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Stability  Criterion  for  N-Dimensional  Digital Filters 
J. H.  JUSTICE -am J. L. SHANKS 

Abstract-The stability requirement for  one-dimensional  re- 
cursive  filters is well known. A stability theorem  for n-dimensional 
recursive  filters is proved wherein  the denominator of the filter is  an 
n-dimensional power series. A Tauberian  theorem  due  to  Wiener 
yields the  desired  result in the general  case. 

I.  INTRODUCTIOX 
Linear  digital  filtering is a useful tool for processing discrete se- 

quences of data [1],[2]. It is used in  a variety of applications, in- 
cluding procssing of seismic data,  radar signals, cardiographic re- 
cordings, and many ot.her “signals” which have been sampled and 
stored in digital  form. 

One of the more efficient. types of digital  filters is the  “recursive 
a t e r ”  [3],[4]. For one-dimensional sequences, the recursive filter 
can be described by  its z-transform 

where the a and b coefficients define the filter. In  applying this  flt.er 
to a d a h  sequence, we use the recursive  algorithm 

where t.he zk, k = 0,1,2,. . ., represent the  input,  data sequence and 
the y t ,  k = 0,1,2,. . ., represent the  output. sequence. In using t.his 
algorithm, we assume that  the z p  and yk are zero for all k < 0. 

This  type of filter is used extensively in processing onedimensional 
sampled data.   I t  is also possible to extend this technique to n-dimen- 
sional data [5], [6], [lo]. Such filters are useful in processing two- 
dimensional data, such  as seismic data sections, digitized photo- 
graphic data,  and  gravity  and magnetic maps. In  the case of a two- 
dimensional recursive filter, the filter can be described using  two- 
dimensional polynomials or power series in (zl,zq), such  as 

F(z1,zs) = -4 (Zl ,Z?)I / ’B(L1,8*)  (3 ) 

where 
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and 

A filt.ering algorit.hm similar t.0 (2) can be writ.ten for t.he  two- 
dimensional and higher dimensional filters. 

One of the problems  in  using  recursive  filters is stability. We re- 
quire  t,hat t.he out.put of the filter not become unbounded if 
the input. is bounded. The stabi1it.y depends on the coefficients of t,he 
denominator of the recursive filters. In  the case of the one-dimen- 
sional  recursive filter, it,  has been shown in many places that  the filter 
 ill be stable if the  roots of the  denominator polynomial B ( z )  are all 
outside  the z-plane unit circle [TI .  However, these proofs all  depend 
on our ability to  factor t,he polynomial B ( z )  into  its distinct. roots. 
In  the case of n-dimensional polynomials or power series, no such 
factorization exists. Huang [l l]  has shown a proof for  the two- 
dimensional case in which the B(t1,zp) is a  finite polynomial. There- 
fore, it is the purpose of this  paper  to  state  and prove the condit.ions 
on the denominator  polynomial or power series of an n-dimensional 
recursive filtlt.er which will allow that, filter to  be stable. 

11. DEVELOPMENT 
Let us begin by developing the rationale for the precise definition 

of stability which we shall use. I t  is well known that multiplication of 
two poner series may be performed by convolving their sequences of 
coefficients; this is the process inherent in recursive digital filtering. 
We shall not. distinguish between a power series and  its sequence of 
coefficients but shall refer t.o a power series as a  sequence, or vice 
versa, when convenient. The  term  stability of a filter is  generally 
used t.o indicate  that  the result of convolving the filter with some 
bounded input sequence  should  have,  in  some sense, a  bounded out- 
put. Since all of this is rather vague, let us be more precise. One of the 
simplest classes of power series which n e  might choose to work Kith 
ia t.he class of power series in z and lit  which has  absolutely summable 
coefficients. That, is, those  series of t,he form 

5 a& 
n =  - m  

where 

This class offers the  advantage  that a product (convolution) of 
t.xo members of the class is  again of this class. As a result, if a filter 
and  an  input sequence are chosen from this class, the  out,put sequence 
must. also be of this class, and so t.he filter is necessarily of the t,ype 
we choose to t.hink of as stable. Since t.he recursive  filter is in general 
a quotient of two power series, we shall require  t.hat the t.wo series be 
of this class and seek t.he conditions which will guarantee  that t.he 
resulting quotient will again be represented by a power series in this 
class. Our  procedure will be to use  a Tauberian  theorem proved by 
Wiener [9, p. 371 to derive the necessary criterion. Because this  result 
does not rely on dimension, but only on the algebraic and topological 
structure of the class of absolutely  summable sequences, we are 
able  to derive t.he stability criterion  for the large class of 3-dimen- 
sional  recursive filters. Our ultimate aim is to give the necessary and 
sufficient condition that, given an A--dimensional absolutely sum- 
mable power series in the denominator of the filter, the filter d l  be 
st.able  no matter  what ,V-dimensional absolutely summable numer- 
ator  may be chosen for t,he recursive  filter. 

