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Problem

Given an N-D discrete system represented by its transfert function
G(z1, . . . , zn) = N(z1, . . . , zn)/D(z1, . . . , zn)

We are interested in the structural stability of this system

Structural stability

An N-D discrete system is structurally stable if and only if D(z1, . . . , zn) is
devoid from zero in the closed unit polydisc, i.e.

D(z1, . . . , zn) 6= 0 for |z1| ≤ 1, . . . , |zn| ≤ 1.
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Previous work : The case n = 1

Numerous algebraic stability criterions : Jury test, Bistritz test, etc

Discrete time analogues of the Routh-Hurwitz criterion

Based on Cauchy index computation and sign variation in some
polynomial sequences

The complexity of a univariate gcd computation
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Previous work : The case n = 1

D(z) = anzn + an−1zn−1 + . . .+ a0 the characteristic polynomial of the
system

Define D?(z) = zn D(z−1)

Jury test

Compute the sequence of polynomials Ti(z), i = n, . . . , 0 defined as

Tn(z) = D(z)− D(0)
D?(0)D

?(z)

For i = n − 1, . . . , 1 : δi =
Ti+1(0)
T?

i+1(0)
, Ti(z) = Ti+1(z)− δiT ?i+1(z)

Criterion : the system is stable if and only if the number of sign variation in
{T ?n (0), . . . ,T ?0 (0)} is zero.

5/25



Previous work Contribution Conclusion

Previous work : The case n = 1

D(z) = anzn + an−1zn−1 + . . .+ a0 the characteristic polynomial of the
system

Define D?(z) = zn D(z−1)

Bistritz test

Compute the sequence of polynomials Ti(z), i = n, . . . , 0 defined as

Tn(z) = D(z) + D?(z),Tn−1(z) = D(z)+D?(z)
(z−1)

For i = n − 1, . . . , 1 : δi+1 =
Ti+1(0)

Ti (0)
, Ti−1(z) =

δi+1(1+z)Ti (z)−Ti+1(z)
z

Criterion : the system is stable if and only if the sequence is normal and the
number of sign variation in {Tn(1), . . . ,T0(1)} is zero.
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Previous work : The case n = 1

D(z) = anzn + an−1zn−1 + . . .+ a0 the characteristic polynomial of the
system

Define D?(z) = zn D(z−1)

Bistritz test

Compute the sequence of polynomials Ti(z), i = n, . . . , 0 defined as

Tn(z) = D(z) + D?(z),Tn−1(z) = D(z)+D?(z)
(z−1)

For i = n − 1, . . . , 1 : δi+1 =
Ti+1(0)

Ti (0)
, Ti−1(z) =

δi+1(1+z)Ti (z)−Ti+1(z)
z

Criterion : the system is stable if and only if the sequence is normal and the
number of sign variation in {Tn(1), . . . ,T0(1)} is zero.

The bistritz test is the most efficient test in practice.
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Previous work : The case n > 1

First step : simplification of the initial condition

[Strintzis,Huang 1977]

D(0, . . . , 0, zn) 6= 0 for |zn| ≤ 1
D(0, . . . , 0, zn−1, zn) 6= 0 for |zn−1| ≤ 1, |zn| = 1

...
D(0, z2, . . . , zn−1, zn) 6= 0 for |z2| ≤ 1, |z3| = . . . = |zn| = 1
D(z1, z2, . . . , zn−1, zn) 6= 0 for |z1| ≤ 1, |z2| = . . . = |zn| = 1

[DeCarlo et al, 1977]

D(z1, 1, . . . , 1) 6= 0 for |z1| ≤ 1
D(1, z2, 1, . . . , 1) 6= 0 for |z2| ≤ 1

...
D(1, . . . , 1, zn) 6= 0 for |zn| ≤ 1
D(z1, . . . , zn) 6= 0 for |z1| = . . . = |zn| = 1
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Implementations

Numerous algorithms in 2D, Bistritz (94,99,02,03,04), Xu et al. 04, Fu et
al. 06, etc

Most of them are based on the Strintzis’s conditions{
D(z1, 0) 6= 0, |z1| ≤ 1
D(z1, z2) 6= 0, |z1| = 1, |z2| ≤ 1

Very few in ND with N > 2, Serban and Najim, 07
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Introduction

Tests based on the DeCarlo’s conditions

All the conditions except the last one can be tested using classical
univariate stability tests.

