Computer algebra techniques for testing the stability of n-D linear discrete systems

Yacine Bouzidi, Alban Quadrat DISCO Team

Inria
Yacine.bouzidi@inria.fr
26 janvier 2015

Problem

- Given an N-D discrete system represented by its transfert function $G\left(z_{1}, \ldots, z_{n}\right)=N\left(z_{1}, \ldots, z_{n}\right) / D\left(z_{1}, \ldots, z_{n}\right)$
- We are interested in the structural stability of this system

Structural stability

An N-D discrete system is structurally stable if and only if $D\left(z_{1}, \ldots, z_{n}\right)$ is devoid from zero in the closed unit polydisc, i.e.

$$
D\left(z_{1}, \ldots, z_{n}\right) \neq 0 \text { for }\left|z_{1}\right| \leq 1, \ldots,\left|z_{n}\right| \leq 1 .
$$

Overview

(1) Previous work
(2) Contribution
(3) Conclusion

Previous work : The case $n=1$

- Numerous algebraic stability criterions : Jury test, Bistritz test, etc
- Discrete time analogues of the Routh-Hurwitz criterion
- Based on Cauchy index computation and sign variation in some polynomial sequences
- The complexity of a univariate gcd computation

Previous work : The case $n=1$

- $D(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}$ the characteristic polynomial of the system
- Define $D^{\star}(z)=z^{n} D\left(z^{-1}\right)$

Jury test

Compute the sequence of polynomials $T_{i}(z), i=n, \ldots, 0$ defined as

- $T_{n}(z)=D(z)-\frac{D(0)}{D^{\star}(0)} D^{\star}(z)$
- For $i=n-1, \ldots, 1: \delta_{i}=\frac{T_{i+1}(0)}{T_{i+1}^{\star}(0)}, T_{i}(z)=T_{i+1}(z)-\delta_{i} T_{i+1}^{\star}(z)$

Criterion : the system is stable if and only if the number of sign variation in $\left\{T_{n}^{\star}(0), \ldots, T_{0}^{\star}(0)\right\}$ is zero.

Previous work : The case $n=1$

- $D(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}$ the characteristic polynomial of the system
- Define $D^{\star}(z)=z^{n} D\left(z^{-1}\right)$

Bistritz test

Compute the sequence of polynomials $T_{i}(z), i=n, \ldots, 0$ defined as

- $T_{n}(z)=D(z)+D^{\star}(z), T_{n-1}(z)=\frac{D(z)+D^{\star}(z)}{(z-1)}$
- For $i=n-1, \ldots, 1: \delta_{i+1}=\frac{T_{i+1}(0)}{T_{i}(0)}, T_{i-1}(z)=\frac{\delta_{i+1}(1+z) T_{i}(z)-T_{i+1}(z)}{z}$

Criterion : the system is stable if and only if the sequence is normal and the number of sign variation in $\left\{T_{n}(1), \ldots, T_{0}(1)\right\}$ is zero.

Previous work : The case $n=1$

- $D(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}$ the characteristic polynomial of the system
- Define $D^{\star}(z)=z^{n} D\left(z^{-1}\right)$

Bistritz test

Compute the sequence of polynomials $T_{i}(z), i=n, \ldots, 0$ defined as

- $T_{n}(z)=D(z)+D^{\star}(z), T_{n-1}(z)=\frac{D(z)+D^{\star}(z)}{(z-1)}$
- For $i=n-1, \ldots, 1: \delta_{i+1}=\frac{T_{i+1}(0)}{T_{i}(0)}, T_{i-1}(z)=\frac{\delta_{i+1}(1+z) T_{i}(z)-T_{i+1}(z)}{z}$

Criterion : the system is stable if and only if the sequence is normal and the number of sign variation in $\left\{T_{n}(1), \ldots, T_{0}(1)\right\}$ is zero.

The bistritz test is the most efficient test in practice.

