũ 6= 0 such that:
(a) The block matrix (3.4) is stable (i.e., has all matrix entries in A), and
(b) L̃

[
I
G22

]
:= [ Ũ −Ṽ ]

[
I
G22

]
= I.

If this is the case, then the controller K = Ũ−1Ṽ internally stabilizes the
plant G and we have:

Ũ = (I −KG22)−1, Ṽ = (I −KG22)−1K.

With this result in hand, we are able to get a parametrization for the set of
all stabilizing controllers in terms of an assumed particular stabilizing controller.

Theorem 3.2.
1. Let K∗ ∈ KnU×nY be a stabilizing controller for G ∈ K(nZ+nY)×(nW+nU ).

Define U∗ = (I −G22K∗)−1 and V∗ = K(I −G22K∗)−1. Then the set of all
stabilizing controllers is given by

K = (V∗ +Q)(U∗ +G22Q)−1, (3.5)

where Q ∈ KnU×nY is an element of the set

Ω :=

Q ∈ KnU×nY :

G12

I
G22

Q [G21 G22 I
]
∈ A(nZ+nU+nY)×(nW+nU+nY)


(3.6)
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such that in addition det(U∗ +G22Q) 6= 0.
2. Let K∗ ∈ KnU×nY be a stabilizing controller for G ∈ K(nZ+nY)×(nW+nU ).

Define Ũ∗ = (I −K∗G22)−1 and Ṽ∗ = (I −K∗G22)−1K∗. Then the set of all
controllers is given by

K = (Ũ∗ +QG22)−1(Ṽ∗ +Q), (3.7)

where Q ∈ KnU×nY is an element of the set Ω (3.6) such that in addition
det(Ũ∗ +QG22) 6= 0.

Moreover, if Q ∈ Ω, that det(U∗ +G22Q) 6= 0 if and only if det(Ũ∗ +QG22) 6= 0,
and the formulas (3.5) and (3.7) give rise to the same controller K.

Proof. By Theorem 3.1, if K is a stabilizing controller for G, then K has the form
K = V U−1 with L = [ UV ] as in part (1) of Theorem 3.1 and then Θ(G,K) is as in
(3.2). Similarly Θ(G,K∗) is given as Θ(G;U∗, V∗) in (3.2) with U∗, V∗ in place of
U, V . As by assumption Θ(G;U∗, V∗) is stable, it follows that Θ(G;U, V ) is stable
if and only if Θ(G;U, V )−Θ(G;U∗, V∗) is stable. Let Q = V −V∗; as U = I+G22V
and U∗ = I +G22V∗, it follows that U − U∗ = G22Q. From (3.2) we then see that
the stable quantity Θ(G;U, V )−Θ(G;U∗, V∗) is given by

Θ(G;U, V )−Θ(G;U∗, V∗) =

G12

I
G22

Q [G21 G22 I
]
.

Thus

K = V U−1 = (V∗ + (V − V∗))(U∗ + (U − U∗))−1 = (V∗ +Q)(U∗ +G22Q)−1,

where Q is an element of Ω such that det(U∗ +G22Q) 6= 0.
Conversely, suppose K has the form K = (V∗ + Q)(U∗ + G22Q)−1 where

Q ∈ Ω and det(U∗ + G22Q) 6= 0. Define V = V∗ + Q, U = U∗ + G22Q. Then one
easily checks that

Θ(G;U, V ) = Θ(G;U∗, V∗) +

G12

I
G22

Q [G21 G22 I
]

is stable and[
−G22 I

] [ V
U

]
=
[
−G22 I

] [ V∗
U∗

]
+
[
−G22 I

] [ Q
G22Q

]
= I+0 = I.

So K = V U−1 stabilizes G by part (1) of Theorem 3.1. This completes the proof of
the first statement of the theorem. The second part follows in a similar way by using
the second statement in Theorem 3.1 and Q = Ṽ − Ṽ∗. Finally, since V = Ṽ and
V∗ = Ṽ∗, we find that indeed det(U∗+G22Q) 6= 0 if and only if det(Ũ∗+QG22) 6= 0,
and the formulas (3.5) and (3.7) give rise to the same controller K. �

The drawback of the parametrization of the stabilizing controllers in Theorem
3.2 is that the set Ω is not really a free-parameter set. By definition, Q ∈ Ω if Q
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itself is stable (from the (1,3) entry in the defining matrix for the Ω in (3.6)), but,
in addition, the eight additional transfer matrices

G12QG21, G12QG22, G12Q, QG21,

QG22, G22QG21, G22QG22, G22Q

should all be stable as well. The next lemma shows how the parameter set Ω can
in turn be parametrized by a free stable parameter Λ of size (nU+nY)×(nU+nY).

Lemma 3.3. Assume that G is stabilizable and that K∗ is a particular stabilizing
controller for G. Let Q ∈ KnU×nY . Then the following are equivalent:

(i) Q is an element of the set Ω in (3.6),

(ii)
[

I
G22

]
Q
[
G22 I

]
is stable,

(iii) Q has the form Q = L̃ΛL for a stable free-parameter Λ ∈ A(nU+nY)×(nU+nY),
where L̃ ∈ AnU×(nU+nY) and L ∈ A(nU+nY)×nY are given by

L̃ =
[
(I −K∗G22)−1 −(I −K∗G22)−1K∗

]
, L =

[
−K∗(I −G22K∗)−1

(I −G22K∗)−1

]
.

(3.8)

Proof. The implication (i) =⇒ (ii) is obvious. Suppose that Λ =
[
I
G22

]
Q [G22 I ]

is stable. Note that

L̃ΛL =
[
(I −K∗G22)−1 −(I −K∗G22)−1K∗

] [ I
G22

]
Q×

×
[
G22 I

] [−K∗(I −G22K∗)−1

(I −G22K∗)−1

]
= Q.

Hence (ii) implies (iii). Finally assume Q = L̃ΛL for a stable Λ. To show that
Q ∈ Ω, as Λ is stable, it suffices to show that

L1 :=

G12

I
G22

 L̃ is stable, and L2 := L
[
G21 G22 I

]
is stable.

Spelling out L1, using the definition of L̃ from (3.8), gives

L1 =

G12

I
G22

 [(I −K∗G22)−1 −(I −K∗G22)−1K∗
]
.

We note that each of the six matrix entries of L1 are stable, since they all occur
among the matrix entries of Θ(G,K∗) (see (2.2)) and K∗ stabilizes G by assump-
tion. Similarly, each of the six matrix entries of L2 given by

L2 =
[
−K∗(I −G22K∗)−1

(I −G22K∗)−1

] [
G21 G22 I

]
is stable since K∗ stabilizes G. It therefore follows that Q ∈ Ω as wanted. �

18



We say that K stabilizes G22 if the map [ v1v2 ] 7→ [ uy ] in Figure 1 is stable, i.e.,
the usual stability holds with w = 0 and z ignored. This amounts to the stability
of the lower right 2× 2 block in Θ(G,K):[

(I −KG22)−1 (I −KG22)−1K
G22(I −KG22)−1 I +G22(I −KG22)−1K

]
.

The equivalence of (i) and (ii) in Lemma 3.3 implies the following result.

Corollary 3.4. Assume that G is stabilizable. Then K stabilizes G if and only if K
stabilizes G22.

Proof. Assume K∗ ∈ KnU×nY stabilizes G. Then in particular the lower left 2× 2
block in Θ(G,K∗) is stable. Thus K∗ stabilizes G22. Moreover, K stabilizes G22 if
and only if K stabilizes G when we impose G11 = 0, G12 = 0 and G21 = 0, that is,
K is of the form (3.5) with U∗ and V∗ as in Theorem 3.2 and Q ∈ KnU×nY is such
that

[
I
G22

]
Q [G22 I ] is stable. But then it follows from the implication (ii) =⇒ (i)

in Lemma 3.3 that Q is in Ω, and thus, by Theorem 3.2, K stabilizes G (without
G11 = 0, G12 = 0, G21 = 0). �

Combining Lemma 3.3 with Theorem 3.2 leads to the following generalization
of Theorem 2.1 giving a parametrization of stabilizing controllers without the
assumption of any coprime factorization.

Theorem 3.5. Assume that G ∈ K(nZ+nY)×(nW+nU ) is stabilizable and that K∗
is one stabilizing controller for G. Define U∗ = (I − G22K∗)−1, V∗ = K∗(I −
G22K∗)−1, Ũ∗ = (I −K∗G22)−1 and Ṽ∗ = (I −K∗G22)−1K∗. Then the set of all
stabilizing controllers for G are given by

K = (V∗ +Q)(U∗ +G22Q)−1 = (Ũ∗ +QG22)−1(Ṽ∗ +Q),

where Q = L̃ΛL where L̃ and L are given by (3.8) and Λ is a free stable parameter
of size (nU +nY)× (nU +nY) so that det(U∗+G22Q) 6= 0 or equivalently det(Ũ∗+
QG22) 6= 0.

3.2. The Youla-Kučera parametrization

There are two drawbacks to the parametrization of the stabilizing controllers ob-
tained in Theorem 3.5, namely, to find all stabilizing controllers one first has to
find a particular stabilizing controller, and secondly, the map Λ 7→ Q given in
Part (iii) of Lemma 3.3 is in general not one-to-one. We now show that, under
the additional hypothesis that G22 admits a double coprime factorization, both
issues can be remedied, and we are thereby led to the well known Youla-Kučera
parametrization for the stabilizing controllers.

Recall that G22 has a double coprime factorization in case there exist stable
transfer matrices D, N , X, Y , D̃, Ñ , X̃ and Ỹ so that the determinants of D, D̃,
X and X̃ are all nonzero (in A) and

G22 = D−1N = ÑD̃−1,

[
D −N
−Ỹ X̃

][
X Ñ

Y D̃

]
=
[
InY 0
0 InU

]
. (3.9)
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According to Corollary 3.4 it suffices to focus on describing the stabilizing
controllers of G22. Note that K stabilizes G22 means that[

(I −KG22)−1 (I −KG22)−1K
G22(I −KG22)−1 I +G22(I −KG22)−1K

]
is stable, or, by Theorem 3.2, thatK is given by (3.5) or (3.7) for someQ ∈ KnU×nY

so that
[
I
G22

]
Q [G22 I ] is stable.

In case G22 has a double coprime factorization Quadrat shows in [120, Propo-
sition 4] that the equivalence of (ii) and (iii) in Lemma 3.3 has the following
refinement. We provide a proof for completeness.

Lemma 3.6. Suppose that G22 has a double coprime factorization (3.9). Let Q ∈
KnU×nY . Then

[
I
G22

]
Q [G22 I ] is stable if and only if Q = D̃ΛD for some Λ ∈

AnU×nY .

Proof. Let Q = D̃ΛD for some Λ ∈ AnU×nY . Then[
I
G22

]
Q
[
G22 I

]
=
[

QG22 Q
G22QG22 G22Q

]
=

[
D̃ΛN D̃ΛD
ÑΛN ÑΛD

]
.

Hence
[
I
G22

]
Q [G22 I ] is stable.

Conversely, assume that
[
I
G22

]
Q [G22 I ] is stable. Set Λ = D̃−1QD−1. Then

with X, Y , X̃ and Ỹ the transfer matrices from the coprime factorization (3.9) we
have

Λ =
[
X̃ −Ỹ

] [
D̃

Ñ

]
Λ
[
N D

] [ −Y
X

]

=
[
X̃ −Ỹ

] [
D̃ΛN D̃ΛD
ÑΛN ÑΛD

] [
−Y
X

]
=

[
X̃ −Ỹ

] [ QG22 Q
G22QG22 G22Q

] [
−Y
X

]
.

Thus Λ is stable. �

Lemma 3.7. Assume that G22 admits a double coprime factorization (3.9). Then
K0 is a stabilizing controller for G22 if and only if there exist X0 ∈ AnY×nY ,
Y0 ∈ AnU×nY , X̃0 ∈ AnU×nU and Ỹ0 ∈ AnU×nY with det(X0) 6= 0, det(X̃0) 6= 0 so
that K0 = Y0X

−1
0 = X̃−1

0 Ỹ0 and[
D −N
−Ỹ0 X̃0

][
X0 Ñ

Y0 D̃

]
=
[
InY 0
0 InU

]
.

In particular, K = Y X−1 = X̃−1Ỹ is a stabilizing controller for G22, where
X,Y, X̃, Ỹ come from the double coprime factorization (3.9) for G22.

20



Proof. Note that if K is a stabilizing controller for G22, then, in particular,[
I −K
−G22 I

]−1

=
[

(I −KG22)−1 K(I −G22K)−1

(I −G22K)−1G22 (I −G22K)−1

]
(3.10)

is stable. The above identity makes sense, irrespectively of K being a stabilizing
controller, as long as the left hand side is invertible. Let X, Y , X̃ and Ỹ be the
transfer matrices from the double coprime factorization. Set K = X̃−1Ỹ = Y X−1.
Then we have[

X̃ −Ỹ
−N D

]−1 [
X̃ 0
0 D

]
=

([
X̃−1 0

0 D−1

] [
X̃ −Ỹ
−N D

])−1

=
[

I −X̃−1Ỹ
−D−1N I

]
=
[

I −K
−G22 I

]−1

.

Since X̃, D and
[
X̃ −Ỹ
−N D

]−1

=
[
D̃ Y
Ñ X

]
are stable, it follows that the right-hand

side of (3.10) is stable as well. We conclude that K = X̃−1Ỹ = Y X−1 stabilizes
G22.

Now let K0 be any stabilizing controller for G22. It follows from the first part
of the proof that K = Y X−1 = X̃−1Ỹ is stabilizing for G22. Define V and U by
(3.1) and Ṽ and Ũ by (3.3). Then, using Theorem 3.2 and Lemma 3.6, there exists
a Λ ∈ AnU×nY so that

K0 = (V +Q)(U +G22Q)−1 = (Ũ +QG22)−1(Ṽ +Q),

where Q = D̃ΛD. We compute that

(I −G22K)−1 = (I −D−1NYX−1)−1 = X(DX −NY )−1D = XD (3.11)

and

(I −KG22)−1 = (I − X̃−1Ỹ ÑD̃−1)−1 = D̃(X̃D̃ − Ỹ Ñ)−1X̃ = D̃X̃. (3.12)

Thus
V = Y D, U = XD, Ṽ = D̃Ỹ , Ũ = D̃X̃.

Therefore

K0 = (V +Q)(U +G22Q)−1 = (Y D + D̃ΛD)(XD + ÑΛD)−1 (3.13)

= (Y + D̃Λ)(X + ÑΛ)−1

and

K0 = (Ũ +QG22)−1(Ṽ +Q) = (D̃X̃ + D̃ΛN)−1(D̃Ỹ + D̃ΛD) (3.14)

= (X̃ + ΛN)−1(Ỹ + ΛD).

Set

Y0 = (Y + D̃Λ), X0 = (X + ÑΛ), Ỹ0 = (Ỹ + ΛD), X̃0 = (X̃ + ΛN).
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Then certainly detX0 6= 0 and det X̃0 6= 0, and we have[
D −N
−Ỹ0 X̃0

] [
X0 Ñ

Y0 D̃

]
=
[

D −N
−Ỹ − ΛD X̃ + ΛN

][
X + ÑΛ Ñ

Y + D̃Λ D̃

]

=
[

I 0
−Λ I

] [
D −N
−Ỹ X̃

][
X Ñ

Y D̃

] [
I 0
Λ I

]
=
[

I 0
−Λ I

] [
I 0
Λ I

]
=
[
I 0
0 I

]
.

�

Since any stabilizing controller for G is also a stabilizing controller for G22,
the following corollary is immediate.

Corollary 3.8. Assume that G ∈ K(nZ+nY)×(nW+nU ) is a stabilizable and that G22

admits a double coprime factorization. Then any stabilizing controller K of G
admits a double coprime factorization.

Lemma 3.9. Assume that G is stabilizable and that G22 admits a double coprime
factorization. Then there exists a double coprime factorization (3.9) for G22 so
that DG21 and G12D̃ are stable.

Proof. Let K be a stabilizing controller for G. Then K is also a stabilizing con-
troller for G22. Thus, according to Lemma 3.7, there exists a double coprime
factorization (3.9) for G22 so that K = Y X−1 = X̃Ỹ −1. Note that (3.9) implies
that

[
X Ñ
Y D̃

] [
D −N
−Ỹ X̃

]
= I. In particular, D̃Ỹ = Y D and ÑX̃ = XN . Moreover,

from the computations (3.11) and (3.12) we see that

(I −G22K)−1 = XD and (I −KG22)−1 = D̃X̃.

Inserting these identities into the formula for Θ(G,K), and using that K stabilizes
G, we find that

Θ(G,K) =

 G11 +G12Y DG21 G12D̃X̃ G12D̃Ỹ

Y DG21 D̃X̃ D̃Ỹ

XDG21 ÑX̃ I + Ñ Ỹ

 is stable.

In particular
[
G12D̃X̃ G12D̃Ỹ

]
is stable, and thus[

G12D̃X̃ G12D̃Ỹ
] [ Ñ

−D̃

]
= G12D̃(X̃Ñ − Ỹ D̃) = G12D̃

is stable. Similarly, since
[
Y DG21
XDG21

]
is stable, we find that[

−N D
] [ Y DG21

XDG21

]
= (−NY +DX)DG21 = DG21

is stable. �
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We now present an alternative proof of Corollary 3.4 for the case that G22

admits a double coprime factorization.

Lemma 3.10. Assume that G is stabilizable and G22 admits a double coprime fac-
torization. Then K stabilizes G if and only if K stabilizes G22.

Proof. It was already noted that in case K stabilizes G, then K also stabilizes G22.
Now assume that K stabilizes G22. Let Q ∈ KnU×nY so that K is given by (3.5).
It suffices to show that Q ∈ Ω, with Ω defined by (3.6). Since G is stabilizable, it
follows from Lemma 3.9 that there exists a double coprime factorization (3.9) of
G22 so that DG21 and G12D̃ are stable. According to Lemma 3.6, Q = D̃ΛD for
some Λ ∈ AnU×nY . It follows that G12

I
G22

Q [ G21 G22 I
]

=

 G12D̃

D̃

G22D̃

Λ
[
DG21 DG22 D

]

=

 G12D̃

D̃

Ñ

Λ
[
DG21 N D

]
is stable. Hence Q ∈ Ω. �

Combining the results from the Lemmas 3.6, 3.7 and 3.10 with Theorem 3.2
and the computations (3.13) and (3.14) from the proof of Lemma 3.7 we obtain
the Youla-Kučera parametrization of all stabilizing controllers.