To simplify our work in :V-dimensions, let us use the following 
notation. 

Sotation: We shall represent. the integers by 2, the  set of non- 
negative  integers by PI and  the  set of nonposit.ive integers by it’. 

The sequences (coefficients of power series) which we use must  be 
indexed. We shall consider index sets which belong to  the  set 2“ X 
Po X X 7  where 01, B, y are nonnegative int.egers. -4 zero exponent  on 
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a set indicates  t,hat. no index t.akes its  value in tha,t set.. We  denote 
indices by lower case letters  and will always indicate  the range of an 
index (the  set  in which it. takes its values) t.o avoid confusion. 

If S = Za x PB X lV-/ and n E S,  then, by t.he symbol zn, we shall 
mean z1"1,z2n2, + . . ,zP% where  each zj  is a complex number  and n = 
(nl,n~, - +,np) wit.h ni in Z, P, or N ,  and p = (Y + 6 + y. We denote 
by Rj the  range of nj. 

We shall consider complex valued  functions defined on an index set 
S = 2" X PP x and shall represent  these  by lower case 1ett.ers 
subscripted  by  the index, or by  the lower case let,ter wit.h the index 
appearing as an  argument;  that. is, dn and d(n) are  to  have t.he same 
meaning. We do t,hk t.0 follow familiar  usage of indices for various 
purposes. 

Let  the index set S = Za x PB X A;? be chosen, where (Y + f3 + 
y >  0. 

Lemma: Let  the complex function d(n ) ,  n E S, satisfy  the func- 
tional equat.ion d(n + m)  = d(n)d(m). Then 

d(n) = 2" = Zln1,Zz*1,. . -,Zp% 
for  some collection of complex numbers zl,. . .,zp. 

Proof: First, consider the case in which n is an integer belonging 
to 2, P, or X .  If d G 0, we take z = z1 = 0. If d $ 0, then  it is easy 
to verify that d(n) = d(1)" for  all n. Set.ting z1 = d(l), t,he result 
follows. 

We proceed to  the general case and  let 

n = (nl,nZ, . * . p P )  E S 

m = (ml,m~,--- ,mp) E S 

and suppose 

d(n + m )  = d(n)d(m) 

for all choices of n, m E S. Sett,ing 

m = ... = np m2 ... = m p  = 0, 

we get 

d(nl + ml,O, . -,O) = d(nl,O,. . .,O)d(ml,O,-. .,O). 

If we define 

d(nl,O,. . .,O) = r(nl)J 

we get, 

r(n1 + m )  = r(nl)r(ml) 

where nl, m 1  are integers, and so r(nl) = r(1)"l = z " ~  from  above, 
where 

z1 = r ( 1 )  = d(1,0,. . .,O). 

Cont,inuing in this  manner, we conclude that 

d(0,. . .O,?Lk,O, * * . ,O) = zknk 
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Continuing this process, we conclude 

d(n) d(nl,m,.  *,np) = z l n l z p , .  1 - ,zp% = zn 

where t,he z, are defined above. 

111. M A I N  RESULT 

In  Section I1 we gave the rat.ionale for a reasonable definition of 
stabilit,y, and at this  point we would like to  make  this definition 
precise. Our notation is that int,roduced  in  Section 11. Let. an index 
set S be chosen as S = Za X PO X M Y .  

DeJinition: Ll(S) is defined to be the space of functions b(n) de- 
fined on S which satisfies cnES (b(n)l < m with 'convolution as 
multiplication. 

We d e h e  the z-transform b(z) of a function b ( n )  in h ( S )  by 

b(z) = bnzn = b,,, ..., n,ZlnlJ' * ',Zp%. 

nES nGS 

If b ( n )  E h ( S ) ,  we shall call l/b(z) stable if and only if there 
exists a(n) E Ll(S) such  that a(z) = l /b(z)  [or a(n)*b(n) = 6 
(convolut.ion id en tit.^)]; that  is, b ( n )  has a  convolution inverse in 
Ll(S). 

It is easy to see t.hat this definition agrees wit,h our previous indica- 
t.ion of the meaning of stability since, if l/b(z) has  a represent.at,ion 
as an absolutely  summable power series, then  it follows (previous 
discussion) t.hat  the filter a ( z ) / b ( z )  is represented by  an absolut,ely 
summable power series whenever a(z) is represented by  an absolutely 
summable power series. Hence, multiplying this filter by  any abso- 
lutely convergent power series (input) results in  an absolutely con- 
vergent out.put, and so we would agree to call the filter stable. 