Previous work : The case $n>1$

First step : simplification of the initial condition
[Strintzis,Huang 1977]

$$
\begin{array}{ll}
D\left(0, \ldots, 0, z_{n}\right) \neq 0 & \text { for }\left|z_{n}\right| \leq 1 \\
D\left(0, \ldots, 0, z_{n-1}, z_{n}\right) \neq 0 & \text { for }\left|z_{n-1}\right| \leq 1,\left|z_{n}\right|=1 \\
\quad \vdots & \\
D\left(0, z_{2}, \ldots, z_{n-1}, z_{n}\right) \neq 0 & \text { for }\left|z_{2}\right| \leq 1,\left|z_{3}\right|=\ldots=\left|z_{n}\right|=1 \\
D\left(z_{1}, z_{2}, \ldots, z_{n-1}, z_{n}\right) \neq 0 & \text { for }\left|z_{1}\right| \leq 1,\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1
\end{array}
$$

[DeCarlo et al, 1977]

$$
\begin{array}{cl}
D\left(z_{1}, 1, \ldots, 1\right) \neq 0 & \text { for }\left|z_{1}\right| \leq 1 \\
D\left(1, z_{2}, 1, \ldots, 1\right) \neq 0 & \text { for }\left|z_{2}\right| \leq 1 \\
\vdots & \\
D\left(1, \ldots, 1, z_{n}\right) \neq 0 & \text { for }\left|z_{n}\right| \leq 1 \\
D\left(z_{1}, \ldots, z_{n}\right) \neq 0 & \text { for }\left|z_{1}\right|=\ldots=\left|z_{n}\right|=1
\end{array}
$$

Implementations

- Numerous algorithms in 2D, Bistritz (94,99,02,03,04), Xu et al. 04, Fu et al. 06, etc
- Most of them are based on the Strintzis's conditions

$$
\left\{\begin{array}{l}
D\left(z_{1}, 0\right) \neq 0,\left|z_{1}\right| \leq 1 \\
D\left(z_{1}, z_{2}\right) \neq 0,\left|z_{1}\right|=1,\left|z_{2}\right| \leq 1
\end{array}\right.
$$

- Very few in ND with $N>2$, Serban and Najim, 07

Overview

(9) Previous work

(2) Contribution

(3) Conclusion

Introduction

- Tests based on the DeCarlo's conditions
- All the conditions except the last one can be tested using classical univariate stability tests.
- Focus on the condition $D\left(z_{1}, \ldots, z_{n}\right) \neq 0,\left|z_{1}\right|=\ldots=\left|z_{n}\right|=1$

One first approach

If $z_{i}=x_{i}+i y_{i}$ for $i=1, \ldots, n$ with $x_{i}, y_{i} \in \mathbb{R}$, the problem is equivalent to the study of the following algebraic system

$$
S=\left\{\begin{array}{l}
\mathcal{R}\left(D\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right)\right)=D_{r}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=0 \\
\mathcal{C}\left(D\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right)\right)=D_{c}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=0 \\
x_{i}^{2}+y_{i}^{2}-1=0 \text { for } i=1, \ldots, n
\end{array}\right.
$$

- Case $n=2$: zero-dimensional systems \rightsquigarrow Rational Univariate Representation, Triangular Representation, Grobner Basis
- Case $n>2$: systems with positive dimension \rightsquigarrow Cylindrical Algebraic Decomposition, Critical Points Methods

One first approach

If $z_{i}=x_{i}+i y_{i}$ for $i=1, \ldots, n$ with $x_{i}, y_{i} \in \mathbb{R}$, the problem is equivalent to the study of the following algebraic system

$$
S=\left\{\begin{array}{l}
\mathcal{R}\left(D\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right)\right)=D_{r}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=0 \\
\mathcal{C}\left(D\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right)\right)=D_{c}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=0 \\
x_{i}^{2}+y_{i}^{2}-1=0 \text { for } i=1, \ldots, n
\end{array}\right.
$$

- Case $n=2$: zero-dimensional systems \rightsquigarrow Rational Univariate Representation, Triangular Representation, Grobner Basis
- Case $n>2$: systems with positive dimension \rightsquigarrow Cylindrical Algebraic Decomposition, Critical Points Methods

Drawback : The number of variables is doubled

Alternative approach

- The unit poly-circle defines a n-D subspace in the $2 n$-D complex space.
- The problem can be reduced modulo some transformations, to that of looking for real zeros
- Inside the unit hyper-cube $[-1,1]^{n}$
- In the whole real space \mathbb{R}^{n}

For simplicity we first describe the case $n=2$

From the unit bi-circle to the unit box

Theorem (N.K. Bose)