Theorem 3.11. Assume that G ∈ K(nZ+nY)×(nW+nU ) is stabilizable and that G22

admits a double coprime factorization (3.9). Then the set of all stabilizing con-
trollers is given by

K = (Y + D̃Λ)(X + ÑΛ)−1 = (X̃ + ΛN)−1(Ỹ + ΛD),

where Λ is a free stable parameter from AnU×nY such that det(X + ÑΛ) 6= 0 or
equivalently det(X̃ + ΛN) 6= 0.

3.3. The standard H∞-problem reduced to model matching.

We now consider the H∞-problem for a plant G =
[
G11 G12
G21 G22

]
: W ⊕ U → Z ⊕ Y,

i.e., we seek a controller K : Y → U so that not only Θ(G,K) in (2.2) is stable,
but also

‖G11 +G12K(I −G22K)−1G21‖op ≤ 1.

Assume that the plant G is stabilizable, and that K∗ : Y → U stabilizes G.
Define U∗, V∗, Ũ∗ and Ṽ∗ as in Theorem 3.2. We then know that all stabilizing
controllers of G are given by

K = (V∗ +Q)(U∗ +G22Q)−1 = (Ũ∗ +QG22)−1(Ṽ∗ +Q)
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where Q ∈ KnU×nY is any element of Ω in (3.6). We can then express the transfer
matrices U and V in (3.1) in terms of Q as follows:

U = (I −G22K)−1 = (I −G22(V∗ −Q)(U∗ −G22Q)−1)−1

= (U∗ −G22Q)(U∗ −G22Q−G22(V∗ −Q))−1

= (U∗ −G22Q)(U∗ −G22V∗)−1

= (U∗ −G22Q),

where we used that U∗ −G22V∗ = I, and

V = KU = V∗ −Q.
Similar computations provide the formulas

Ũ = Ũ∗ +QG22 and Ṽ = Ṽ∗ +Q

for the transfer matrices Ũ and Ṽ in (3.3). Now recall that Θ(G,K) can be ex-
pressed in terms of U and V as in (3.2). It then follows that left upper block in
Θ(G,K) is equal to

G11 +G12K(I −G22K)−1G21 = G11 +G12V G21 (3.15)
= G11 +G12V∗G21 −G12QG21.

The fact that K∗ stabilizes G implies that G̃11 := G11 +G12V∗G21 is stable, and
thus G12QG21 is stable as well. We are now close to a reformulation of the H∞-
problem as a model matching problem. However, to really formulate it as a model
matching problem, we need to apply the change of design parameterQ 7→ Λ defined
in Lemma 3.3, or Lemma 3.6 in case G22 admits a double coprime factorization.
The next two results extend the idea of Theorem 2.2 to this more general setting.

Theorem 3.12. Assume that G ∈ K(nZ+nY)×(nW+nU ) is stabilizable and let K ∈
KnU×nY . Then K is a solution to the standard H∞ problem for G if and only if

K = (V∗ +Q)(U∗ +G22Q)−1 = (Ũ∗ +QG22)−1(Ṽ∗ +Q)

with Q = L̃ΛL, where L̃ and L are defined by (3.8), so that det(U∗ +G22Q) 6= 0,
or equivalently det(Ũ∗ + QG22) 6= 0, and Λ ∈ A(nU+nY)×(nU+nY) is any solution
to the model matching problem for G̃11, G̃12 and G̃21 defined by

G̃11 := G11 +G12V∗G21, G̃12 := G12L̃, G̃21 := LG21,

i.e., so that
‖G̃11 + G̃12ΛG̃21‖op ≤ 1.

Proof. The statement essentially follows from Theorem 3.5 and the computation
(3.15) except that we need to verify that the functions G̃11, G̃12 and G̃21 satisfy
the conditions to be data for a model matching problem, that is, they should be
stable. It was already observed that G̃11 is stable. The fact that G̃12 and G̃21 are
stable was shown in the proof of Lemma 3.3. �

We have a similar result in case G22 admits a double coprime factorization.
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Theorem 3.13. Assume that G ∈ K(nZ+nY)×(nW+nU ) is stabilizable and that G22

admits a double coprime factorization (3.9). Let K ∈ KnY×nU . Then K is a solu-
tion to the standard H∞ problem for G if and only if

K = (Y + D̃Λ)(X + ÑΛ)−1 = (X̃ + ΛN)−1(Ỹ + ΛD),

where Λ ∈ AnU×nY so that det(X + ÑΛ) 6= 0, or equivalently det(X̃ + ΛN) 6= 0,
is any solution to the model matching problem for G̃11, G̃12 and G̃21 defined by

G̃11 := G11 +G12Y DG21, G̃12 := G12D̃, G̃21 := DG21,

i.e., so that

‖G̃11 + G̃12ΛG̃21‖op ≤ 1.

Proof. The same arguments apply as in the proof of Theorem 3.12, except that in
this case Lemma 3.9 should be used to show that G̃12 and G̃21 are stable. �

3.4. Notes

The development in Section 3.1 on the parametrization of stabilizing controllers
without recourse to a double coprime factorization of G22 is based on the ex-
position of Quadrat [120]. It was already observed by Zames-Francis [140] that
Q = K(I − G22K)−1 can be used as a free stable design parameter in case G22

is itself already stable; in case G22 is not stable, Q is subject to some additional
interpolation conditions. The results of [120] is an adaptation of this observation
to the general ring-theoretic setup. The more theoretical papers [118, 122] give
module-theoretic interpretations for the structure associated with internal stabi-
lizability. In particular, it comes out that every matrix transfer function G22 with
entries in K has a double-coprime factorization if and only if A is a Bezout domain,
i.e., every finitely generated ideal in A is principal; this recovers a result already
appearing in the book of Vidyasagar [136]. A new result which came out of this
module-theoretic interpretation was that internal stabilizability of a plant G22 is
equivalent to the existence of a double-coprime factorization for G22 exactly when
the ring A is projective-free, i.e., every submodule of a finitely generated free mod-
ule over A must itself be free. This gives an explanation for the earlier result of
Smith [130] that this phenomenon holds for the case where A is equal H∞ over
the unit disk or right-half plane.

Earlier less complete results concerning parametrization of the set of stabi-
lizing controllers without the assumption of a coprime factorization were obtained
by Mori [102] and Sule [132]. Mori [103] also showed that the internal-stabilization
problem can be reduced to model matching form for the general case where the
plant has the full 2× 2-block structure G =

[
G11 G12
G21 G22

]
.

Lemma 3.10 for the classical case is Theorem 2 on page 35 in [64]. The proof
there relies in a careful analysis of signal-flow diagrams; we believe that our proof
is more direct.
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4. Feedback control for linear time-invariant multidimensional
systems

4.1. Multivariable frequency-domain formulation

The most obvious multivariable analogue of the classical single-variable setting
considered in the book of Francis [64] is as follows. We take the underlying field to
be the complex numbers C; in the engineering applications, one usually requires
that the underlying field be the reals R, but this can often be incorporated at the
end by using the characterization of real rational functions as being those complex
rational functions which are invariant under the conjugation operator s(z) 7→ s(z).
We let Dd = {z = (z1, . . . , zd) : |zk| < 1} be the unit polydisk in the d-dimensional
complex space Cd and we take our ring A of stable plants to be the ring C(z)s of all
rational functions s(z) = p(z)

q(z) in d variables (thus, p and q are polynomials in the d
variables z1, . . . , zd where we set z = (z1, . . . , zd)) such that s(z) is bounded on the
polydisk Dd. The ring C[z] of polynomials in d variables is a unique factorization
domain so we may assume that p and q have no common factor (i.e., that p and
q are relatively coprime) in the fractional representation s = p

q for any element of
C(z1, . . . , zd). Unlike in the single-variable case, for the case d > 1 it can happen
that p and q have common zeros in Cd even when they are coprime in C[z] (see
[138] for an early analysis of the resulting distinct notions of coprimeness). It turns
out that for d ≥ 3, the ring C(z)s is difficult to work with since the denominator q
for a stable ring element depends in a tricky way on the numerator p: if s ∈ C(z)s
has coprime fractional representation s = p

q , while it is the case that necessarily
q has no zeros in the open polydisk Dd, it can happen that the zero variety of q
touches the boundary ∂Dd as long as the zero variety of p also touches the same
points on the boundary in such a way that the quotient s = p

q remains bounded on
Dd. Note that at such a boundary point ζ, the quotient s = p/q has no well-defined
value. In the engineering literature (see e.g. [45, 131, 84]), such a point is known
as a nonessential singularity of the second kind.

To avoid this difficulty, Lin [92, 93] introduced the ring C(z)ss of structured
stable rational functions, i.e., rational functions s ∈ C(z) so that the denominator
q in any coprime fractional representation s = p

q for s has no zeros in the closed

polydisk Dd. According to the result of Kharitonov–Torres-Muñoz [84], whenever
s = p

q ∈ C(z)s is stable in the first (non-structured) sense, an arbitrarily small
perturbation of the coefficients of q may lead to the perturbed q having zeros in
the open polydisk Dd resulting in the perturbed version s = p

q of s being unstable;
this phenomenon does does not occur for s ∈ C(z)ss, and thus structured stable
can be viewed just as a robust version of stable (in the unstructured sense). Hence
one can argue that structured stability is the more desirable property from an
engineering perspective. In the application to delay systems using the systems-
over-rings approach [46, 85, 83], on the other hand, it is the collection C(z)ss of
structurally stable rational functions which comes up in the first place.
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As the ring A = C(z)ss is a commutative integral domain, we can apply the
results of Section 3 to this particular setting. It was proved in connection with
work on systems-over-rings rather than multidimensional systems (see [46, 83])
that the ring C(z)ss is projective-free. As pointed out in the notes of Section 3
above, it follows that stabilizability of G22 is equivalent to the existence of a double
coprime factorization for the plant G22 (see [119]), thereby settling a conjecture
of Lin [92, 93, 94]. We summarize these results as follows.

Theorem 4.1. Suppose that we are given a system G =
[
G11 G12
G21 G22

]
over the quo-

tient field Q(C(z)ss) of the ring C(z)ss of structurally stable rational functions in
d variables. If there exists a controller K = Y X−1 = X̃−1Ỹ which internally sta-
bilizes G, then G22 has a double coprime factorization and all internally stabilizing
controllers K for G are given by the Youla-Kučera parametrization.

Following Subsection 3.3, the Youla-Kučera parametrization can then be used
to rewrite the H∞-problem in the form of a model-matching problem: Given
T1, T2, T3 equal to matrices over C(z)ss of respective sizes nZ × nW , nW × nU
and nY × nW , find a matrix Λ over C(z)ss of size nU × nY so that the affine
expression S given by

S = T1 + T2ΛT3 (4.1)

has supremum norm at most 1, i.e., ‖S‖∞ = max{‖S(z)‖ : z ∈ Dd} ≤ 1.
For mathematical convenience we shall now widen the class of admissible

solutions and allow Λ1, . . . ,ΛJ to be in the algebra H∞(Dd) of bounded analytic
functions on Dd. The unit ball of H∞(Dd) is the set of all holomorphic functions S
mapping the polydisk Dd into the closed single-variable unit disk D ⊂ C; we denote
this space by Sd, the d-variable Schur class. While T1, T2 and T3 are assumed to
be in C(z)ss, we allow Λ in (4.1) to be in H∞(Dd).

Just as in the classical one-variable case, it is possible to give the model-
matching form (4.1) an interpolation interpretation, at least for special cases (see
[73, 74, 32]). One such case is where nW = nZ = nY = 1 while nU = J . Then
T1 and T3 are scalar while T2 = [ T2,1 ··· T2,J ] is a row. Assume in addition that
T3 = 1. Then the model-matching form (4.1) collapses to

S = T1 + T21Λ1 + · · ·+ T2JΛJ (4.2)

where Λ1, . . .ΛJ are J free stable scalar functions. Under the assumption that the
intersection of the zero varieties of T2,1, . . . , T2,J within the closed polydisk Dd

consists of finitely many (say N) points

z1 = (z1,1, . . . , z1,d), · · · , zN = (zN,1, . . . , zN,d)

and if we let w1, . . . , wN be the values of T1 at these points

w1 = T1(z1), . . . , wN = T1(zN ),

then it is not hard to see that a function S ∈ C(z)ss has the form (4.2) if and only
if it satisfies the interpolation conditions

S(zi) = wi for i = 1, . . . , N. (4.3)
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In this case the model-matching problem thus becomes the following finite-point
Nevanlinna-Pick interpolation problem over Dd: find S ∈ C(z)ss subject to |S(z)| ≤
1 for all z ∈ Dd which satisfies the interpolation conditions (4.3). Then the d-
variable H∞-Model-Matching problem becomes: find S ∈ Sd so that S(z1) = w1

for i = 1, . . . , N .
A second case (see [32]) where the polydisk Model-Matching Problem can be

reduced to an interpolation problem is the case where T2 and T3 are square (so
nZ = nU and nY = nW) with invertible values on the distinguished boundary of
the polydisk; under these assumptions it is shown in [32] (see Theorem 3.5 there)
how the model-matching problem is equivalent to a bitangential Nevanlinna-Pick
interpolation problem along a subvariety, i.e., bitangential interpolation conditions
are specified along all points of a codimension-1 subvariety of Dd (namely, the union
of the zero sets of detT2 and detT3 intersected with Dd). For d = 1, codimension-1
subvarieties are isolated points in the unit disk; thus the codimension-1 interpola-
tion problem is a direct generalization of the bitangential Nevanlinna-Pick inter-
polation problem studied in [26, 58, 62]. However for the case where the number
of variables d is at least 3, there is no theory with results parallel to those of the
classical case.

Nevertheless, if we change the problem somewhat there is a theory parallel
to the classical case. To formulate this adjustment, we define the d-variable Schur-
Agler class SAd to consist of those functions S analytic on the polydisk for which
the operator S(X1, . . . , Xd) has norm at most 1 for any collection X1, . . . , Xd of
d commuting strict contraction operators on a separable Hilbert space K; here
S(X1, . . . , Xd) can be defined via the formal power series for S:

S(X1, . . . , Xd) =
∑
n∈Zd

+

snX
n, if S(z) =

∑
n∈Zd

+

snz
n

where we use the standard multivariable notation

n = (n1, . . . , nd) ∈ Zd+, Xn = Xn1
1 · · ·X

nd

d and zn = zn1
1 · · · z

nd

d .

For the cases d = 1, 2, it turns out, as a consequence of the von Neumann inequality
or the Sz.-Nagy dilation theorem for d = 1 and of the Andô dilation theorem [17]
for d = 2 (see [109, 34] for a full discussion), that the Schur-Agler class SAd and
the Schur class Sd coincide, while, due to an explicit example of Varopoulos, the
inclusion SAd ⊂ Sd is strict for d ≥ 3.

There is a result due originally to Agler [1] and developed and refined in a
number of directions since (see [3, 35] and [4] for an overview) which parallels the
one-variable case; for the case of a simple set of interpolation conditions (4.3) the
result is as follows: there exists a function S in the Schur-Agler class SAd which
satisfies the set of interpolation conditions S(zi) = wi for i = 1, . . . , N if and only
if there exist d positive semidefinite matrices P(1), . . . ,P(d) of size N ×N so that

1− wiwj =
d∑
k=1

(1− zi,kzj,k)P(k)
i,j .
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For the case d = 1, the Pick matrix P =
[ 1−wiwj

1−zizj

]N
i,j=1

is the unique solution of
this equation, and we recover the classical criterion P ≥ 0 for the existence of
solutions to the Nevanlinna-Pick problem. There is a later realization result of
Agler [2] (see also [3, 35]): a given holomorphic function S is in the Schur-Agler
class SAd(L(U ,Y)) if and only if S has a contractive Givone-Roesser realization:
S(z) = D+C(I −Z(z)A)−1Z(z)B where [A B

C D ] : (⊕dk=1Xk ⊕U)→ (⊕dk=1Xk ⊕Y)

is contractive with Z(z) =

[ z1IX1

. . .
zdIXd

]
.

Direct application of the Agler result to the bitangential Nevanlinna-Pick
interpolation problem along a subvariety, however, gives a solution criterion in-
volving an infinite Linear Matrix Inequality (where the unknown matrices have
infinitely many rows and columns indexed by the points of the interpolation-node
subvariety)—see [32, Theorem 4.1]. Alternatively, one can use the polydisk Com-
mutant Lifting Theorem from [31] to get a solution criterion involving a Linear Op-
erator Inequality [32, Theorem 5.2]. Without further massaging, either approach
is computationally unattractive; this is in contrast with the state-space approach
discussed below. In that setting there exists computable sufficient conditions, in
terms of a pair of LMIs and a coupling condition, that in general are only sufficient,
unless one works with a more conservative notion of stability and performance.

4.2. Multidimensional state-space formulation

The starting point in this subsection is a quadruple {A,B,C,D} consisting of
operators A, B, C and D so that [A B

C D ] :
[ X
W⊕U

]
→
[ X
Z⊕Y

]
and a partitioning

X = X1⊕· · ·⊕Xd of the space X . Associate with such a quadruple {A,B,C,D} is
a linear state-space system Σ of Givone-Roesser type (see [67]) that evolves over
Zd+ and is given by the system of equations

Σ :=


[
x1(n+e1)

...
xd(n+ed)

]
= A

[
x1(n)

...
xd(n)

]
+Bu(n)

y(n) = Cx(n) +Du(n)

(n ∈ Zd+), (4.4)

with initial conditions a specification of the state values xk(
∑
j 6=k tjej) for t =

(t1, . . . , td) ∈ Zd+ subject to tk = 0 where k = 1, . . . , d. Here ek stands for the k-th

unit vector in Cd and x(n) =

[
x1(n)

...
xd(n)

]
. We call X the state-space and A the state

operator. Moreover, the block operator matrix [A B
C D ] is referred to as the system

matrix.
Following [81], the Givone-Roesser system (4.4) is said to be asymptotically

stable in case, for zero input u(n) = 0 for n ∈ Zd+ and initial conditions with the
property

sup
t∈Zd

+ : tk=0

‖xk(
d∑
j=1

tjej)‖ <∞ for k = 1, . . . , d,
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the state sequence x satisfies

sup
n∈Zd

+

‖x(n)‖ <∞ and lim
n→∞

‖x(n)‖ = 0,

where n→∞ is to be interpreted as min{n1, . . . nd} → ∞ when n = (n1, . . . , nd) ∈
Zd+.