Focus on the condition D(z1, . . . , zn) 6= 0, |z1| = . . . = |zn| = 1
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One first approach

If zi = xi + iyi for i = 1, . . . , n with xi , yi ∈ R, the problem is equivalent to the
study of the following algebraic system

S =


R(D(x1 + iy1, . . . , xn + iyn)) = Dr (x1, y1, . . . , xn, yn) = 0
C(D(x1 + iy1, . . . , xn + iyn)) = Dc(x1, y1, . . . , xn, yn) = 0
x2

i + y2
i − 1 = 0 for i = 1, . . . , n

Case n = 2 : zero-dimensional systems Rational Univariate
Representation, Triangular Representation, Grobner Basis

Case n > 2 : systems with positive dimension Cylindrical Algebraic
Decomposition, Critical Points Methods

11/25



Previous work Contribution Conclusion

One first approach

If zi = xi + iyi for i = 1, . . . , n with xi , yi ∈ R, the problem is equivalent to the
study of the following algebraic system

S =


R(D(x1 + iy1, . . . , xn + iyn)) = Dr (x1, y1, . . . , xn, yn) = 0
C(D(x1 + iy1, . . . , xn + iyn)) = Dc(x1, y1, . . . , xn, yn) = 0
x2

i + y2
i − 1 = 0 for i = 1, . . . , n

Case n = 2 : zero-dimensional systems Rational Univariate
Representation, Triangular Representation, Grobner Basis

Case n > 2 : systems with positive dimension Cylindrical Algebraic
Decomposition, Critical Points Methods

Drawback : The number of variables is doubled
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Alternative approach

The unit poly-circle defines a n-D subspace in the 2n-D complex space.

The problem can be reduced modulo some transformations, to that of
looking for real zeros

Inside the unit hyper-cube [−1, 1]n

In the whole real space Rn

For simplicity we first describe the case n = 2
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From the unit bi-circle to the unit box

Theorem (N.K. Bose)

Let D(z) ∈ R[z] and H(z) = D(z)D(z−1).

1 H(z) can be converted into a polynomial f (x) using the transformation
x = 1

2 (z + z−1)

2 D(z) has complex roots on the unit circle if and only if f (x) has real
roots in the interval [−1, 1]

Proof

Transformation :

H(z) = H(z−1) =
∑d

i=0 ci(z i + z−i)

x = 1
2 (z + z−1)⇒ z i + z−i = 2 Ti(x) where Ti denotes the i-th

Tchebychev polynomial

The second point is trivial.
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From the unit bi-circle to the unit box

The Case n=2 :

Theorem

Let D(z1, z2) and H(z1, z2) = D(z1, z2)D(z−1
1 , z2)D(z1, z−1

2 )D(z−1
1 , z−1

2 ).

H(z1, z2) can be converted into a polynomial f (x , y) using the
transformations x = 1

2 (z1 + z−1
1 ) and y = 1

2 (z2 + z−1
2 )

D(z1, z2) has complex zeros on the unit bi-circle if and only if f (x , y) has
real zeros inside the box [−1, 1]2

Transformation

H(z1, z2) =
d∑

k=−d

2d∑
i=0

ci(z i
1 + z−i

1 )× zk
2 : x = 1

2 (z1 + z−1
1 )⇒

d∑
k=−d

hk (x)zk
2

H(x , z2) =
d∑

k=−d

2d∑
i=0

ci(z i
2 + z−i

2 )× xk : y = 1
2 (z2 + z−1

2 )⇒ f (x , y)
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From the unit circle to R2

We consider the complex zeros of D(z1, z2) on the unit bi-circle

We use the parametrization of the complex unit circle.

z1 = (1− x2)/(1 + x2) + i × 2x/(1 + x2)
z2 = (1− y2)/(1 + y2) + i × 2y/(1 + y2)