Let $D(z) \in \mathbb{R}[z]$ and $H(z)=D(z) D\left(z^{-1}\right)$.
(1) $H(z)$ can be converted into a polynomial $f(x)$ using the transformation $x=\frac{1}{2}\left(z+z^{-1}\right)$
(2) $D(z)$ has complex roots on the unit circle if and only if $f(x)$ has real roots in the interval $[-1,1]$

Proof

- Transformation :
- $H(z)=H\left(z^{-1}\right)=\sum_{i=0}^{d} c_{i}\left(z^{i}+z^{-i}\right)$
- $x=\frac{1}{2}\left(z+z^{-1}\right) \Rightarrow z^{i}+z^{-i}=2 T_{i}(x)$ where T_{i} denotes the i-th Tchebychev polynomial
- The second point is trivial.

From the unit bi-circle to the unit box

The Case $\mathrm{n}=2$:

Theorem

Let $D\left(z_{1}, z_{2}\right)$ and $H\left(z_{1}, z_{2}\right)=D\left(z_{1}, z_{2}\right) D\left(z_{1}^{-1}, z_{2}\right) D\left(z_{1}, z_{2}^{-1}\right) D\left(z_{1}^{-1}, z_{2}^{-1}\right)$.

- $H\left(z_{1}, z_{2}\right)$ can be converted into a polynomial $f(x, y)$ using the transformations $x=\frac{1}{2}\left(z_{1}+z_{1}^{-1}\right)$ and $y=\frac{1}{2}\left(z_{2}+z_{2}^{-1}\right)$
- $D\left(z_{1}, z_{2}\right)$ has complex zeros on the unit bi-circle if and only if $f(x, y)$ has real zeros inside the box $[-1,1]^{2}$

Transformation

$$
\begin{aligned}
& H\left(z_{1}, z_{2}\right)=\sum_{k=-d}^{d} \sum_{i=0}^{2 d} c_{i}\left(z_{1}^{i}+z_{1}^{-i}\right) \times z_{2}^{k}: x=\frac{1}{2}\left(z_{1}+z_{1}^{-1}\right) \Rightarrow \sum_{k=-d}^{d} h_{k}(x) z_{2}^{k} \\
& H\left(x, z_{2}\right)=\sum_{k=-d}^{d} \sum_{i=0}^{2 d} c_{i}\left(z_{2}^{i}+z_{2}^{-i}\right) \times x^{k}: y=\frac{1}{2}\left(z_{2}+z_{2}^{-1}\right) \Rightarrow f(x, y)
\end{aligned}
$$

From the unit circle to \mathbb{R}^{2}

- We consider the complex zeros of $D\left(z_{1}, z_{2}\right)$ on the unit bi-circle
- We use the parametrization of the complex unit circle.

$$
\begin{aligned}
\text { - } z_{1}=\left(1-x^{2}\right) /\left(1+x^{2}\right)+i \times 2 x /\left(1+x^{2}\right) \\
\text { - } z_{2}=\left(1-y^{2}\right) /\left(1+y^{2}\right)+i \times 2 y /\left(1+y^{2}\right)
\end{aligned}
$$

- Define the polynomial $f(x, y)=f_{r}(x, y)+i f_{c}(x, y)$ as the numerator of $D\left(\frac{1-x^{2}}{1+x^{2}}+i \frac{2 x}{1+x^{2}}, \frac{1-y^{2}}{1+y^{2}}+i \frac{2 y}{1+y^{2}}\right)$

Theorem

The polynomial $D\left(z_{1}, z_{2}\right)$ has complex zeros on the unit bi-circle if and only if the system $\left\{f_{r}(x, y)=f_{c}(x, y)=0\right\}$ has real solutions in \mathbb{R}^{2}.

Summary

The condition $D\left(z_{1}, z_{2}\right) \neq 0$ for $\left|z_{1}\right|=\left|z_{2}\right|=1$ can be reduced to
(1) $f(x, y) \neq 0$ for $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$

Or
(2) $\left\{f_{r}(x, y)=f_{c}(x, y)=0\right\} \cap \mathbb{R}^{2}=\emptyset$
$f(x, y), f_{r}(x, y)$ and $f_{c}(x, y)$ have total degree twice that of D.

Checking for real zeros in \mathbb{R}^{2}

- Generically, the system $\left\{f_{r}(x, y), f_{c}(x, y)\right\}$ is zero dimensional
- Goal : Compute the number of its real solutions
- Approach : Compute a symbolic representation of the initial system that eases the count and the isolation of its solutions.