With the Givone-Roesser system (4.4) we associate the transfer function G(z)
given by

G(z) = D + C(I − Z(z)A)−1Z(z)B, (4.5)

defined al least for z ∈ Cd with ‖z‖ sufficiently small, where

Z(z) =

 z1IX1

. . .
zdIXd

 (z ∈ Cd). (4.6)

We then say that {A,B,C,D} is a (state-space) realization for the function G,
or if G is not specified, just refer to {A,B,C,D} as a realization. The realization
{A,B,C,D}, or just the operator A, is said to be Hautus-stable in case the pencil
I − Z(z)A is invertible on the closed polydisk Dd.

Here we only consider the case that X is finite dimensional; then the entries
of the transfer function G are in the quotient field Q(C(z)ss) of C(z)ss and are
analytic at 0, and it is straightforward to see that G is structurally stable in case
G admits a Hautus-stable realization. For the case d = 2 it has been asserted in
the literature [81, Theorem 4.8] that asymptotic stability and Hautus stability are
equivalent; presumably this assertion continues to hold for general d ≥ 1 but we
do not go into details here.

Given a realization {A,B,C,D} where the decomposition X = X1⊕· · ·⊕Xd
is understood, our main interest will be in Hautus-stability; hence we shall say
simply that A is stable rather than Hautus-stable.

As before we consider controllers K in Q(C(z)ss) of size nY × nU that we
also assume to be given by a state-space realization

K(z) = DK + CK(I − ZK(z)AK)−1ZK(z)BK (4.7)

with system matrix
[
AK BK

CK DK

]
:
[XK

Y
]
→
[XK

U
]
, a decomposition of the state-space

XK = X1,K ⊕ · · ·⊕Xd,K and ZK(z) defined analogous to Z(z) but with respect to
the decomposition of XK . We now further specify the matrices B, C and D from
the realization {A,B,C,D} as

B =
[
B1 B2

]
, C =

[
C1

C2

]
, D =

[
D11 D12

D21 D22

]
(4.8)

compatible with the decompositions Z ⊕ Y and W ⊕ U . We can then form the
closed loop system Gcl = Σ(G,K) of the two transfer functions. The closed loop
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system Gcl = Σ(G,K) corresponds to the feedback connection A B1 B2

C1 D11 D12

C2 D21 D22

 x
w
u

→
 x̃
z
y

 , [
AK BK
CK DK

]
:
[
xK
uK

]
→
[
x̃K
yK

]
subject to

x = Z(z)x̃, xK = ZK(z)x̃K , uK = y and yK = u.

This feedback loop is well-posed exactly when I − D22DK is invertible. Since,
under the assumption of well posedness, one can always arrange via a change of
variables that D22 = 0 (cf., [78]), we shall assume that D22 = 0 for the remainder
of the paper. In that case well-posedness is automatic and the closed loop system
Gcl admits a state-space realization

Gcl(z) = Dcl + Ccl(I − Zcl(z)Acl)−1Zcl(z)Ccl (4.9)

with system matrix[
Acl Bcl
Ccl Dcl

]
=

 A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21

 (4.10)

and

Zcl(z) =
[
Z(z) 0

0 ZK(z)

]
(z ∈ Cd).

The state-space (internal) stabilizability problem then is: Given the realization
{A,B,C,D} find a compatible controller K with realization {AK , BK , CK , DK}
so that the closed-loop realization {Acl, Bcl, Ccl, Dcl} is stable, i.e., so that I −
Zcl(z)Acl is invertible on the closed polydisk Dd. We also consider the strict state-
space H∞-problem: Given the realization {A,B,C,D}, find a compatible con-
troller K with realization {AK , BK , CK , DK} so that the closed loop realization
{Acl, Bcl, Ccl, Dcl} is stable and the closed-loop system Gcl satisfies ‖Gcl(z)‖ < 1
for all z ∈ Dd.

State-space stabilizability. In the fractional representation setting of Section 3 it
took quite some effort to derive the result: “If G is stabilizable, then K stabilizes
G if and only if K stabilizes G22” (see Corollary 3.4 and Lemma 3.10). For the
state-space stabilizability problem this result is obvious, and what is more, one
can drop the assumption that G needs to be stabilizable. Indeed, G22 admits the
realization {A,B2, C2, 0} (assuming D22 = 0), so that the closed-loop realization
for Σ(G22,K) is equal to {Acl, 0, 0, 0}. In particular, both closed-loop realizations
have the same state operator Acl, and thus K with realization {AK , BK , CK , DK}
stabilizes G22 if and only if K stabilizes G, without any assumption on the stabi-
lizability of G.

The state-space stabilizability problem does not have a clean solution; To
discuss the partial results which exist, we first introduce some terminology.
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Let {A,B,C,D} be a given realization as above with decomposition of B, C
and D as in (4.8). The Givone-Roesser output pair {C2, A} is said to be Hautus-
detectable if the block-column matrix

[
I−Z(z)A

C2

]
is of maximal rank nX (i.e., is

left invertible) for all z in the closed polydisk Dd. We say that {C2, A} is operator-
detectable in case there exists an output-injection operator L : Y → X so that
A+LC2 is stable. Dually, the Givone-Roesser input pair {A,B2} is called Hautus-
stabilizable if it is the case that the block-row matrix

[
I −AZ(z) B2

]
has max-

imal rank nX (i.e., is right invertible) for all z ∈ Dd, and operator-stabilizable if
there is a state-feedback operator F : X → U so that A+B2F is stable. Notice that
both Hautus-detectability and operator-detectability for the pair (C,A) reduce to
stability of A in case C = 0. A similar remark applies to stabilizability for an input
pair (A,B).

We will introduce yet another notion of detectability and stabilizability shortly,
but in order to do this we need a stronger notion of stability. We first define D to
be the set

D =

{[
X1

. . .
Xd

]
: Xi : Xi → Xi, i = 1, , . . . , d

}
, (4.11)

which is also equal to the commutant of {Z(z) : z ∈ Zd} in the C∗-algebra of
bounded operators on X . We then say that the realization {A,B,C,D}, or just
A, is scaled stable in case there exists an invertible operator Q ∈ D so that
‖Q−1AQ‖ < 1, or, equivalently, if there exists a positive definite operator X
(notation X > 0) in D so that AXA∗ − X < 0. To see that the two definitions
coincide, take either X = QQ∗ ∈ D, or, when starting with X > 0, factor X
as X = QQ∗ for some Q ∈ D. It is not hard to see that scaled stability implies
stability. Indeed, assume there exists an invertible Q ∈ D so that ‖Q−1AQ‖ < 1.
Then Z(z)Q−1AQ = Q−1Z(z)AQ is a strict contraction for each z ∈ Dd, and thus
Q−1(I − Z(z)A)Q = I − Z(z)Q−1AQ is invertible on Dd. But then I − Z(z)A
is invertible on Dd as well, and A is stable. The converse direction, even though
asserted in [111, 95], turns out not to be true in general, as shown in [16] via a con-
crete example. The output pair {C2, A} is then said to be scaled-detectable if there
exists an output-injection operator L : Y → X so that A+LC2 is scaled stable, and
the input pair {A,B2} is called scaled-stabilizable if there exists a state-feedback
operator F : X → U so that A+B2F is scaled stable.

While a classical result for the 1-D case states that operator, Hautus and
scaled detectability, as well as operator, Hautus and scaled stabilizability, are
equivalent, in the multidimensional setting considered here only one direction is
clear.

Proposition 4.2. Let {A,B,C,D} be a given realization as above with decomposi-
tion of B, C and D as in (4.8).
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1. If the output pair {C2, A} is scaled-detectable, then {C2, A} is also operator-
detectable. If the output pair {C2, A} is operator-detectable, then {C2, A} is
also Hautus-detectable.

2. If the input pair {A,B2} is scaled-stabilizable, then {A,B2} is also operator-
stabilizable. If the input pair {A,B2} is operator-stabilizable, then {A,B2} is
also Hautus-stabilizable.

Proof. Since scaled stability is a stronger notion than stability, the first implica-
tions of both (1) and (2) are obvious. Suppose that L : Y → X is such that A+LC2

is stable. Then [
I −Z(z)L

] [I − Z(z)A
C2

]
= I − Z(z)(A+ LC2)

is invertible for all z ∈ Dd from which it follows that {C2, A} is Hautus-detectable.
The last assertion concerning stabilizability follows in a similar way by making use
of the identity [

I −AZ(z) B2

] [ I
−FZ(z)

]
= I − (A+B2F )Z(z).

�

The combination of operator-detectability together with operator-stabiliz-
ability is strong enough for stabilizability of the realization {A,B,C,D} and we
have the following weak analogue of Theorem 2.4

Theorem 4.3. Let {A,B,C,D} be a given realization as above with decomposition
of B, C and D as in (4.8) (with D22 = 0). Assume that {C2, A} is operator-
detectable and {A,B2} is operator-stabilizable. Then {A,B,C,D} is stabilizable.
Moreover, in this case one stabilizing controller is K ∼ {AK , BK , CK , DK} where[

AK BK
CK DK

]
=
[
A+B2F + LC2 −L

F 0

]
(4.12)

where L : Y → X and F : X → U are any operators chosen such that A + LC2

and A+ FB2 are stable.

Proof. It is possible to motivate these formulas with some observability theory
(see [57]) but, once one has the formulas, it is a simple direct check that[

Acl Bcl
Ccl Dcl

]
=
[
A+B2DKC2 B2CK

BKC2 AK

]
=
[

A B2F
−LC2 A+B2F + LC2

]
.

It is now a straightforward exercise to check that this last matrix can be put
in the triangular form

[
A+LC2 0
−LC2 A+B2F

]
via a sequence of block-row/block-column

similarity transformations, from which we conclude that Acl is stable as required.
�
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Remark 4.4. A result for the systems-over-rings setting that is analogous to that
of Theorem 4.3 is given in [85]. There the result is given in terms of a Hautus-
type stabilizable/detectable condition; in the systems-over-rings setting, Hautus-
detectability/stabilizability is equivalent to operator-detectability/stabilizability
(see Theorem 3.2 in [83]) rather than merely sufficient as in the present setting (see
Proposition 4.2 above). The Hautus-type notions of detectability and stabilizability
in principle are checkable using methods from [80]: see the discussion in [83, page
161]. The weakness of Theorem 4.3 for our multidimensional setting is that there
are no checkable criteria for when {C2, A} and {A,B2} are operator-detectable
and operator-stabilizable since the Hautus test is in general only necessary.

An additional weakness of Theorem 4.3 is that it goes in only one direction:
we do not assert that operator-detectability of {C2, A} and operator-stabilizability
for {A,B2} is necessary for stabilizability of {A,B,C,D}. These weaknesses prob-
ably explain why apparently this result does not appear explicitly in the control
literature.

While there are no tractable necessary and sufficient conditions for solving
the state-space stabilizability problem available, the situation turns out quite dif-
ferently when working with the more conservative notion of scaled stability. The
following is a more complete analogue of Theorem 2.4 combined with Theorem
2.3.

Theorem 4.5. Let {A,B,C,D} be a given realization. Then {A,B,C,D} is scaled-
stabilizable, i.e., there exists a controller K with realization {AK , BK , CK , DK}
so that the closed loop state operator Acl is scaled stable, if and only if the input
pair {A,B2} is scaled operator-stabilizable and the output pair {C2, A} is scaled
operator-detectable, i.e., there exist matrices F and L so that A+B2F and A+LC2

are scaled stable. In this case the controller K given by (4.12) solves the scaled-
stabilization problem for {A,B,C,D}. Moreover:

1. The following conditions concerning the input pair are equivalent:
(a) {A,B2} is scaled operator-stabilizable.
(b) There exists Y ∈ D satisfying the LMIs:

B2,⊥(AY A∗ − Y )B∗2,⊥ < 0, Y > 0 (4.13)

where B2,⊥ any injective operator with range equal to KerB2.
(c) There exists Y ∈ D satisfying the LMIs

AY A∗ − Y −B2B
∗
2 < 0, Y > 0. (4.14)

2. The following conditions concerning the output pair are equivalent:
(a) {C2A, } is scaled operator-detectable.
(b) There exists X ∈ D satisfying the LMIs:

C∗2,⊥(A∗XA−X)C2,⊥ < 0, X > 0. (4.15)

where C2,⊥ any injective operator with range equal to KerC2.
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(c) There exists X ∈ D satisfying the LMIs

A∗XA−X − C∗2C2 < 0, X > 0. (4.16)

One of the results we shall use in the proof of Theorem 4.5 is known as
Finsler’s lemma [61], which also plays a key role in [98, 78]. This result can be
interpreted as a refinement of the Douglas lemma [51] which is well known in the
operator theory community.

Lemma 4.6 (Finsler’s lemma). Assume R and H are given matrices of appropriate
size with H = H∗. Then there exists a µ > 0 so that µR∗R > H if and only if
R∗⊥HR⊥ < 0 where R⊥ is any injective operator with range equal to kerR.

Finsler’s lemma can be seen as a special case of another important result,
which we shall refer to as Finsler’s lemma II. This is one of the main underlying
tools in the proof of the solution to the H∞-problem obtained in [66, 18].

Lemma 4.7 (Finsler’s lemma II). Given matrices R, S and H of appropriate sizes
with H = H∗, the following are equivalent:

(i) There exists a matrix J so that H +
[
R∗ S∗

] [ 0 J∗

J 0

] [
R
S

]
< 0,

(ii) R∗⊥HR⊥ < 0 and S∗⊥HS⊥ < 0, where R⊥ and S⊥ are injective operators
with ranges equal to kerR and kerS, respectively.

The proof of Finsler’s Lemma II given in [66] uses only basic linear algebra
and is based on a careful administration of the kernels and ranges from the various
matrices. In particular, the matrices J in statement (i) can actually be constructed
from the data. We show here how Finsler’s lemma follows from the extended
version.

Proof of lemma 4.6 using Lemma 4.7. Apply Lemma 4.7 with R = S. Then (ii)
reduces to R∗⊥HR⊥ < 0, which is equivalent to the existence of a matrix J so that
K = −(J∗+J) satisfies R∗KR > H. Since for such a matrix K we have K∗ = K,
it follows that R∗K̃R > H holds for K̃ = µI as long as µI > K. �

With these results in hand we can proof Theorem 4.5.

Proof of Theorem 4.5. We shall first prove that scaled stabilizability of {A,B,C,D}
is equivalent to the existence of solutions X and Y in D for the LMIs (4.15) and
(4.13). Note that Acl can be written in the following affine way:

Acl =
[
A 0
0 0

]
+
[

0 B2

I 0

] [
AK BK
CK DK

] [
0 I
C2 0

]
. (4.17)

Now let Xcl : X ⊕ XK be an invertible matrix in Dcl, where Dcl stands for the
commutant of {Zcl(z) : z ∈ Zd}. Let X be the compression of Xcl to X and Y
the compression of X−1

cl to X . Then X,Y ∈ D. Assume that Xcl > 0. Thus, in
particular, X > 0 and Y > 0. Then AclXclAcl −Xcl < 0 if and only if[

−X−1
cl Acl

A∗cl −Xcl

]
< 0. (4.18)
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Now define

H =

 −X−1
cl

[
A 0
0 0

]
[
A∗ 0
0 0

]
−Xcl

 , R∗ =


0 0
0 0
0 C∗2
I 0

 , S∗ =


0 I
B2 0
0 0
0 0


and

J =
[
AK BK
CK DK

]
.

Note that H, R and S are determined by the problem data, while J amounts to
the system matrix of the controller to be designed. Then[

−X−1
cl Acl

A∗cl −Xcl

]
= H +

[
R∗ S∗

] [ 0 J∗

J 0

] [
R
S

]
. (4.19)

Thus, by Finsler’s lemma II, the inequality (4.18) holds for some J =
[
AK BK

CK DK

]
if and only if R∗⊥HR⊥ < 0 and S∗⊥HS⊥ < 0, where without loss of generality we
can take

R⊥ =


I 0 0
0 I 0
0 0 C2,⊥
0 0 0

 and S⊥ =


0 0 0

B2,⊥ 0 0
0 I 0
0 0 I


with C2,⊥ and B2,⊥ as described in part (b) of statements 1 and 2. Writing out
R∗⊥HR⊥ we find that R∗⊥HR⊥ < 0 if and only if −X−1

cl

[
AC2,⊥

0

]
[
C∗2,⊥A

∗ 0
]
−C∗2,⊥XC2,⊥

 < 0

which, after taking a Schur complement, turns out to be equivalent to

C∗2,⊥(A∗XA−X)C2,⊥ =
[
C∗2,⊥A

∗ 0
]
Xcl

[
AC2,⊥

0

]
− C∗2,⊥XC2,⊥ < 0.

A similar computation shows that S∗⊥HS⊥ < 0 is equivalent to B2,⊥(AY A∗ −
Y )B∗2,⊥ < 0. This proves the first part of our claim.

For the converse direction assume we have X and Y in D satisfying (4.15)–
(4.13). Most of the implications in the above argumentation go both ways, and
it suffices to prove that there exists an operator Xcl on X ⊕ XK in Dcl, with
XK an arbitrary finite dimensional Hilbert space with some partitioning XK =
XK,1 ⊕ · · · ⊕ XK,d, so that Xcl > 0 and X and Y are the compressions to X of
Xcl and X−1

cl , respectively. Since (4.15)–(4.13) hold with X and Y replaced by
ρX and ρY for any positive number ρ, we may assume without loss of generality
that [X I

I Y ] > 0. The existence of the required matrix Xcl can then be derived
from Lemma 7.9 in [57] (with nK = n). To enforce the fact that Xcl be in Dcl
we decompose X = diag(X1, . . . , Xd) and Y = diag(Y1, . . . , Yd) as in (4.11) and
complete Xi and Yi to positive definite matrices so that [Xi ∗

∗ ∗ ]−1 = [ Yi ∗
∗ ∗ ].
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To complete the proof it remains to show the equivalences of parts (a), (b)
and (c) in both statements 1 and 2. The equivalences of the parts (b) and (c)
follows immediately from Finsler’s lemma with R = B2 (respectively, R = C∗2 )
and H = AY A∗−Y (respectively, H = A∗XA−X), again using that X in (4.15)
can be replaced with µX (respectively, Y in (4.13) can be replaced with µY ) for
any positive number µ.