Define the polynomial f (x , y) = fr (x , y) + ifc(x , y) as the numerator of
D( 1−x2

1+x2 + i 2x
1+x2 ,

1−y2

1+y2 + i 2y
1+y2 )

Theorem

The polynomial D(z1, z2) has complex zeros on the unit bi-circle if and only if
the system {fr (x , y) = fc(x , y) = 0} has real solutions in R2.
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Summary

The condition D(z1, z2) 6= 0 for |z1| = |z2| = 1 can be reduced to

1 f (x , y) 6= 0 for −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1

Or

2 {fr (x , y) = fc(x , y) = 0} ∩ R2 = ∅

f (x , y), fr (x , y) and fc(x , y) have total degree twice that of D.
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Checking for real zeros in R2

Generically, the system {fr (x , y), fc(x , y)} is zero dimensional

Goal : Compute the number of its real solutions

Approach : Compute a symbolic representation of the initial system that
eases the count and the isolation of its solutions.

A convenient representation is the Rational Univariate Representation
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Rational Univariate Representation

Let 〈P,Q〉 be a zero-dim ideal and V its variety. A RUR of 〈P,Q〉 is given by :

A linear form x + ay that separates the points of V

A one-to-one mapping between the roots of an univariate polynomial f
and the solutions of V

t

Univariate polynomial

x

y

P

Q
f(t)

V({P,Q}) → V(f)
(x,y) 7→ x + ay

(fx(t)f1(t)
,
fy(t)
f1(t)

) ←[ t

one-to-one mapping

V ({P,Q}) ∩ R2 = ∅ if and only if V (f ) ∩ R = ∅
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Checking for real zeros in [−1,1]× [−1,1]

Check if the curve C defined by the implicite equation f (x , y) = 0
intersecte the boundaries of the unit box

f(x,1) in [−1,1]

f(x,−1) in [−1,1]

f(−1,y) in [−1,1]

f(1,y) in [−1,1]

If not ? it may have one or several connected components inside the box

f(x,y) = x2 + y2 − 1
4

Question : How to check the existence of real component inside the
box ?

19/25



Previous work Contribution Conclusion

Critical points method

π : (x , y) 7→ x is the projection onto the x-axis.

The critical points of π restricted to C are the solutions of the system
{f (x , y), ∂f (x,y)

∂y }.

Theorem

The set of critical points of π meets the curve C on each of its real connected
components.

Check if V ({f (x , y), ∂f (x,y)
∂y }) ∩ ]− 1, 1[2= ∅ (RUR+Numerical isolation)
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The case n > 2

The condition D(z1, . . . , zn) 6= 0, |z1| = . . . = |zn| = 1 becomes

1 f (x1, . . . , xn) 6= 0 for −1 ≤ x1 ≤ 1 . . . −1 ≤ xn ≤ 1

by the transformation xi =
1
2 (zi + z−1

i ) for i = 1, . . . , n on the
polynomial H(z1, . . . , zn) =

∏
zi∈{zi ,z

−1
i }

D(z1, . . . , zn)

2 {fr (x1, . . . , xn) = fc(x1, . . . , xn) = 0} ∩ Rn = ∅

by the map (z1, . . . , zn) 7→ (
1−x2

1
1+x2

1
+ i 2x1

1+x2
1
, . . . ,

1−x2
n

1+x2
n
+ i 2xn

1+x2
n
)

The total degree of f (x1, . . . , xn) is 2n−1 times the degree of D.

The total degree of fr (x1, . . . , xn) and fc(x1, . . . , xn) is only twice that of D.
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Checking for real zeros in Rn

The systems are no longer zero-dimensional

Use the critical points method to compute real solutions in each
connected component

More involved when n > 2 but still works under mild conditions

RagLib, an efficient implementation of the critical points method is
provided by Mohab Safey al din as an external library for maple.
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Conclusion

An embryonic implementation is already available on Maple.

Preliminary tests show the relevance of our approach.

Need to investigate certified numerical tests for the existance of real
solutions.

A complexity study is also needed.
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