A convenient representation is the Rational Univariate Representation

Rational Univariate Representation

Let $\langle P, Q\rangle$ be a zero-dim ideal and V its variety. A RUR of $\langle P, Q\rangle$ is given by :

- A linear form $x+$ ay that separates the points of V
- A one-to-one mapping between the roots of an univariate polynomial f and the solutions of V

$V(\{P, Q\}) \cap \mathbb{R}^{2}=\emptyset$ if and only if $V(f) \cap \mathbb{R}=\emptyset$

Checking for real zeros in $[-1,1] \times[-1,1]$

- Check if the curve \mathcal{C} defined by the implicite equation $f(x, y)=0$ intersecte the boundaries of the unit box

$f(\mathbf{x}, 1)$ in $[-\mathbf{1}, \mathbf{1}]$
$f(\mathrm{x},-1)$ in $[-1,1]$

- If not? it may have one or several connected components inside the box

- Question : How to check the existence of real component inside the box?

Critical points method

- $\pi:(x, y) \mapsto x$ is the projection onto the x-axis.
- The critical points of π restricted to \mathcal{C} are the solutions of the system $\left\{f(x, y), \frac{\partial f(x, y)}{\partial y}\right\}$.

Theorem

The set of critical points of π meets the curve \mathcal{C} on each of its real connected components.

- Check if $\left.V\left(\left\{f(x, y), \frac{\partial f(x, y)}{\partial y}\right\}\right) \cap\right]-1,1\left[^{2}=\emptyset\right.$ (RUR+Numerical isolation)

The case $n>2$

The condition $D\left(z_{1}, \ldots, z_{n}\right) \neq 0,\left|z_{1}\right|=\ldots=\left|z_{n}\right|=1$ becomes
(1) $f\left(x_{1}, \ldots, x_{n}\right) \neq 0$ for $-1 \leq x_{1} \leq 1 \ldots-1 \leq x_{n} \leq 1$

- by the transformation $x_{i}=\frac{1}{2}\left(z_{i}+z_{i}^{-1}\right)$ for $i=1, \ldots, n$ on the polynomial $H\left(z_{1}, \ldots, z_{n}\right)=\prod_{z_{i} \in\left\{z_{i}, z_{i}^{-1}\right\}} D\left(z_{1}, \ldots, z_{n}\right)$
(2) $\left\{f_{r}\left(x_{1}, \ldots, x_{n}\right)=f_{c}\left(x_{1}, \ldots, x_{n}\right)=0\right\} \cap \mathbb{R}^{n}=\emptyset$
- by the map $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\frac{1-x_{1}^{2}}{1+x_{1}^{2}}+i \frac{2 x_{1}}{1+x_{1}^{2}}, \ldots, \frac{1-x_{n}^{2}}{1+x_{n}^{2}}+i \frac{2 x_{n}}{1+x_{n}^{2}}\right)$

The total degree of $f\left(x_{1}, \ldots, x_{n}\right)$ is 2^{n-1} times the degree of D.
The total degree of $f_{r}\left(x_{1}, \ldots, x_{n}\right)$ and $f_{c}\left(x_{1}, \ldots, x_{n}\right)$ is only twice that of D.

Checking for real zeros in \mathbb{R}^{n}

- The systems are no longer zero-dimensional
- Use the critical points method to compute real solutions in each connected component
- More involved when $n>2$ but still works under mild conditions
- RagLib, an efficient implementation of the critical points method is provided by Mohab Safey al din as an external library for maple.

Overview

(9) Previous work

(2) Contribution
(3) Conclusion

Conclusion

- An embryonic implementation is already available on Maple.
- Preliminary tests show the relevance of our approach.
- Need to investigate certified numerical tests for the existance of real solutions.
- A complexity study is also needed.

Some references

Stabilité des filtres et des systèmes linéaires. M. Benidir, M.Barret

Stability and stabilisation of linear multidimensional discrete systems in the frequency domain L. Li, L. Xu, Z. Lin. 2013Solving zero-dimensional systems through the rational univariate representation. F. Rouillier Journal of applicable algebra in engineering, communication and computing, 1999.

- Polynomial System Solver over the Real. M. Safey El Din, Habilitation Thesis, Univ. Pierre and Marie Curie (Paris 06), 2010.