We next show that (a) is equivalent to (b) for statement 1; for statement
2 the result follows with similar arguments. Let F : X → U , and let X ∈ D be
positive definite. Taking a Schur complement it follows that

(A∗ + F ∗B∗2)X(A+B2F )−X < 0 (4.20)

if and only if [
−X−1 A+B2F

A∗ + F ∗B∗2 −X

]
< 0.

Now write[
−X−1 A+B2F

A∗ + F ∗B∗2 −X

]
=[

−X−1 A
A∗ −X

]
+
[
B2 0
0 I

] [
0 F
F ∗ 0

] [
B∗2 0
0 I

]
.

Thus, applying Finsler’s lemma II with

H =
[
−X−1 A
A∗ −X

]
, R =

[
B∗2 0

]
, S =

[
0 I

]
and J = F,

(4.21)
we find that there exists an F so that (4.20) holds if and only if

R∗⊥HR⊥ < 0 and S∗⊥HS⊥ < 0

with now R⊥ =
[
B2,⊥ 0

0 I

]
and S⊥ = [ I0 ]. The latter inequality is the same as

−X−1 < 0 and thus vacuous. The first inequality, after writing out R∗⊥HR⊥,
turns out to be [

−B∗2,⊥X−1B2,⊥ B∗2,⊥A

A∗B2,⊥ −X

]
< 0,

which, after another Schur complement, is equivalent toB∗2,⊥(AX−1A∗−X−1)B2,⊥.
�

Since scaled stability implies stability, it is clear that finding operators F and
L wit A+B2F and A+LC2 scaled-stable implies that A+B2F and A+LC2 are also
stable. In particular, having such operators F and L we find the coprime factoriza-
tion of G22 via the functions in Theorem 4.3. While there are no known tractable
necessary and sufficient conditions for operator-detectability/stabilizability, the
LMI criteria in parts (iii) and (iv) of Theorem 4.5 for the scaled versions are con-
sidered computationally tractable. Moreover, an inspection of the last part of the
proof shows how operators F and L so that A+B2F and A+LC2 are scaled stable
can be constructed from the solutions X and Y from the LMIs in (4.13)–(4.16):

37



Assume we have X,Y ∈ D satisfying (4.13)–(4.16). Define H, R and S as in (4.21),
and determine a J so that H+ [R∗ S∗ ]

[
0 J∗

J 0

]
[RS ] < 0; this is possible as the proof

of Finsler’s lemma II is essentially constructive. Then take F = J . In a similar
way one can construct L using the LMI solution Y .

Stability versus scaled stability, µ versus µ̂. We observed above that the notion of
scaled stability is stronger, and more conservative than the more intuitive notions
of stability in the Hautus or asymptotic sense. This remains true in a more general
setting that has proved useful in the study of robust control [98, 57, 107] and that
we will encounter later in the paper.

Let A be a bounded linear operator on a Hilbert space X . Assume that in
addition we are given a unital C∗-algebra ∆ which is realized concretely as a
subalgebra of L(X ), the space of bounded linear operators on X . The complex
structured singular value µ∆(A) of A (with respect to the structure ∆) is defined
as

µ∆(A) =
1

inf{σ(∆): ∆ ∈∆, I −∆A is not invertible}
. (4.22)

Here σ(M) stands for the largest singular value of the operator M . Note that
this contains two standard measures for A: the operator norm ‖A‖ if we take
∆ = L(X ), and ρ(A), the spectral radius of A, if we take ∆ = {λIX : λ ∈ C}; it is
not hard to see that for any unital C∗-algebra ∆ we have ρ(A) ≤ µ∆(A) ≤ ‖A‖.
See [107] for a tutorial introduction on the complex structured singular value and
[60] for the generalization to algebras of operators on infinite dimensional spaces.

The C∗-algebra that comes up in the context of stability for the N -D systems
studied in this section is ∆ = {Z(z) : z ∈ Cd}. Indeed, note that for this choice of
∆ we have that A is stable if and only if µ∆(A) < 1.

In order to introduce the more conservative measure for A in this context,
we write D∆ for the commutant of the C∗-algebra ∆ in L(X ). We then define

µ̂∆(A) = inf{γ : ‖Q−1AQ‖ < γ for some invertible Q ∈ D∆}
= inf{γ : AXA∗ − γX < 0 for some X ∈ D∆, X > 0}. (4.23)

The equivalence of the two definitions again goes through the relation between X
and Q via X = Q∗Q. It is immediate that with ∆ = {Z(z) : z ∈ Cd} we find
D∆ = D as in (4.11), and that A is scaled stable if and only if µ̂∆(A) < 1.

The state-space H∞-problem. The problems of finding tractable necessary and
sufficient conditions for the strict state-space H∞-problem are similar to that for
the state-space stabilizability problem. Here one also typically resorts to a more
conservative ‘scaled’ version of the problem.

We say that the realization {A,B,C,D} with decomposition (4.8) has scaled
performance whenever there exists an invertible Q ∈ D so that∥∥∥∥[ Q−1 0

0 IZ⊕Y

] [
A B
C D

] [
Q 0
0 IW⊕U

]∥∥∥∥ < 1, (4.24)
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or, equivalently, if there exists an X > 0 in D so that[
A B
C D

] [
X 0
0 IW⊕U

] [
A B
C D

]∗
−
[
X 0
0 IW⊕U

]
< 0. (4.25)

The equivalence of the two definitions goes as for the scaled stability case through
the relation X = QQ∗. Looking at the left upper entry in (4.25) it follows that
scaled performance of {A,B,C,D} implies scaled stability. Moreover, if (4.24)
holds for Q ∈ D, then it is not hard to see that the transfer function G(z) in (4.5)
is also given by

G(z) = D + C ′(I − Z(z)A′)−1Z(z)B′

where the system matrix[
A′ B′

C ′ D

]
=
[
Q−1 0

0 IZ⊕Y

] [
A B
C D

] [
Q 0
0 IW⊕U

]
is equal to a strict contraction. It then follows from a standard fact on feedback
connections (see e.g. Corollary 1.3 page 434 of [62] for a very general formulation)
that ‖G(z)‖ < 1 for z ∈ Dd, i.e., G has strict performance. The scaled H∞-problem
is then to find a controller K with realization {AK , BK , CK , DK} so that the
closed loop system {Acl, Bcl, Ccl, Dcl} has scaled performance. The above analysis
shows that solving the scaled H∞-problem implies solving that state-space H∞-
problem. The converse is again not true in general. Further elaboration of the same
techniques as used in the proof of Theorem 4.5 yields the following result for the
scaled H∞-problem; see [18, 66]. For the connections between the Theorems 4.8
and 4.5, in the more general setting of LFT models with structured uncertainty, we
refer to [25]. Note that the result collapses to Theorem 2.5 given in the Introduction
when we specialize to the single-variable case d = 1.

Theorem 4.8. Let {A,B,C,D} be a given realization. Then there exists a solution
for the scaled H∞-problem associated with {A,B,C,D} if and only if there exist
X,Y ∈ D satisfying LMIs:[

Nc 0
0 I

]∗ AY A∗ − Y AY C∗1 B1

C1Y A
∗ C1Y C

∗
1 − I D11

B∗1 D∗11 −I

[Nc 0
0 I

]
< 0, Y > 0, (4.26)

[
No 0
0 I

]∗ A∗XA−X A∗XB1 C∗1
B∗1XA B∗1XB1 − I D∗11

C1 D11 −I

[No 0
0 I

]
< 0, X > 0, (4.27)

and the coupling condition [
X I
I Y

]
≥ 0. (4.28)

Here Nc and No are matrices chosen so that

Nc is injective and ImNc = Ker
[
B∗2 D∗12

]
and

No is injective and ImNo = Ker
[
C2 D21

]
.

39



Note that Theorem 4.8 does not require that the problem be first brought into
model-matching form; thus this solution bypasses the Nevanlinna-Pick-interpolation
interpretation of the H∞-problem.

4.3. Equivalence of frequency-domain and state-space formulations

In this subsection we suppose that we are given a transfer matrix G of size (nZ +
nY) × (nW + nU ) with coefficients in Q(C(z)ss) as in Section 4.1 with a given
state-space realization as in Subsection 4.2:

G(z) =
[
G11 G12

G21 G22

]
=
[
D11 D12

D21 D22

]
+
[
C1

C2

]
(I − Z(z)A)−1Z(z)

[
B1 B2

]
(4.29)

where Z(z) is as in (4.6). We again consider the problem of finding stabilizing
controllers K, also equipped with a state-space realization

K(z) = DK + CK(I − ZK(z)AK)−1ZK(z)BK , (4.30)

in either the state-space stability or in the frequency-domain stability sense. A
natural question is whether the frequency-domain H∞-problem with formulation
in state-space coordinates is the same as the state-space H∞-problem formulated
in Section 4.2.

For simplicity in the computations to follow, we shall always assume that the
plant G has been normalized so that D22 = 0. In one direction the result is clear.
Suppose that K(z) = DK +CK(I −Z(z)AK)−1Z(z)BK is a stabilizing controller
for G(z) in the state-space sense. It follows that the closed-loop state matrix

Acl =
[
A+B2DKC2 B2CK

BKC2 AK

]
(4.31)

is stable, i.e., I − Zcl(z)Acl is invertible for all z in the closed polydisk Dd, with
Zcl(z) as defined in Subsection 4.2. On the other hand one can compute that the

transfer matrix Θ(G22,K) :=
[

I −K(z)
−G22(z) I

]−1

has realization

W̃ (z) =
[
I IDK

0 I

]
+
[
DKC2 CK
C2 0

]
(I − Zcl(z)Acl)−1

Zcl(z)
[
B2 B2DK

0 BK

]
.

(4.32)
As the resolvent expression (I − Zcl(z)Acl)−1 has no singularities in the closed
polydisk Dd, it is clear that W̃ (z) has matrix entries in C(z)ss, and it follows that
K stabilizes G22 in the frequency-domain sense. Under the assumption that G is
internally stabilizable (frequency-domain sense), it follows from Corollary 3.4 that
K also stabilizes G (frequency-domain sense).

We show that the converse direction holds under an additional assumption.
The early paper [88] of Kung-Lévy-Morf-Kailath introduced the notion of modal
controllability and modal observability for 2-D systems. We extend these notions
to N -D systems as follows. Given a Givone-Roesser output pair {C,A}, we say that
{C,A} is modally observable if the block-column matrix

[
I−Z(z)A

C

]
has maximal

rank nX for a generic point z on each irreducible component of the variety det(I−
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Z(z)A) = 0. Similarly we say that the Givone-Roesser input pair {A,B} is modally
controllable if the block-row matrix [ I−AZ(z) B ] has maximal rank nX for a generic
point on each irreducible component of the variety det(I − AZ(z)) = det(I −
Z(z)A) = 0. Then the authors of [88] define the realization {A,B,C,D} to be
minimal if both {C,A} is modally observable and {A,B} is modally controllable.
While this is a natural notion of minimality, unfortunately it is not clear that an
arbitrary realization {A,B,C,D} of a given transfer function S(z) = D + C(I −
Z(z)A)−1Z(z)B can be reduced to a minimal realization {A0, B0, C0, D0} of the
same transfer function S(z) = D0 + C0(I − Z(z)A0)−1Z(z)B0.

As a natural modification of the notions of modally observable and modally
controllable, we now introduce the notions of modally detectable and modally
stabilizable as follows. For {C,A} a Givone-Roesser output pair, we say that {C,A}
is modally detectable if the column matrix

[
I−Z(z)A

C

]
has maximal rank nX for a

generic point z on each irreducible component of the variety det(I − Z(z)A) = 0
which enters into the polydisk Dd. Similarly, we say that the Givone-Roesser input
pair {A,B} is modally stabilizable if the row matrix [ I−AZ(z) B ] has maximal rank
nX for a generic point z on each irreducible component of the variety det(I −
Z(z)A) = 0 which has nonzero intersection with the closed polydisk Dd. We then
have the following partial converse of the observation made above that state-space
internal stabilization implies frequency-domain internal stabilization; this is an
N -D version of Theorem 2.6 in the Introduction.

Theorem 4.9. Let (4.29) and (4.30) be given realizations for G : [WU ] →
[Z
Y
]

and K : Y → U . Assume that {C2, A} and {CK , AK} are modally detectable and
{A,B2} and {AK , BK} are modally stabilizable. Then K internally stabilizes G22

in the state-space sense (and thus state-space stabilizes G) if and only if K stabi-
lizes G22 in the frequency-domain sense (and G if G is stabilizable in the frequency-
domain sense).

Remark 4.10. As it is not clear that a given realization can be reduced to a modally
observable and modally controllable realization for a given transfer function, it is
equally not clear whether a given transfer function has a modally detectable and
modally stabilizable realization. However, in the case that d = 1, such realizations
always exists and Theorem 4.9 recovers the standard 1-D result (Theorem 2.6 in
the Introduction).

The proof of Theorem 4.9 will make frequent use of the following basic result
from the theory of holomorphic functions in several complex variables. For the
proof we refer to [128, Theorem 4 page 176]; note that if the number of variables d
is 1, then the only analytic set of codimension at least 2 is the empty set and the
theorem is vacuous; the theorem has content only when the number of variables
is at least 2.

Theorem 4.11. Principle of Removal of Singularities Suppose that the complex-
valued function ϕ is holomorphic on a set S contained in Cd of the form S = D−E
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where D is an open set in Cd and E is the intersection with D of an analytic set of
codimension at least 2. Then ϕ has analytic continuation to a function holomorphic
on all of D.

We shall also need some preliminary lemmas.

Lemma 4.12. 1. Modal detectability is invariant under output injection, i.e.,
given a Givone-Roesser output pair {C,A} (where A : X → X and C : X →
Y) together with an output injection operator L : Y → X , then the pair {C,A}
is modally detectable if and only if the pair {C,A+LC} is modally detectable.

2. Modal stabilizability is invariant under state feedback, i.e., given a Givone-
Roesser input pair {A,B} (where A : X → X and B : U → X ) together
with a state-feedback operator F : X → U , then the pair {A,B} is modally
stabilizable if and only if the pair {A+BF,B} is modally stabilizable.

Proof. To prove the first statement, note the identity[
I −Z(z)L
0 I

] [
I − Z(z)A

C

]
=
[
I − Z(z)(A+ LC)

C

]
.

Since the factor
[
I −Z(z)L
0 I

]
is invertible for all z, we conclude that, for each z ∈ Cd,[

I−Z(z)A
C

]
has maximal rank exactly when

[
I−Z(z)(A+LC)

C

]
has maximal rank, and

hence, in particular, the modal detectability for {C,A} holds exactly when modal
detectability for {C,A+ LC} holds.

The second statement follows in a similar way from the identity[
I −AZ(z) B

] [ I 0
−FZ(z) I

]
=
[
I − (A+BF )Z(z) B

]
.

�

Lemma 4.13. Suppose that the function W (z) is stable (i.e., all matrix entries of
W are in C(z)ss) and suppose that

W (z) = D + C(I − Z(z)A)−1Z(z)B (4.33)

is a realization for W which is both modally detectable and modally stabilizable.
Then the matrix A is stable, i.e., (I − Z(z)A)−1 exists for all z in the closed
polydisk Dd.

Proof. As W is stable and Z(z)B is trivially stable, then certainly[
I − Z(z)A

C

]
(I − Z(z)A)−1Z(z)B =

[
Z(z)B

W (z)−D

]
(4.34)

is stable (i.e., holomorphic on Dd). Trivially
[
I−Z(z)A

C

]
has maximal rank nX for

all z ∈ Dd where det(I−Z(z)A) 6= 0. By assumption,
[
I−Z(z)A

C

]
has maximal rank

generically on each irreducible component of the zero variety of det(I − Z(z)A)
which intersects Dd. We conclude that

[
I−Z(z)A

C

]
has maximal rank nX at all points

of Dd except those in an exceptional set E which is contained in a subvariety, each
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irreducible component of which has codimension at least 2. In a neighborhood of
each such point z ∈ Dd − E ,

[
I−Z(z)A

C

]
has a holomorphic left inverse; combining

this fact with the identity (4.34), we see that (I −Z(z)A)−1Z(z)B is holomorphic
on Dd − E . By Theorem 4.11, it follows that (I − Z(z)A)−1Z(z)B has analytic
continuation to all of Dd.

We next note the identity[
Z(z) (I − Z(z)A)−1Z(z)B

]
= Z(z)(I −AZ(z))−1

[
I −AZ(z) B

]
(4.35)

where the quantity on the left-hand side is holomorphic on Dd by the result es-
tablished above. By assumption {A,B} is modally stabilizable; by an argument
analogous to that used above for the modally detectable pair {C,A}, we see that
the pencil

[
I −AZ(z) B

]
has a holomorphic right inverse in the neighborhood

of each point z in Dd − E ′ where the exception set E ′ is contained in a subva-
riety each irreducible component of which has codimension at least 2. Multipli-
cation of the identity (4.35) on the right by this right inverse then tells us that
Z(z)(I−Z(z)A)−1 is holomorphic on Dd−E ′. Again by Theorem 4.11, we conclude
that in fact Z(z)(I − Z(z)A)−1 is holomorphic on all of Dd.

We show that (I−Z(z)A)−1 is holomorphic on Dd as follows. Let Ej : X → Xj
be the projection on the j-th component of X = X1⊕ · · · ⊕Xd. Note that the first
block row of (I − Z(z)A)−1 is equal to z1E1(I − Z(z)A)−1. This is holomorphic
on the closed polydisk Dd. For z in a sufficiently small polydisk |zi| < ρ for i =
1, . . . , d, (I − Z(z)A)−1 is analytic and hence z1E1(I − Z(z)A)−1|z1=0 = 0. By
analytic continuation, it then must hold that z1(E1(I − Z(z)A)−1 = 0 for all
z = (0, z2, . . . , zd) with |zi| ≤ 1 for i = 2, . . . , d. For each fixed (z2, . . . , zd), we
may use the single-variable result that one can divide out zeros to conclude that
E1(I − Z(z)A)−1 is holomorphic in z1 at z1 = 0. As the result is obvious for
z1 6= 0, we conclude that E1(I − Z(z)A)−1 is holomorphic on the whole closed
polydisk Dd. In a similar way working with the variable zi, one can show that
Ei(I −Z(z)A)−1 is holomorphic on the whole closed polydisk, and it follows that

(I−Z(z)A)−1 =

[
E1

...
Ed

]
(I−Z(z)A)−1 is holomorphic on the whole closed polydisk

as wanted. �

We are now ready for the proof of Theorem 4.9.

Proof of Theorem 4.9. Suppose that K stabilizes G22 in the frequency-domain
sense. This simply means that the transfer function W̃ given by (4.32) is holomor-
phic on the closed polydisk Dd. To show that Acl is stable, by Lemma 4.13 it suffices
to show that

{[
DKC2 CK

C2 0

]
, Acl

}
is modally detectable and that

{
Acl,

[
B2 B2DK

0 BK

]}
is modally stabilizable.
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To prove that
{[

DKC2 CK

C2 0

]
, Acl

}
is modally detectable, from the definition

(4.17) we note that

Acl =
[
A 0
0 AK

]
+
[
B2 0
0 BK

] [
DKC2 CK
C2 0

]
.

By Lemma 4.12 we see that modal detectability of
{[

DKC2 CK

C2 0

]
, Acl

}
is equivalent

to modal detectability of
{[

DKC2 CK

C2 0

]
,
[
A 0
0 AK

]}
. As

[
DKC2 CK

C2 0

]
=
[
DK I
I 0

] [
C2 0
0 CK

]
with

[
DK I
I 0

]
invertible, it is easily seen that modal detectability of the input pair{[

DKC2 CK

C2 0

]
,
[
A 0
0 AK

]}
is equivalent to modal detectability of

{[
C2 0
0 CK

]
,
[
A 0
0 AK

]}
.

But the modal detectability of this last pair in turn follows from its diagonal form
and the assumed modal detectability of {C2, A} and {CK , AK}.

The modal stabilizability of
{
Acl,

[
B2 B2DK

0 BK

]}
follows in a similar way by

making use of the identities

Acl=
[
A 0
0 AK

]
+
[
B2DK B2

BK 0

][
C2 0
0 CK

]
,

[
B2DK B2

BK 0

]
=
[
B2 0
0 BK

][
DK I
I 0

]
and noting that

[
DK I
I 0

]
is invertible. �

In both the frequency-domain setting of Section 4.1 and the state-space set-
ting of Section 4.2, the true H∞-problem is intractable and we resorted to some
compromise: the Schur-Agler-class reformulation in Section 4.1 and the scaled-
H∞-problem reformulation in Section 4.2. We would now like to compare these
compromises for the setting where they both apply, namely, where we are given
both the transfer function G and the state-space representation {A,B,C,D} for
the plant.

Theorem 4.14. Suppose that G(z) =
[
G11 G12
G21 0

]
is in model-matching form with

state-space realization G(z) = D + C(I − Z(z)A)−1Z(z)B as in (4.29). Suppose
that the controller K(z) = DK + CK(I − ZK(z)AK)−1ZK(z)BK solves the scaled
H∞-problem. Then the transfer function W̃ (z) as in (4.32) is a Schur-Agler-class
solution of the Model-Matching problem.

Proof. Simply note that, under the assumptions of the theorem, W̃ (z) has a real-
ization W̃ = Dcl + Ccl(I − Zcl(z)Acl)−1Zcl(z)Bcl for which there is a state-space
change of coordinates Q ∈ D transforming the realization to a contraction:∥∥∥∥[A′ B′

C ′ D

]∥∥∥∥ < 1 where
[
A′ B′

C ′ D

]
=
[
Q 0
0 I

] [
Acl Bcl
Ccl Dcl

] [
Q−1 0

0 I

]
.

Thus we also have W̃ (z) = D + C ′(I − Zcl(z)A′)Zcl(z)B′ from which it follows
that W is in the strict Schur-Agler class, i.e., ‖W̃ (X)‖ < 1 for any d-tuple X =
(X1, . . . , Xd) of contraction operators Xj on a separable Hilbert space X . By
construction W̃ necessarily has the model matching form W̃ = G11 + G12ΛG21

with Λ stable. �
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Remark 4.15. In general a Schur-Agler function S(z) can be realized with a colli-
gation matrix [A B

C D ] which is not of the form[
A B
C D

]
=
[
Q−1 0

0 I

] [
A′ B′

C ′ D

] [
Q 0
0 I

]
(4.36)

with
[
A′ B′

C′ D

]
equal to a strict contraction and Q ∈ D invertible. As an example, let

A be the block 2× 2 matrix given by Anderson-et-al in [16]. This matrix has the
property that I −Z(z)A is invertible for all z ∈ D2

, but there is no Q ∈ D so that
‖Q−1AQ‖ < 1. Here Z(z) and D are compatible with the block decomposition
of A. Then for γ > 0 sufficiently small the function S(z) = γ(I − Z(z)A)−1 has
‖S(z)‖ ≤ ρ < 1 for some 0 < ρ < 1 and all z ∈ D2

. Hence S is a strict Schur-class
function. As mentioned in Section 4.1, a consequence of the Andô dilation theorem
[17] is that the Schur class and the Schur-Agler class coincide for d = 2; it is not
hard to see that this equality carries over to the strict versions and hence S is in
the strict Schur-Agler class. As a consequence of the strict Bounded-Real-Lemma
in [29], S admits a strictly contractive state-space realization

[
A′ B′

C′ D

]
. However,

the realization [A B
C D ] =

[
A A
γI γI

]
of S, obtained from the fact that

S(z) = γ(I − Z(z)A)−1 = γI + γ(I − Z(z)A)−1Z(z)A,

cannot relate to
[
A′ B′

C′ D

]
as in (4.36) since that would imply the existence of an

invertible Q ∈ D so that Q−1AQ = A′ is a strict contraction.

Remark 4.16. Let us assume that the G(z) in Theorem 4.14 is such that G12 and
G21 are square and invertible on the distinguished boundary Td of the polydisk Dd
so that the Model-Matching problem can be converted to a polydisk bitangential
Nevanlinna-Pick interpolation problem along a subvariety as in [32]. As we have
seen, the solution criterion using the Agler interpolation theorem of [1, 35] then
involves an LOI (Linear Operator Inequality or infinite LMI). On the other hand,
if we assume that we are given a stable state-space realization {A,B,C,D} for
G(z) =

[
G11(z) G12(z)
G21(z) 0

]
, we may instead solve the associated scaled H∞-problem

associated with this realization data-set. The associated solution criterion in The-
orem 4.8 remarkably involves only finite LMIs. A disadvantage of this state-space
approach, however, is that in principle one would have to sweep all possible (sim-
ilarity equivalence classes of) realizations of G(z); while each non-equivalent re-
alization gives a distinct H∞-problem, the associated frequency-domain Model-
Matching/bitangential variety-interpolation problem remains the same.

4.4. Notes

In [92] Lin conjectured the result stated in Theorem 4.1 that G22-stabilizability is
equivalent to the existence of a stable coprime factorization for G22. This conjec-
ture was settled by Quadrat (see [122, 117, 120]) who obtained the equivalence of
this property with projective-freeness of the underlying ring and noticed the ap-
plicability of the results from [46, 83] concerning the projective-freeness of C(z)ss.

45



For the general theory of the N -D systems, in particular for N=2, considered
in Subsection 4.2 we refer to [81, 55].

The sufficiency of scaled stability for asymptotic/Hautus-stability goes back
to [59]. Theorem 4.5 was proved in [98] for the more general LFT models in the
context of robust control with structured uncertainty. The proof given here is based
on the extended Finsler’s lemma (Lemma 4.7), and basically follows the proof from
[66] for the solution to the scaled H∞-problem (Theorem 4.8). As pointed out in
[66], one of the advantages of the LMI-approach to the state-space H∞ problem,
even in the classical setting, is that it allows one to seek controllers that solve the
scaled H∞-problem with a given maximal order. Indeed, it is shown in [66, 18]
(see also [57]) that certain additional rank constraints on the solutions X and Y
of the LMIs (4.26) and (4.27) enforce the existence of a solution with a prescribed
maximal order. However, these additional constraints destroy the convexity of the
solution criteria, and are therefore usually not considered as a desirable addition.

An important point in the application of Finsler’s lemma in the derivation of
the LMI solution criteria in Theorems 4.5 and 4.8 is that the closed-loop system
matrix Acl in (4.31) has an affine expression in terms of the unknown design
parameters {AK , BK , CK , DK}. This is the key point where the assumption D22 =
0 is used. A parallel simplification occurs in the frequency-domain setting where the
assumption G22 = 0 leads to the Model-Matching form. The distinction however
is that the assumption G22 = 0 is considered unattractive from a physical point
of view while the parallel state-space assumption D22 := G22(0) = 0 is considered
innocuous.

There is a whole array of lemmas of Finsler type; we have only mentioned
the form most suitable for our application. It turns out that these various Finsler
lemmas are closely connected with the theory of plus operators and Pesonen oper-
ators on an indefinite inner product space (see [44]). An engaging historical survey
on all the Finsler’s lemmas is the paper of Uhlig [135].

The notions of modally detectable and modally stabilizable introduced in
Subsection 4.3 along with Theorem 4.9 seem new, though of somewhat limited use
because it is not known if every realization can be reduced to a modally detectable
and modally stabilizable realization. We included the result as an illustration of
the difficulties with realization theory for N -D transfer functions.

We note that the usual proof of Lemma 4.13 for the classical 1-D case
uses the pole-shifting characterization of stabilizability/detectability (see [57, Ex-
ercise 2.19]). The proof here using the Hautus characterization of stabilizabil-
ity/detectability provides a different proof for the 1-D case.

5. Robust control with structured uncertainty: the commutative
case

In the analysis of 1-D control systems, an issue is the uncertainty in the plant
parameters. As a control goal, one wants the control to achieve internal stability
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(and perhaps also performance) not only for the nominal plant G but also for a
whole prescribed family of plants containing the nominal plant G.

A question then is whether the controller can or cannot have (online) access
to the uncertainty parameters. In a state-space context it is possible to find suf-
ficient conditions for the case that the controller cannot access the uncertainty
parameters, with criteria that are similar to those found in Theorems 4.5 and 4.8
but additional rank constraints need to be imposed as well, which destroys the
convex character of the solution criterion. The case where the controller can have
access to the uncertainty parameters is usually given the interpretation of gain-
scheduling, and fits better with the multidimensional system problems discussed in
Section 4. In this section we discuss three formulations of 1-D control systems with
uncertainty in the plant parameters, two of which can be given gain-scheduling in-
terpretation, i.e., the controller has access to the uncertainty parameters, and one
where the controller is not allowed to use the uncertainty parameters.

5.1. Gain-scheduling in state-space coordinates

Following [106], we suppose that we are given a standard linear time-invariant
input/state/output system

Σ:

 x(t+ 1) = AM (δU )x(t) +BM1(δU )w(t) +BM2(δU )u(t)
z(t) = CM1(δU )x(t) +DM11(δU )w(t) +DM12(δU )u(t)
y(t) = CM2(δU )x(t) +DM21(δU )w(t) +DM22(δU )u(t)

(t ∈ Z+)

(5.1)
but where the system matrixAM (δU ) BM1(δU ) BM2(δU )

CM1(δU ) DM11(δU ) DM12(δU )
CM2(δU ) DM21(δU ) DM22(δU )

 :

 XW
U

→
 XZ
Y


is not known exactly but depends on some uncertainty parameters δU = (δ1, . . . , δd)
in Cd. Here the quantities δi are viewed as uncertain parameters which the con-
troller can measure and use in real time. The goal is to design a controller ΣK
(independent of δU ) off-line so that the closed-loop system (with the controller
accessing the current values of the varying parameters δ1, . . . , δd as well as the
value of the measurement signal y from the plant) has desirable properties for all
admissible values of δU , usually normalized to be |δk| ≤ 1 for k = 1, . . . , d.

The transfer function for the uncertainty parameter δU can be expressed as

G(δ) =
[
DM11(δU ) DM12(δU )
DM21(δU ) DM22(δU )

]
+ λ

[
CM1(δU )
CM2(δU )

]
(IX − λAM (δU ))−1

[
BM1(δU ) BM2(δU )

]
(5.2)

where we have introduced the aggregate variable

δ = (δU , λ) = (δ1, . . . , δd, λ).
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It is not too much of a restriction to assume in addition that the functional
dependence on δU is given by a linear fractional map (where the subscript U
suggests uncertainty and the subscript S suggests shift) AM (δU ) BM1(δU ) BM2(δU )

CM1(δU ) DM11(δU ) DM12(δU )
CM2(δU ) DM21(δU ) DM22(δU )

 =

 ASS BS1 BS2

C1S D11 D12

C2S D21 D22

+

+

 ASU
C1U

C2U

 (I − Z(δU )AUU )−1Z(δU )
[
AUS BU1 BU2

]
,

where Z(δU ) is defined analogously to Z(z) in (4.6) relative to a given decomposi-
tion of the “uncertainty” state-space XU = XU,1 ⊕ · · · ⊕ XU,d on which that state
operator AUU acts. In that case the transfer function G(δ) admits a state-space
realization

G(δ) =
[
G11 G12

G21 G22

]
=
[
D11 D12

D21 D22

]
+
[
C1

C2

]
(I − Z(δ)A)−1Z(δ)

[
B1 B2

]
(5.3)

with system matrix given byA B1 B2

C1 D11 D12

C2 D21 D22

 =


AUU AUS BU1 BU2

ASU ASS BS1 BS2

C1U C1S D11 D12

C2U C2S D21 D22

 . (5.4)

Here Z(δ) is again defined analogously to (4.6) but now on the extended state-
space Xext = XU ⊕X .

We can then consider this gain-scheduling problem as a problem of the con-
structed N -D system (with N = d+ 1), and seek for a controller K with a state-
space realization

K(δ) = DK + CK(I − ZK(δ)AK)ZK(δ)BK (5.5)

so that the closed loop system has desirable properties from a gain-scheduling
perspective. Making a similar decomposition of the system matrix for the controller
K as in (5.4), we note that K(δ) can also be written as

K(δ) = DM,K(δU ) + λCM,K(δU )(I − λAM,K(δU ))−1BM,K(δU ),

where AM,K(δU ), BM,K(δU ), CM,K(δU ) and DM,K(δU ) appear as the transfer
functions of N -D systems (with N = d), that is, K(δ) can be seen as the transfer
function of a linear time-invariant input/state/output system

ΣK :
{
xK(t+ 1) = AM,K(δU )xK(t) +BM,K(δU )u(t)
u(t) = CM,K(δU )xK(t) +DM,K(δU )y(t) (n ∈ Z+)

depending on the same uncertainty parameters δU = (δ1, . . . , δd) as the system Σ.
Similarly, the transfer function Gcl(δ) of the closed-loop system with system

matrix
[
Acl Bcl

Ccl Dcl

]
as defined in (4.10) also can be written as a transfer matrix

Gcl(δ) = DM,cl(δU ) + λCM,cl(δU )(I − λAM,cl(δU ))−1BM,cl(δU )
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withAM,cl(δU ),BM,cl(δU ), CM,cl(δU ) andDM,cl(δU ) transfer functions ofN -D sys-
tems (withN = d), and the corresponding linear time-invariant input/state/output
system

Σcl :
{
x(t+ 1) = AM,cl(δU )x(t) +BM,cl(δU )w(t)
z(t) = CM,cl(δU )x(t) +DM,cl(δU )w(t) (n ∈ Z+)

also appears as the closed-loop system of Σ and ΣK .
It then turns out that stability of Acl, that is, I − Zcl(δ)Acl invertible for

all δ in Dd+1
(with Zcl as defined in Subsection 4.2) corresponds precisely to

robust stability of Σcl, i.e., the spectral radius of AM,cl(δU ) is less than 1 for all
δU = (δ1, . . . , δd) so that |δk| ≤ 1 for k = 1, . . . , d, and K with realization (5.5)
solves the state-space H∞-problem for G with realization (5.3) means that the
closed loop system Σcl has robust performance, i.e., Σcl is robustly stable and the
transfer function Gcl satisfies

‖Gcl(δ)‖ ≤ 1 for all δ = (δ1, . . . , δd, λ) ∈ Dd+1
.

We may thus see the state-space formulation of the gain-scheduling problems con-
sidered in this subsection as a special case of the N -D system stabilization and
H∞-problems of Subsection 4.2. In particular, the sufficiency analysis given there,
and the results of Theorem 4.5 and 4.8, provide practical methods for obtaining
solutions. As the conditions are only sufficient, solutions obtained in principle may
be conservative.

5.2. Gain-scheduling: a pure frequency-domain formulation

In the approach of Helton (see [73, 74]), one eschews transfer functions and state-
space coordinates completely and supposes that one is given a plant G whose
frequency response depends on a load with frequency function δ(z) at the discre-
tion of the user; when the load δ is loaded onto G, the resulting frequency-response
function has the form G(z, δ(z)) where G = G(·, ·) is a function of two variables.
The control problem (for the company selling this device G to a user) is to de-
sign the controller K = K(·, ·) so that K(·, δ(·)) solves the H∞-problem for the
plant G(·, δ(·)). The idea here is that once the user loads δ onto G with known
frequency-response function, he is also to load δ onto the controller K (designed
off-line); in this way the same controller works for many customers using many
different δ’s. When the dust settles, this problem reduces to the frequency-domain
problem posed in Section 4.1 with d = 2; an application of the Youla-Kučera
parametrization (or simply using the function Q(z) = K(z)(I −G22(z)K(z))−1 if
the plant G itself is stable) reduces the problem of designing the control K to a
Nevanlinna-Pick-type interpolation problem on the bidisk.

5.3. Robust control with a hybrid frequency-domain/state-space formulation

We now consider a hybrid frequency-domain/state-space formulation of the prob-
lem considered in Subsection 5.1; the main difference is that in this case the con-
troller is not granted access to the uncertainty parameters.
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Assume we are given a 1-D-plant G(λ) that depends on uncertainty param-
eters δU = (δ1, . . . , δd) via the linear fractional representation

G(δU , λ) =
[
G11(λ) G12(λ)
G21(λ) G22(λ)

]
+

+
[
G1U (λ)
G2U (λ)

]
(I − Z(δU )GUU (λ))−1Z(δU )

[
GU1(λ) GU2(λ)

]
(5.6)

with Z(δU ) as defined in Subsection 5.1, and where the coefficients are 1-D-plants
independent of δU :

Gaug(λ) =

GUU (λ) GU1(λ) GU2(λ)
G1U (λ) G11(λ) G12(λ)
G2U (λ) G21(λ) G22(λ)

 :

 XUW
U

→
 XUZ
Y

 .
In case Gaug(λ) is also given by a state-space realization, we can write G(δU , λ)
as in (5.3) with δ = (δU , λ) and Z(δ) acting on the extended state-space Xext =
XU ⊕X .

For this variation of the gain-scheduling problem we seek to design a controller
K(λ) with matrix values representing operators from Y to U so that K solves
the H∞-problem for G(δU , λ) for every δU with ‖Z(δU )‖ ≤ 1, i.e., |δj | ≤ 1 for
j = 1, . . . , d. For the sequel it is convenient to assume that Z = W. In that case,
using the Main Loop Theorem [141, Theorem 11.7 page 284], it is easy to see that
this problem can be reformulated as: Find a single-variable transfer matrix K(·)
so that Θ(G̃,K) given by (2.2), with G̃ =

[
G̃11 G̃12

G̃21 G̃22

]
in (2.2) taken to be[

G̃11(λ) G̃12(λ)
G̃21(λ) G̃22(λ)

]
=

 GUU (λ) GU1(λ) GU2(λ)
G1U (λ) G11(λ) G12(λ)
G2U (λ) G21(λ) G22(λ)

 ,
is stable and such that

µ∆

(
G̃11(λ) + G̃12(λ)(I −K(λ)G̃22(λ))−1K(λ)G̃21(λ)

)
< 1.

Here µ∆ is as defined in (4.22) with ∆ the C∗-algebra

∆ =
{[

Z(δU ) 0
0 T

]
: δU ∈ Cd, T ∈ L(Z)

}
⊂ L(XU ⊕Z).

Application of the Youla-Kučera parametrization of the controllers K that
stabilize Θ(G̃,K) as in Subsection 3.3 converts the problem to the following: Given
stable 1-variable transfer functions T1(λ), T2(λ), and T3(λ) with matrix values
representing operators in the respective spaces

L(XU ⊕W,XU ⊕Z), L(XU ⊕ U ,XU ⊕Z), L(XU ⊕W,XU ⊕ Y),

find a stable 1-variable transfer function Λ(λ) with matrix values representing op-
erators in L(XU ⊕ Y,XU ⊕ U) so that the transfer function S(λ) given by

S(λ) = T1(λ) + T2(λ)Λ(λ)T3(λ) (5.7)
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has µ∆(S(λ)) < 1 for all λ ∈ D. If T2(ζ) and T3(ζ) are square and invertible for
ζ on the boundary T of the unit disk D, the model-matching form (5.7) can be
converted to bitangential interpolation conditions (see e.g. [26]); for simplicity, say
that these interpolation conditions have the form

xiS(λi) = yi, S(λ′j)uj = vj for i = 1, . . . , k, j = 1, . . . , k′ (5.8)

for given distinct points λi, λ′j in D, row vectors xi, yi and column vectors uj , vj .
Then the robust H∞-problem (H∞ rather than rational version) can be converted
to the µ-Nevanlinna-Pick problem: find holomorphic function S on the unit disk
with matrix values representing operators in L(XU ⊕ W,XU ⊕ Z) satisfying the
interpolation conditions (5.8) such that also

µ∆(S(λ)) < 1 for all λ ∈ D.

It is this µ-version of the Nevanlinna-Pick interpolation problem which has
been studied from various points of view (including novel variants of the Com-
mutant Lifting Theorem) by Bercovici-Foias-Tannenbaum (see [38, 39, 40, 41])
and Agler-Young (see [5, 7, 9, 11] and Huang-Marcantognini-Young [77]). These
authors actually study only very special cases of the general control problem as
formulated here; hence the results at this stage are not particularly practical for
actual control applications. However this work has led to interesting new mathe-
matics in a number of directions: we mention in particular the work of Agler-Young
on new types of dilation theory and operator-model theory (see [6, 9]), new kinds
of realization theorems [10], the complex geometry of new kinds of domains in Cd
(see [8, 12, 13]), and a multivariable extension of the Bercovici-Foias-Tannenbaum
spectral commutant lifting theorem due to Popescu [114].

5.4. Notes

In the usual formulation of µ (see [107, 141]), in addition to the scalar blocks δiIni

in Z(δ), it is standard to also allow some of the blocks to be full blocks of the form

∆i =

 δ
(i)
11 ··· δ

(i)
1ni

...
...

δ
(i)
ni1
··· δ(i)

nini

. The resulting transfer functions then have domains equal to

be (reducible) Cartan domains which are more general than the unit polydisk. The
theory of the Schur-Agler class has been extended to this setting in [15, 20]. More
generally, it is natural also to allow non-square blocks. A formalism for handling
this is given in [29]; for this setting one must work with the intertwining space of ∆
rather than the commutant of ∆ in the definition of µ̂ in (4.23). With a formalism
for such a non-square uncertainty structure available, one can avoid the awkward
assumption in Subsection 5.3 and elsewhere that W = Z.
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6. Robust control with dynamic time-varying structured
uncertainty

6.1. The state-space LFT-model formulation

Following [97, 98, 96, 108], we now introduce a variation on the gain-scheduling
problem discussed in Section 5.1 where the uncertainty parameters δU = (δ1, . . . , δd)
become operators on `2, the space of square-summable sequences of complex num-
bers indexed by the integers Z, and are to be interpreted as dynamic, time-varying
uncertainties. To make the ideas precise, we suppose that we are given a system
matrix as in (5.4). We then tensor all operators with the identity operator I`2 on
`2 to obtain an enlarged system matrix

M =

A B1 B2

C1 D11 D12

C2 D21 D22

⊗ I`2 =


AUU AUS BU1 BU2

ASU ASS BS1 BS2

C1U C1S D11 D12

C2U C2S D21 D22

⊗ I`2 , (6.1)

which we also write as

M =

A B1 B2

C1 D11 D12

C2 D21 D22

 :

(XU ⊕XS)⊗ `2
W ⊗ `2
U ⊗ `2

→
(XU ⊕XS)⊗ `2

Z ⊗ `2
Y ⊗ `2

 . (6.2)

Given a decomposition XU = XU1 ⊕ · · · ⊕ XUd of the uncertainty state space
XU , we define the matrix pencil ZU (δU ) with argument equal to a d-tuple δU =
(δ1, . . . , δd) of (not necessarily commuting) operators on `2 by

ZU (δU ) =

IXU1 ⊗ δ1

. . .
IXUd

⊗ δd

 ,
In addition we let S denote the bilateral shift operator on `2; we sometimes will
also view S as an operator on the space ` of all sequences of complex numbers or
on the subspace `2fin of `2 that consists of all sequences in `2 with finite support.
We obtain an uncertain linear system of the form

Σ :

 S∗~x = AM (δU )~x+BM1(δU )~w +BM2(δU )~u
~z = CM1(δU )~x+DM11(δU )~w +DM12(δU )~u
~y = CM2(δU )~x+DM21(δU )~w +DM22(δU )~u

(6.3)

where the system matrixAM (δU ) BM1(δU ) BM2(δU )
CM1(δU ) DM11(δU ) DM12(δU )
CM2(δU ) DM21(δU ) DM22(δU )

 :

 XS ⊗ `2fin

W ⊗ `2fin

U ⊗ `2fin

→
 XS ⊗ `Z ⊗ `
Y ⊗ `
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is obtained from the feedback connection
~̃xU
~̃xS
~z
~y

 = M


~xU
~xS
~z
~y

 , subject to ~xU = ZU (δU )~̃xU ,

that is, AM (δU ) BM1(δU ) BM2(δU )
CM1(δU ) DM11(δU ) DM12(δU )
CM2(δU ) DM21(δU ) DM22(δU )

 =

 ASS BS1 BS2

C1S D11 D12

C2S D21 D22

+

+

 ASU

C1U

C2U

 (I − ZU (δU )AUU )−1ZU (δU )
[

AUS BU1 BU2

]
.

(6.4)
As this system is time-varying, due to the presence of the time-varying uncer-

tainty parameters δU , it is not convenient to work with a transfer-function acting
on the frequency-domain; instead we stay in the time-domain and work with the
input-output operator which has the form

G(δ) =
[
DM11(δU ) DM12(δU )
DM21(δU ) DM22(δU )

]
+
[
CM1(δU )
CM2(δU )

]
× (6.5)

× (IXS⊗`2 − (IXS
⊗ S)AM (δU ))−1(IXS

⊗ S)
[
BM1(δU ) BM2(δU )

]
,

Now write δ for the collection (δU ,S) of d+1 operators on `2. Then the input-
output operator G(δ) given by (6.5) has the noncommutative transfer-function
realization

G(δ) =
[
G11(δ) G12(δ)
G21(δ) G22(δ)

]
=
[
D11 D12

D21 D22

]
+
[
C1

C2

]
(I − Z(δ)A)−1Z(δ)

[
B1 B2

]
(6.6)

with system matrix as in (6.1) and Z(δ) =
[

ZU (δU ) 0
0 IXS

⊗S

]
. In the formulas (6.4)-

(6.6) the inverses may have to be interpreted as the algebraic inverses of the
corresponding infinite block matrices; in that way, the formulas make sense at
least for the nominal plant, i.e., with δU = (0, . . . , 0).

More generally, the transfer-function G can be extended to a function of d+1
variables in L(`2) by replacing S with another variable δd+1 ∈ L(`2). In that case,
the transfer-function can be viewed as an LFT-model with structured uncertainty,
as studied in [98, 57]. However, as a consequence of the Sz.-Nagy dilation theory,
without loss of generality it is possible in this setting of LFT-models to fix one
of the variables to be the shift operator S; in this way the LFT-model results
developed for d + 1 free variable contractions apply equally well to the case of
interest where one of the variables is fixed to be the shift operator.

Such an input/state/output system Σ with structured dynamic time-varying
uncertainty δU is said to be robustly stable (with respect to the dynamic time-
varying uncertainty structure ZU (δU )) if the state-matrix AM (δU ) is stable for
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all choices of δU subject to ‖ZU (δU )‖ ≤ 1, that is, if IXS⊗`2 − (IXS
⊗ S)AM (δU )

is invertible as an operator on XS ⊕ `2 for all δU with ‖ZU (δU )‖ ≤ 1. Since

AM (δU ) = ASS + ASU (I − ZU (δU )AUU )−1Z(δU )AUS ,

it follows from the Main Loop Theorem [141, Theorem 11.7 page 284], that this
condition in turn reduces to:

IX − Z(δ)A is invertible for all δ = (δU ,S) with ‖Z(δ)‖ ≤ 1. (6.7)

Note that this condition amounts to a noncommutative version of the Hautus-
stability criterion for the matrix A (where A = A ⊗ I`2). We shall therefore call
the state matrix A nc-Hautus-stable if (6.7) is satisfied (with nc indicating that
we are in the noncommutative setting). The input/state/output system Σ is said
to have nc-performance (with respect to the dynamic time-varying uncertainty
structure ZU (δU )) if it is robustly stable (with respect to this dynamic time-
varying uncertainty structure) and in addition the input-output operator G(δ)
has norm strictly less than 1 for all choices of δ = (δU ,S) with ‖Z(δ)‖ ≤ 1.

One of the key results from the thesis of Paganini [108] which makes the
noncommutative setting of this section more in line with the 1-D case is that,
contrary to what is the case in Subsection 4.2, for operators A = A⊕I`2 on X ⊕`2
we do have µ∆(A) = µ̂∆(A) when we take ∆ to be the C∗-algebra

∆ =
{[

Z(δU ) 0
0 IXS

⊗ δd+1

]
: δU = (δ1, . . . , δd), δj ∈ L(`2), j = 1, . . . , d+ 1

}
.

(6.8)
Write D for the commutant of ∆ in L((XU⊕XS)⊗`2). Then the main implication
of the fact that µ∆(A) = µ̂∆(A) is that nc-Hautus-stability of A is now the same
as the existence of an invertible operator Q ∈ D so that ‖Q−1AQ‖ < 1 or,
equivalently, the existence of a solution X ∈ D to the LMIs A∗XA−A < 0 and
X > 0. However, it is not hard to see that X is an element of D if and only if
X = X⊗I`2 with X being an element of the C∗-algebra D in (4.11). Thus, in fact,
we find that A = A ⊕ I`2 is nc-Hautus-stable precisely when A is scaled stable,
i.e., when there exists a solution X ∈ D to the LMIs A∗XA−A < 0 and X > 0.

These observations can also be seen as a special case (when C2 = 0 and B2 =
0) of the following complete analogue of Theorem 2.3 for this noncommutative
setting due to Paganini [108].

Proposition 6.1. Given a system matrix as in (6.1)-(6.2), then:

(i) The output pair {C2,A} is nc-Hautus-detectable, that is, for every δ =
(δ1, . . . , δd+1), with δj ∈ L(`2) for j = 1, . . . , d + 1, so that ‖Z(δ)‖ ≤ 1
the operator[

I − Z(δ)A
C2

]
: (XU ⊕XS)⊗ `2 →

[
(XU ⊕XS)⊗ `2
Y ⊕ `2

]
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has a left inverse, if and only if {C2,A} is nc-operator-detectable, i.e., there
exists an operator L = L ⊗ I`2 , with L : Y → X , so that A + LC2 is nc-
Hautus-stable, if and only if there exists a solution X ∈ D to the LMIs

A∗XA−X − C∗2C2 < 0, X > 0. (6.9)

(ii) The input pair {A,B2} is nc-Hautus-stabilizable, that is, for every δ =
(δ1, . . . , δd+1), with δj ∈ L(`2) for j = 1, . . . , d + 1, so that ‖Z(δ)‖ ≤ 1
the operator[

I − Z(δ)A B2

]
:
[

(XU ⊕XS)⊗ `2
U ⊕ `2

]
→ (XU ⊕XS)⊗ `2

has a left inverse, if and only if {A,B2} is nc-operator-stabilizable, i.e., there
exists an operator F = F ⊗ I`2 , with F : X → U , so that A + B2F is nc-
Hautus-stable, which happens if and only if there exists a solution Y ∈ D to
the LMIs

AY A∗ − Y −B2B
∗
2 < 0, Y > 0. (6.10)

In case the input/state/output system Σ is not stable and/or does not have
performance, we want to remedy this by means of a feedback with a controller K,
which we assume has on-line access to the structured dynamic time-varying un-
certainty operators δU in addition to being dynamic, i.e., K = K(δ) = K(δU ,S).
More specifically, we shall restrict to controllers of the form

K(δ) = DK + CK(I − ZK(δ)AK)−1ZK(δ)BK (6.11)

where

ZK(δ) =
[

ZKU (δU ) 0
0 IXKS

⊗ S

]
, ZKU (δU ) =

IXK1 ⊗ δ1

. . .
IXKd

⊗ δd

 ,
with system matrix MK of the form

MK =
[
AK BK

CK DK

]
:
[
(XKU ⊕XKS)⊗ `2

Y ⊗ `2
]
→
[
(XKU ⊕XKS)⊗ `2

U ⊗ `2
]

(6.12)

where XKU = XKU1 ⊕ · · · ⊕ XKUd, and where the matrix entries in turn have a
tensor-factorization [

AK BK

CK DK

]
=
[
AK ⊗ I`2 BK ⊗ I`2
CK ⊗ I`2 DK ⊗ I`2

]
. (6.13)

If such a controller K(δ) is put in feedback connection with G(δ), where we
impose the usual assumption D22 = 0 to guarantee well-posedness, the resulting
closed-loop system input-output operator Gcl(δ), as a function of the operator
uncertainty parameters δU = (δ1, . . . , δd) and the shift S, has a realization which
is formally exactly as in (4.9), that is

Gcl(δ) = Dcl + Ccl(I − Zcl(δ)Acl)−1Zcl(δ)Ccl
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with system matrix[
Acl Bcl

Ccl Dcl

]
=

 A + B2DKC2 B2CK B1 + B2DKD21

BKC2 AK BKD21

C1 + D12DKC2 D12CK D11 + D12DKD21

 , (6.14)

which is the same as the system matrix (4.10) tensored with I`2 , and

Zcl(δ) =
[

Z(δ) 0
0 ZK(δ)

]
where δ = (δU ,S). (6.15)

The state-space nc-stabilization problem (with respect to the given dynamic
time-varying uncertainty structure δU ) then is to design a controller K with state-
space realization {AK ,BK ,CK ,DK} as above so that the closed-loop system Σcl

defined by the system matrix (6.14) is robustly stable. The state-space nc-H∞-
problem is to design a controller K with state-space realization {AK ,BK ,CK ,DK}
as above so that the closed-loop system Σcl also has robust performance.

Since the closed-loop state-operator Acl is equal to Acl⊗I`2 with Acl defined
by (4.10), it follows as another implication of the fact that µ∆ is equal to µ̂∆ for
operators that are tensored with I`2 (with respect to the appropriate C∗-algebra
∆) that Acl is nc-Hautus-stable precisely when Acl is scaled stable, i.e., we have
the following result.

Proposition 6.2. Let Σ and Σ be the systems given by (6.3) and (5.1), respectively,
corresponding to a given system matrix (5.4). Then Σ is nc-Hautus-stabilizable if
and only if Σ is scaled-stabilizable.

Thus, remarkably, the solution criterion given in Section 4.2 for the scaled
state-space stabilization problem turns out to be necessary and sufficient for the
solution of the dynamic time-varying structured-uncertainty version of the prob-
lem.

Theorem 6.3. Let Σ be the system given by (6.3) corresponding to a given sys-
tem matrix (6.1). Then Σ is nc-Hautus-stabilizable if and only if the output pair
{C2,A} is nc-Hautus-detectable and the input pair {A,B2} is nc-Hautus-stabiliz-
able, i.e., if there exist solutions X,Y ∈ D, with D the C∗-algebra given in (4.11),
to the LMIs (6.9) and (6.10). In this case K ∼

[
AK BK

CK DK

]
⊗ I`2 with

[
AK BK

CK DK

]
as

in (4.12) is a controller solving the nc-Hautus stabilization problem for Σ.

In a similar way, the state-space nc-H∞-problem corresponds to the scaled
H∞-problem of Subsection (4.2).

Theorem 6.4. Let Σ be the system given by (6.3) for a given system matrix (6.1).
Then there exists a solution K, with realization (6.11), to the state-space nc-H∞-
problem for the non-commutative system Σ if and only if there exist X,Y ∈ D
that satisfy the LMIs (4.27) and (4.26) and the coupling condition (4.28).

Proof. Let Σ and Σ be the systems given by (6.3) and (5.1), respectively, corre-
sponding to a given system matrix (5.4). Using the strict bounded real lemma from
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[29] in combination with similar arguments as used above for the nc-stabilizability
problem, it follows that a transfer-function K with realization (6.11)-(6.13) is a so-
lution to the state-space nc-H∞-problem for Σ if and only if the transfer function
K with realization (4.7) is a solution to the scaled H∞-problem for the system Σ.
The statement then follows from Theorem 4.8. �

6.2. A noncommutative frequency-domain formulation

In this subsection we present a frequency-domain version of the noncommutative
state-space setup of the previous subsection used to model linear input/state/output
systems with LFT-model for dynamic time-varying structured uncertainty. The
frequency-domain setup here is analogous to that of Section 4.1 but the unit poly-
disk Dd is replaced by the noncommutative polydisk Ddnc consisting of all d-tuples
δ = (δ1, . . . , δd) of contraction operators on a fixed separable infinite-dimensional
Hilbert space K.

We need a few preliminary definitions. We define Fd to be the free semigroup
consisting of all words α = iN · · · i1 in the letters {1, . . . , d}. When α = iN · · · i1
we write N = |α| for the number of letters in the word α. The multiplication of
two words is given by concatenation:

α · β = iN · · · i1jM · · · j1 if α = iN · · · i1 and β = jM · · · j1.

The unit element of Fd is the empty word denoted by ∅ with |∅| = 0. In addition,
we let z = (z1, . . . , zd) stands for a d-tuple of noncommuting indeterminates, and
for any α = iN · · · i1 ∈ Fd − {∅}, we let zα denote the noncommutative monomial
zα = ziN · · · zi1 , while z∅ = 1. If α and β are two words in Fd, we multiply the
associated monomials zα and zβ in the natural way:

zα · zβ = zα·β .

Given two Hilbert spaces U and Y, we let L(U ,Y)〈〈z〉〉 denote the collection of
all noncommutative formal power series S(z) of the form S(z) =

∑
α∈Fd

Sαz
α

where the coefficients Sα are operators in L(U ,Y) for each α ∈ Fd. Given a
formal power series S(z) =

∑
α∈Fd

Sαz
α together with a d-tuple of linear operators

δ = (δ1, . . . , δd) acting on `2, we define S(δ) by

S(δ) = lim
N→∞

∑
α∈Fd : |α|=N

Sα ⊗ δα ∈ L(U ⊗ K,Y ⊗K)

whenever the limit exists in the operator-norm topology; here we use the notation
δα for the operator

δα = δiN · · · δi1 if α = iN · · · i1 ∈ Fd − {∅} and δ∅ = IK.

We define the noncommutative Schur-Agler class SAnc,d(U ,Y) (strict noncom-
mutative Schur-Agler class SAonc,d(U ,Y)) to consist of all formal power series in
L(U ,Y)〈〈z〉〉 such that ‖S(δ))‖ ≤ 1 (‖S(δ)‖ < 1) whenever δ = (δ1, . . . , δd) is a
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d-tuple of operators on K with ‖δj‖ < 1 (‖δj‖ ≤ 1) for j = 1, . . . , d. Let

Dnc,d := {δ = (δ1, . . . , δd) : δj ∈ L(K), ‖δj‖ < 1, j = 1, . . . , d},
Dnc,d := {δ = (δ1, . . . , δd) : δj ∈ L(K), ‖δj‖ ≤ 1, j = 1, . . . , d}.

We then define the strict noncommutative H∞-space H∞,o(L(U ,Y)) to consist of
all functions F from Dnc,d to L(U ⊗K,Y ⊗K) which can be expressed in the form

F (δ) = S(δ)

for all δ ∈ Dnc,d where ρ−1S is in the strict noncommutative Schur-Agler class
SAonc,d(U ,Y) for some real number ρ > 0. We write H∞nc,d(L(U ,Y)) for the set of
functions G from Dnc,d to L(U ⊗K,Y ⊗K) that are also of the form G(δ) = S(δ),
but now for δ ∈ Dnc,d and ρ−1S in SAnc,d(U ,Y) for some ρ > 0. Note that
SAnc,d(U ,Y) amounts to SAnc,d(C,C)⊗L(U ,Y). In the sequel we abbreviate the
notation SAnc,d(C,C) for the scalar Schur-Agler class to simply SAnc,d. Similarly,
we simply write SAonc,d, H

∞,o
nc,d and H∞nc,d instead of SAonc,d(C,C), H∞,onc,d(C,C) and

H∞nc,d(C,C), respectively. Thus we also have H∞,onc,d(L(U ,Y)) = H∞,onc,d ⊗ L(U ,Y),
etc. We shall be primarily interested in the strict versions SAonc,d and H∞,onc,d of the
noncommutative Schur-Agler class and H∞-space.

We have the following characterization of the space H∞,onc,d(L(U ,Y)). For the
definition of completely positive kernel and more complete details, we refer to [30].
The formulation given here does not have the same form as in Theorem 3.6(2) of
[30], but one can use the techniques given there to convert to the form given in
the following theorem.

Theorem 6.5. The function F : Dnc,d → L(U ⊗K,Y ⊗K) is in the strict noncom-
mutative H∞-space H∞,onc,d(L(U ,Y)) if and only if there are d strictly completely
positive kernels

Kk : (Dnc,d × Dnc,d)× L(K)→ L(Y ⊗K) for k = 1, . . . , d

and a positive real number ρ so that the following Agler decomposition holds:

ρ2 · (I ⊗B)− S(δ) (I ⊗B)S(τ )∗ =
d∑
k=1

Kk(δ, τ )[B − δkBτ ∗k]

for all B ∈ L(K) and δ = (δ1, . . . , δd), τ = (τ 1, . . . , τ d) in Dnc,d.

One of the main results of [28] is that the noncommutative Schur-Agler class
has a contractive Givone-Roesser realization.

Theorem 6.6. (See [28, 29].) A given function F : Dnc,d → L(U ⊗ K,Y ⊗ K) is
in the strict noncommutative Schur-Agler class SAonc,d(U ,Y) if and only if there
exists a strictly contractive colligation matrix

M =
[
A B
C D

]
:
[
⊕dj=1Xj
U

]
→
[
⊕dj=1Xj
Y

]
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for some Hilbert state space X = X1 ⊕ · · · ⊕ Xd so that the evaluation of F at
δ = (δ1, . . . , δd) ∈ Dnc,d is given by

F (δ) = D ⊗ IK + (C ⊗ IK((I − Z(δ)(A⊗ IK))−1Z(δ)(B ⊗ IK) (6.16)

where

Z(δ) =

IX1 ⊗ δ1

. . .
IXd
⊗ δd

 .
Hence a function F : Dnc,d → L(U ⊗ K,Y ⊗ K) is in the strict noncommutative
H∞-space H∞,onc,d(L(U ,Y)) if and only if there is a bounded linear operator[

A B
C D

]
:
[
⊕dk=1Xk
U

]
→
[
⊕dk=1Xk
Y

]
such that ∥∥∥∥[ A B

ρ−1C ρ−1D

]∥∥∥∥ < 1 for some ρ > 0

so that F is given as in (6.16).

If U and Y are finite-dimensional Hilbert spaces, we may view SAonc,d(U ,Y)
and H∞,onc,d(L(U ,Y)) as matrices over the respective scalar-valued classes SAonc,d
and H∞,onc,d. When this is the case, it is natural to define rational versions of SAonc,d
and H∞,onc,d to consist of those functions in SAonc,d (respectively, H∞,onc,d) for which
the realization (6.16) can be taken with the state spaces X1, . . . ,Xd also finite-
dimensional; we denote the rational versions of SAonc,d and H∞,onc,d by RSAonc,d and
RH∞,onc,d, respectively. We remark that as a consequence of Theorem 11.1 in [27], this
rationality assumption on a given function F in H∞,onc,d can be expressed intrinsically
in terms of the finiteness of rank for a finite collection of Hankel matrices formed
from the power-series coefficients Fα of F , i.e., the operators Fα ∈ L(U ,Y) such
that

F (δ) =
∑
α∈Fd

Fα ⊗ δα.

In general, the embedding of a noncommutative integral domain into a skew-
field is difficult (see e.g. [75, 82]). For the case of RH∞,o, the embedding issue
becomes tractable if we restrict to denominator functions D(δ) ∈ H∞,o ∈ L(U) for
which D(0) is invertible. If D is given in terms of a strictly contractive realization
D(δ) = D + C(I − Z(δ)A)−1Z(δ)B (where A = A ⊗ IK and similarly for B, C
and D), then D(δ)−1 can be calculated, at least for ‖Z(δ)‖ small enough, via the
familiar cross-realization formula for the inverse:

D(δ)−1 = D−1 −D−1C(I − Z(δ)A×)−1Z(δ)BD−1

where A× = A× ⊗ IK with A× = A − BD−1C. We define Q(RH∞,onc,d)(L(U ,Y))0

to be the smallest linear space of functions from some neighborhood of 0 in Dnc,d
(with respect to the Cartesian product operator-norm topology on Dnc,d ⊂ L(K)d)
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to L(U ,Y) which is invariant under multiplication on the left by elements of
RH∞,onc,d(L(Y)) and by inverses of elements ofRH∞,onc,d(L(Y)) having invertible value
at 0, and invariant under multiplication on the right by the corresponding set of
functions with U in place of Y. Note that the final subscript 0 in the notation
Q(RH∞,onc,d)(L(U ,Y))0 is suggestive of the requirement that functions of this class
are required to be analytic in a neighborhood of the origin 0 ∈ Dnc,d.

Let us denote by RO0
nc,d(L(U ,Y)) the space of functions defined as follows:

we say that the function G defined on a neighborhood of the origin in Dnc,d with
values in L(U ,Y) is in the space RO0

nc,d(L(U ,Y)) if G has a realization of the
form

G(δ) = D + C(I − Z(δ)A)−1Z(δ)B
for a colligation matrix M := [ A B

C D ] of the form M = M ⊗ IK where

M =
[
A B
C D

]
:
[
⊕dk=1Xk
U

]
→
[
⊕dk=1Xk
Y

]
for some finite-dimensional state-spaces X1, . . . ,Xd. Unlike the assumptions in the
case of a realization for a Schur-Agler-class function in Theorem 6.6, there is
no assumption that M be contractive or that A be stable. It is easily seen that
Q(RH∞,onc,d(L(U ,Y)))0 is a subset of RO0

nc,d(L(U ,Y)); whether these two spaces
are the same or not we leave as an open question. We also note that the class
RO0

nc,d(L(U ,Y)) has an intrinsic characterization: F is in RO0
nc,d(L(U ,Y)) if and

only if some rescaled version F̃ (δ) = F (rδ) (where rδ = (rδ1, . . . , rδd) if δ =
(δ1, . . . , δd)) is in the rational noncommutative H∞-class RH∞,onc,d(L(U ,Y)) for
some r > 0 and hence has the intrinsic characterization in terms of a completely
positive Agler decomposition and finite-rankness of a finite collection of Hankel
matrices as described above for the class RH∞,onc,c(L(U ,Y)).

We may then pose the following control problems:
Noncommutative polydisk internal-stabilization/H∞-control problem: We sup-
pose that we are given finite-dimensional spaces W, U , Z, Y and a block-matrix
G =

[
G11 G12
G21 G22

]
in RO0

nc,d(L(W ⊕ U ,Z ⊕ Y)). We seek to find a controller K in
RO0

nc,d(L(Y,U)) which solves the (1) internal stabilization problem, i.e. so that
the closed-loop system is internally stable in the sense that all matrix entries of
the block matrix Θ(G,K) given by (2.2) are in RH∞,onc,d, and which possibly also
solves the (2) H∞-problem, i.e., in addition to internal stability, the closed-loop
system has performance in the sense that Tzw = G11 +G12K(I −G22K)−1G21 is
in the rational strict noncommutative Schur-Agler class RSAonc,d(W,Z).

Even though our algebra of scalar plants RO0
nc,d is noncommutative, the

parameterization result Theorem 3.5 still goes through in the following form; we
leave it to the reader to check that the same algebra as used for the commutative
case leads to the following noncommutative analogue.

Theorem 6.7. Assume that G ∈ RO0
nc,d(L(W ⊕ U ,Z ⊕ Y)) is given and that G

has at least one stabilizing controller K∗. Define U∗ = (I − G22K∗)−1, V∗ =
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K∗(I−G22K∗)−1, Ũ∗ = (I−K∗G22)−1 and Ṽ∗ = (I−K∗G22)−1K∗. Then the set
of all stabilizing controllers K for G is given by either of the two formulas

K = (V∗ +Q)(U∗ +G22Q)−1 subject to (U∗ +G22Q)(0) is invertible,

K = (Ũ∗ +QG22)−1(Ṽ∗ +Q) subject to (Ũ∗ +QG22)(0) is invertible,

where in addition Q has the form Q = L̃ΛL where L̃ and L are given by (3.8) and
Λ is a free stable parameter in H∞,onc,d(L(Y ⊕ U ,U ⊕ Y)). Moreover, if Q = L̃ΛL
with Λ stable, then (U∗ + G22Q)(0) is invertible if and only if (Ũ∗ + QG22)(0) is
invertible, and both formulas give rise to the same controller K.

Given a transfer matrix G22 ∈ RO0
nc,d(L(U ,Y)), we say that G22 has a stable

double coprime factorization if there exist transfer matrices D(δ), N(δ), X(δ),
Y (δ), D̃(δ), Ñ(δ), X̃(δ), and Ỹ (δ) of compatible sizes with stable matrix entries
(i.e., with matrix entries in RH∞,onc,d) subject also to

D(0), D̃(0), X(0), X̃(0) all invertible

so that the noncommutative version of condition (3.9) holds:

G22(δ) = D(δ)−1N(δ) = Ñ(δ)D̃−1(δ),[
D(δ) −N(δ)
−Ỹ (δ) X̃(δ)

] [
X(δ) Ñ(δ)
Y (δ) D̃(δ)

]
=
[
InY 0
0 InU

]
.

(6.17)

Then we leave it to the reader to check that the same algebra as used for the
commutative case leads to the following noncommutative version of Theorem 3.11.

Theorem 6.8. Assume that G ∈ RO0
nc,d is stabilizable and that G22 admits a double

coprime factorization (6.17). Then the set of all stabilizing controllers is given by

K(δ) = (Y (δ) + D̃(δ)Λ(δ))(X(δ) + Ñ(δ)Λ(δ))−1

= (X̃(δ) + Λ(δ)N(δ))−1(Ỹ (δ) + Λ(δ)D(δ)),

where Λ is a free stable parameter from H∞,0nc,d(L(U ,Y) such that X(0)− Ñ(0)Λ(0)
is invertible and X̃(0) + Λ(0)N(0) is invertible.

Just as in the commutative case, consideration of the H∞-control problem
for a given transfer matrix G ∈ RO0

nc,d(L(W ⊕ U ,Z ⊕ Y)) after the change of
the design parameter from the controller K to the free-stable parameter Λ in
either of the two parameterizations of Theorems 6.7 and 6.8 leads to the following
noncommutative version of the Model-Matching problem; we view this problem as
a noncommutative version of a Sarason interpolation problem.
Noncommutative-polydisk Sarason interpolation problem: Given matrices T1, T2,
T3 of compatible sizes over RH∞,onc,d, find a matrix Λ (of appropriate size) over
RH∞,onc,d so that the matrix S = T1+T2ΛT3 is in the strict rational noncommutative
Schur-Agler class RSAonc,d(W,Z).
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While there has been some work on left-tangential Nevanlinna-Pick-type in-
terpolation for the noncommutative Schur-Agler class (see [22]), there does not
seem to have been any work on a Commutant Lifting theorem for this setup or
on how to convert a Sarason problem as above to an interpolation problem as
formulated in [22]. We leave this area to future work.

6.3. Equivalence of state-space noncommutative LFT-model and noncommutative
frequency-domain formulation

In order to make the connections between the results in the previous two subsec-
tions, we consider functions as in Subsection 6.2, but we normalize the infinite di-
mensional Hilbert space K to be `2 and work with d+1 variables δ = (δ1, . . . , δd+1)
in L(`2) instead of d. As pointed out in Subsection 6.1, we may without loss of
generality assume that the last variable δd+1 is fixed to be the shift operator S on
`2.

The following is an improved analogue of Lemma 4.13 for the noncommuta-
tive setting.

Theorem 6.9. Suppose that the matrix function W ∈ RO0
nc,d+1(L(U ,Y)) has a

finite-dimensional realization

W (δ) = D + C(I − Z(δ)A)−1Z(δ)B,

where
A = A⊗ I`2 , B = B ⊗ I`2 , C = C ⊗ I`2 , D = D ⊗ I`2 ,

which is both nc-Hautus-detectable and nc-Hautus-observable. Then W is stable in
the noncommutative frequency-domain sense (i.e., all matrix entries of W are in
H∞,onc,d+1) if and only if W is stable in the state-space sense, i.e., the matrix A is
nc-Hautus-stable.

Proof. If the matrix A is nc-Hautus-stable, it is trivial that then all matrix entries
of W are in H∞,onc,d+1. We therefore assume that all matrix entries of W are in
H∞,onc,d+1. It remains to show that, under the assumption that {C,A} is nc-Hautus
detectable and that {A,B} is nc-Hautus stabilizable, it follows that A is nc-Hautus
stable.

The first step is to observe the identity

S1(δ) :=
[
I − Z(δ)A

C

]
(I − Z(δ)A)−1Z(δ)B =

[
Z(δ)B

W (δ)−D

]
. (6.18)

Since W (δ) − D is in H∞,onc,d+1(L(U ,Y)) by assumption and trivially Z(δ)B is
in H∞,onc,d+1(L(U ,X )), it follows that S1(δ) is in H∞,onc,d+1(L(U ,X ⊕ Y)). By the
detectability assumption and Proposition 6.1 it follow that there exists an operator
L = L⊗ I`2 with L : Y → X so that A + LC is nc-Hautus-stable. Thus

F1(δ) = (I − Z(δ)(A + LC))−1
[
I −Z(δ)L

]
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is in H∞,onc,d+1(L(X ⊕ Y,X )). Note that F1(δ)S1(δ) = (I − Z(δ)A)−1Z(δ)B. The
fact that both F1 and S1 are transfer-functions over H∞,onc,d+1 implies that S2(δ) =
(I − Z(δ)A)−1Z(δ)B is in H∞,onc,d+1(L(U ,X )).

We next use the identity[
Z(δ) S2(δ)

]
:=
[
Z(δ) (I − Z(δ)A)−1Z(δ)B

]
=Z(δ)(I −AZ(δ))−1

[
I −AZ(δ) B

]
. (6.19)

Now the nc-Hautus-stabilizability assumption and the second part of Proposition
6.1 imply in a similar way that S3(δ) = Z(δ)(I−Z(δ)A)−1 is in H∞,onc,d+1(L(X ,X )).
Note that S3 in turn has the trivial realization

S3(δ) = D′ + C′(I − Z(δ)A′)−1Z(δ)B′

where
[

A′ B′

C′ D′

]
=
[
A′ B′

C′ D′

]
⊗ I`2 and

[
A′ B′

C′ D′

]
= [A I

I 0 ]. Thus (A′, B′, C ′, D′) =
(A, I, I, 0) is trivially GR-controllable and GR-observable in the sense of [27]. On
the other hand, by Theorem 6.6 there exists a strictly contractive matrix

[
A′′ B′′

C′′ 0

]
so that

S3(δ) = r′′C′′(I − Z(δ)A′′)−1Z(δ)B′′

for some r < ∞. Moreover, by the Kalman decomposition for noncommuta-
tive GR-systems given in [27], we may assume without loss of generality that
(A′′, B′′, C ′′, 0) is GR-controllable and GR-observable. Then, by the main result
of Alpay–Kaliuzhnyi-Verbovetskyi in [14], it is known that the function S(δ) =∑
α∈Fd

Sα⊗δα uniquely determines the formal power series S(z) =
∑
α∈Fd

Sαz
α.

It now follows from the State-Space Similarity Theorem for noncommutative GR-
systems in [27] that there is an invertible block diagonal similarity transform
Q ∈ L(X ′,X ′′) so that[

A I
I 0

]
:=
[
A′ B′

C ′ 0

]
=
[
Q−1 0

0 I

] [
A′′ B′′

C ′′ 0

] [
Q 0
0 I

]
.

In particular, A = Q−1A′′Q where A′′ is a strict contraction and Q is a structured
similarity from which it follows that A is also nc-Hautus-stable as wanted. �

We can now obtain the equivalence of the frequency-domain and state-space
formulations of the internal stabilization problems for the case where the state-
space internal stabilization problem is solvable.

Theorem 6.10. Suppose that we are given a realization

G(δ) =
[
G11(δ) G12(δ)
G21(δ) G22(δ)

]
=
[
D11 D12

D21 0

]
+
[
C1

C2

]
(I − Z(δ)A)−1Z(δ)

[
B1 B2

]
for an element G ∈ RO0

nc,d+1(L(W⊕U ,Z⊕Y)) such that the state-space internal
stabilization problem has a solution. Suppose also that we are given a controller
K ∈ RO0

nc,d+1(L(Y,U)) with state-space realization

K(δ) = DK + CK(I − ZK(δ)AK)−1ZK(δ)BK .
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which is both nc-Hautus-stabilizable and nc-Hautus-detectable. Then the controller
K ∼ {AK ,BK ,CK ,DK} solves the state-space internal stabilization problem as-
sociated with {A,

[
B1 B2

]
,
[

C1
C2

]
,
[

D11 D12
D21 0

]
} if and only if K(δ) solves the non-

commutative frequency-domain internal stabilization problem associated with

G(δ) =
[
G11(δ) G12(δ)
G21(δ) G22(δ)

]
.

Proof. By Theorem 6.3, the assumption that that the state-space internal sta-
bilization problem is solvable means that {C2,A} is nc-Hautus-detectable and
{A,B2} is nc-Hautus-stabilizable. We shall use this form of the standing assump-
tion. Moreover, in this case, a given controller K ∼ {AK ,BK ,CK ,DK} solves the
state-space internal stabilization problem if and only if K stabilizes G22.

Suppose now that K ∼ {AK ,BK ,CK ,DK} solves the state-space internal
stabilization problem, i.e., the state operator Acl in (6.14) is nc-Hautus-stable.
Note that the 3 × 3 noncommutative transfer matrix Θ(G,K) has realization
Θ(G,K) = DΘ +CΘ(I−ZΘ(δ)AΘ)−1ZΘ(δ)BΘ with ZΘ(δ) = Zcl(δ) as in (6.15)
where [

AΘ BΘ

CΘ DΘ

]
=
[
AΘ BΘ

CΘ DΘ

]
⊗ I`2

with

AΘ =
[
A+B2DKC2 BwCK

BKC2 AK

]
, BΘ =

[
B1 +B2DKD2 B2 B2DK

BKD21 0 BK

]
,

CΘ =

C1 +D12DKC2 D12CK
DKC2 CK
C2 0

 , DΘ =

D1 +D12DKD21 D12 D12DK

DKD21 I KK

D21 0 I

 .
(6.20)

Now observe that AΘ is equal to Acl, so that all nine transfer matrices in Θ(G,K)
have a realization with state operator AΘ = Acl nc-Hautus-stable. Hence all
matrix entries of Θ(G,K) are in H∞,onc,d+1.

Suppose that K(δ) with realization K ∼ {AK ,BK ,CK ,DK} internally
stabilizes G in the frequency-domain sense. This means that all nine transfer
matrices in Θ(G,K) are stable. In particular, the 2 × 2 transfer matrix W̃ :=
Θ(G22,K)−Θ(G22,K)(0) is stable. From (6.20) we read off that W̃ has realiza-
tion

W̃ (δ) =
[
DKC2 CK

C2 0

]
(I − ZΘ(δ)AΘ)−1

[
B2 B2DK

0 BK

]
.

By Theorem 6.9, to show that Acl = AΘ is nc-Hautus-stable, it suffices to show
that

{[
DKC2 CK

C2 0

]
,Acl

}
is nc-Hautus-detectable and that

{
Acl,

[
B2 B2DK

0 BK

]}
is

nc-Hautus-stabilizable. By using our assumption that {AK ,BK ,CK ,DK} is both
nc-Hautus-detectable and nc-Hautus-stabilizable, one can now follow the argument
in the proof of Theorem 4.9 to deduce that

{[
DKC2 CK

C2 0

]
,Acl

}
is noncommutative

detectable and that
{
Acl,

[
B2 B2DK

0 BK

]}
is noncommutative Hautus-stabilizable as

needed. �
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We do not know as of this writing whether any given controller K in the
space RO0

nc,d+1(L(Y,U)) has a nc-Hautus-detectable/stabilizable realization (see
the discussion in the Notes below). However, for the Model-Matching problem,
internal stabilizability in the frequency-domain sense means that all transfer ma-
trices T1, T2, T3 are stable (i.e., have all matrix entries in H∞,onc,d+1) and hence the
standard plant matrix G =

[
T11 T12
T22 0

]
has a stable realization. A given controller

K solves the internal stabilization problem exactly when it is stable; thus we may
work with realizations K ∼ {AK ,BK ,CK ,DK} with AK nc-Hautus-stable, and
hence a fortiori with both {CK ,AK} nc-Hautus-detectable and {AK ,BK} nc-
Hautus-stabilizable. In this scenario Theorem 6.10 tells us that a controller K(δ)
solves the frequency-domain internal stabilization problem exactly when any stable
realization K ∼ {AK ,BK ,CK ,DK} solves the state-space internal stabilization
problem. Moreover, the frequency-domain performance measure matches with the
state-space performance measure, namely: that the closed-loop transfer matrix
Tzw = G11 +G12(I−KG22)−1KG21 be in the strict noncommutative Schur-Agler
class SAonc,d+1(W,Z). In this way we arrive at a solution of the noncommutative
Sarason interpolation problem posed in Section 6.2.

Theorem 6.11. Suppose that we are given a transfer matrix of the form G =[
T1 T2
T3 0

]
∈ H∞,onc,d+1(L(W ⊕U ,Z ⊕ Y)) with a realization[
T1(δ) T2(δ)
T3(δ) 0

]
=
[
D11 D12

D21 0

]
+
[
C1

C2

]
(I − Z(δ)A)−1Z(δ)

[
B1 B2

]
(so C2(I − Z(δ)A)−1Z(δ)B = 0 for all δ) whereA B1 B2

C1 D11 D12

C2 D21 0

 =

A B1 B2

C1 D11 D12

C2 D21 0

⊗ I`2
as usual. Then there exists a K ∈ H∞,onc,d+1 so that T1 + T2KT3 is in the strict
noncommutative Schur-Agler class SAonc,d+1 if and only if there exist X,Y ∈ D,
with D as in (4.11), satisfying LMIs:

[
Nc 0
0 I

]∗ AY A∗ − Y AY C∗1 B1

C1Y A
∗ C1Y C

∗
1 − I D11

B∗1 D∗11 −I

[Nc 0
0 I

]
< 0, Y > 0,

[
No 0
0 I

]∗ A∗XA−X A∗XB1 C∗1
B∗1XA B∗1XB1 − I D∗11

C1 D11 −I

[No 0
0 I

]
< 0, X > 0,

and the coupling condition [
X I
I Y

]
≥ 0.
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Here Nc and No are matrices chosen so that

Nc is injective and ImNc = Ker
[
B∗2 D∗12

]
and

No is injective and ImNo = Ker
[
C2 D21

]
.

6.4. Notes

1. The equality of µ∆(A) with µ̂∆(A) where ∆ is as in (6.8) appears in Paganini’s
thesis [108]; as mentioned in the Introduction, results of the same flavor have been
given in [37, 42, 60, 99, 129]. Ball-Groenewald-Malakorn [29] show how this result
is closely related to the realization theory for the noncommutative Schur-Agler
class obtained in [28]. There it is shown that µ∆(A) ≤ µ∆(A) = µ̂∆(A), where
µ∆(A) is a uniform version of µ∆(A). The fact that µ∆(A) = µ∆(A) is the
content of Theorem B.3 in [108]. Paganini’s analysis is carried out in the more
general form required to obtain the result of Proposition 6.1.

The thesis of Paganini also includes some alternate versions of Proposition
6.1. Specifically, rather than letting each δj be an arbitrary operator on `2, one may
restrict to such operators which are causal (i.e., lower-triangular) and/or slowly
time-varying in a precise quantitative sense. With any combination of these refined
uncertainty structures in force, all the results developed in Section 6 continue to
hold. With one or more of these modifications in force, it is more plausible to argue
that the assumption made in Section 6.1 that the controller K has on-line access
to the uncertainties δi is physically realistic.

The replacement of the condition µ(∆) < 1 by µ̂(∆) < 1 can be considered as
a relaxation of the problem: while one really wants µ(∆) < 1, one is content to ana-
lyze µ̂(∆) < 1 since µ̂(∆) is easier to compute. Necessary and sufficient conditions
for µ̂(∆) < 1 then provide sufficient conditions for µ(∆) < 1 (due to the general
inequality µ(∆) ≤ µ̂(∆)). In the setting of the enhanced uncertainty structure dis-
cussed in this section, by the discussion immediately preceding Proposition 6.1 we
see in this case that the relaxation is exact in the sense that µ̂(∆) < 1 is necessary
as well as sufficient for µ(∆) < 1. In Remark 1.2 of the paper of Megretsky-Treil
[99], it is shown how the µ-singular-value approach can be put in the following
general framework involving quadratic constraints (called the S-procedure for ob-
scure reasons). One is given quadratic functionals σ0, σ1, . . . , σ` defined on some
set L and one wants to know when it is the case that

σj(x) ≥ 0 for j = 1, . . . , ` =⇒ σ0(x) ≤ 0 for x ∈ L. (6.21)

A computable sufficient condition (the relaxation) is the existence of nonnegative
real numbers τ1, . . . , τ` (τj ≥ 0 for j = 1, . . . , `) so that

σ0(x) +
∑̀
j=1

τjσj(x) ≤ 0 for all x ∈ L. (6.22)

The main result of [99] is that there is a particular case of this setting (where L
is a linear shift-invariant subspace of vector-valued L2(0,∞) (or more generally
L2

loc(0,∞)) and the quadratic constraints are shift-invariant) where the relaxation
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is again exact (i.e., where (6.21) and (6.22) are equivalent); this result is closely
related to Proposition 6.1 and the work of [108]. A nice survey of the S-procedure
and its applications to a variety of other problems is the paper of Pólik-Terlaky
[112].

2. It is of interest to note that the type of noncommutative system theory
developed in this section (in particular, nc-detectability/stabilizability and nc-
coprime representation as in (6.17)) has been used in the work of Beck [36] and
Li-Paganini [89] in connection with model reduction for linear systems with LFT-
modelled structured uncertainty.

3. We note that Theorem 6.8 gives a Youla-Kučera-type parametrization for
the set of stabilizing controllers for a given plant G ∈ RO0

nc,d(L(W ⊕ U ,Z ⊕ Y))
under the assumption that G22 has a double coprime factorization. In connection
with this result, we formulate a noncommutative analogue of the conjecture of
Lin: If G ∈ RO0

nc,d(L(W ⊕ U ,Z ⊕ Y)) is stabilizable, does it follow that G22 has
a double-coprime factorization? If G22 has a realization

G22(δ) = C2(I − Z(δ)A)−1Z(δ)B2

with [ A B
C 0 ] = [A B

C 0 ] ⊗ I`2 nc-Hautus stabilizable and nc-Hautus detectable, then
one can adapt the state-space formulas for the classical case (see [104, 85]) to arrive
at state-space realization formulas for a double-coprime factorization of G22. If it
is the case that one can always find a nc-Hautus stabilizable/detectable realization
for G22, it follows that G22 in fact always has a double-coprime factorization and
hence the noncommutative Lin conjecture is answered in the affirmative. However,
we do not know at this time whether nc-Hautus stabilizable/detectable realizations
always exist for a given G22 ∈ RO0

nc,d(L(U ,Y)). From the results of [27], it is
known that minimal i.e., controllable and observable realizations exist for a given
G22. However, here controllable is in the sense that a certain finite collection
of control operators be surjective and observable is in the sense that a certain
finite collection of observation operators be injective. It is not known if this type
of controllability is equivalent to nc-Hautus controllability, i.e., to the operator
pencil

[
I − Z(δ)A B

]
being surjective for all δ ∈ L(`2)d+1 (not just δ in the

noncommutative polydisk Dnc,d). Thus it is unknown if controllable implies nc-
Hautus stabilizable in this context. Dually, we do not know if observable implies
nc-Hautus detectable.

4. Theorem 6.9 can be viewed as saying that, under a stabilizability/detect-
ability hypothesis, any stable singularity of the noncommutative function W must
show up internally as a singularity in the resolvent (I − Z(δ)A)−1 of the state
matrix A. A variant on this theme is the well known fact for the classical case
that, under a controllability/observability assumption, any singularity (stable or
not) of the rational matrix function W (λ) = D+λC(I−λA)−1B necessarily must
show up internally as a singularity in the resolvent (I−λA)−1 of the state matrix A.
A version of this result for the noncommutative case has now appeared in the paper
of Kaliuzhnyi-Verbovetskyi–Vinnikov [82]; however the notion of controllable and
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observable there is not quite the same as the notion of controllable and observable
for non-commutative Givone-Roesser systems as given in [27].

5. Given a function S(z) =
∑
n∈Zd

+
Snz

n (where z = (z1, . . . , zd) is the vari-

able in the commutative polydisk Dd and we use the standard multivariable no-
tation zn = zn1

1 · · · z
nd

d if n = (n1, . . . , nd) ∈ Zd+), we know from the results of
[2, 3, 35] that S has a contractive realization S(z) = D + C(I − Z(z)A)Z(z)B.
In light of the work of [28], we see that any such contractive system matrix
[A B
C D ] : (⊕dk=1Xk ⊕ U) → (⊕dk=1Xk ⊕ Y) can also be used to define an element

S of the noncommutative Schur-Agler class SAnc,d(U ,Y):

S(δ) = D + C(I − Z(δ)A)−1Z(δ)B

where [ A B
C D ] = [A B

C D ] ⊗ I`2 . Thus a choice of contractive realization {A,B,C,D}
for the commutative Schur-Agler-class function S can be viewed as a choice of
noncommutative lifting to a noncommutative Schur-Agler-class function S(δ); the
lifting property is that

S(zI) = S(z)⊗ I`2 where zI = (z1I`2 , . . . , zdI`2) ∈ Dnc,d if z = (z1, . . . , zd) ∈ Dd.

While the realization for the commutative function is highly non-unique, the real-
ization for the noncommutative function is unique up to state-space similarity if
arranged to be minimal (i.e., controllable and observable as in [27]). Philosophi-
cally one can say that evaluation of the function on the commutative polydisk Dd
does not give enough frequencies to detect the realization; enlarging the frequency
domain (or points of evaluation) to the noncommutative polydisk Ddnc,d does give
enough frequencies to detect the realization in an essentially unique way.
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