It is easy to verify that the space Ll(S) is a commutative  Banach 
algebra wit.h identit,y  (with  convolution as mult.iplication), and it is 
well known that  its  dual is L,(S) [8, p. 2391. 

Let us state  the  Tauberian theorem due  to Wiener in the  form 
which we shall use (see [9, 'p. 3'71 ). 

Theorem: Let A be a commutative  Banach algebra with ident.it,y, 
and  let A ' be its dual. An element. a E A is invertible if and  only if 
t,he equation @(a) = 0 is not satisfied by  any homomorphism @in the 
(topological) dual of A .  

In  our analysis, we have equat,ed stability  with  invertibility  in 
L1(S). We shall show that  the homomorphisms in t.he dual of h ( S )  
correspond to evaluat.ion of the z-t.ransform of an element of h ( S )  a t  
a point in a suitable  subset of a cross product, of complex planes. The 
Tauberian  theorem  then  says  that  an element b(n) in L1(S) is in- 
vertible if and only if its z-transform does not. vanish  (equal  zero) on 
that  subset, which in  turn yields our desired result.. 

We may now stat.e our result in the following desired form. 
Theorem (Desired Form): Let S = 2" X Po X N Y  where a + P + 

y = p > O, and let b = (b,] E L1(S). Then l / b ( z )  is stable if and 
only if b ( z )  # 0 for 

i = 1, i fRt  Z 
lzkl 5 1, if Rk = P 

2 1, if RI, = N 

and 1 5 k 5 p ,  where RI, = range of the kt.h index. 

is a function c(n) on S satisfying 
Proof: If + is a continuous linear  functional on L ( S ) ,  then  there 

SUP l4n)l < 
nES 

a.nd 

+(a)  = &an 
9LES 

for all a in L1(SJ. This follows from  the  fact  that  the  dual of Ll(S) is 
L,(S). We wish to determine those  continuous linear  functionds + 
which are nonzero homomorphisms  from h ( S )  to  t.he scalar field. 
Any such functional must  satisfy t,he equation 
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$(a*b) = $(a) $(b)  (t.he homomorphism condition) 

for  all  functions a,b in Ll(S). 
We recall that. 

$(a*b) = c, anbrn-,, (from  above) 
mES nES 

where s u p m ~ s  lem( < m ; but t.hen, 

for all funct.ions a,b in Ll(S). We now let no, rno be fixed elements of S 
and define 

a(n) = bn%, b ( m )  = 6,mo 

where 6 is the Kronecker  delta.  Clearly, a,b E L ( S )  and 

$(a*b) = cnLm 
0 '  0 

from (7). On the  other hand, 

$(a )  $ ( b )  UnCn bmcm = cnoC"Lo; 
n5S  nES 

so that, if $ is a homomorphism and a,b are chosen as indicated, n e  
obtain 6he following necessary condition  on $: 

CnO+mo = CnoCm, 

for all no, ?no E S. 
By the lemma we conclude that, 

Cn = 2" = ~1"lza"2,. . . , Z D ' l D  

for some sequence of complex numbers 21,. . .,zp # 0. Since we must 
require 

sup < m (since sup IC,! < 1, 
ncd  

then, in  particular, 

from which it follows that 

lZkl = 1 if R, = 2 

1 4 1  5 1 if Rt = P 

1 ~ ~ ~ 1  _< 1 if Rk = N. (8 )  

It follows that $ is a continuous  homomorphism  from Ll(S) to  the 
scalar field if and only if $ = (2.1 where izki satisfies the condit,ions 
prescribed in (8). (It is easy to check that. these necessary conditions 
are also sufficient.) 

It follows that $ is a  continuous homomorphism on Ll (a )  if and 
only if $ ( b )  = b ( z )  for all b E L I ( S )  and some z satisfying (8). 

By the  Tauberian theorem due  to Wiener 19, p. 371, we conclude 
t.hat l ;b(z )  is stable if and only if b ( r )  satisfies the hypotheses of the 
t.heorem. 

IV. CONCLUSIOS 

In  the case of two-dimensional causal recursive filters first con- 
sidered by  Shanks ct al .  [3], [ 5 ] ,  [6], we see that t.he above  theorem 
yields the result that  the filter l!B(zl ,zz)  is stable if and  only if 
B ( z l , z s )  has no zeros for lzll 5 1 ,  jz?; 5 1 simult.aneously (where 
B ( a , z 2 )  has  absolutely  summable  coefficients). However, we  go 
significantly beyond this level in allowing t.he filter to be defined in 
any number of variable  and in dropping t.he requirement that  it 
should be (though  it might. be) causal in any variable. We have 
further dropped the requirement. that.  the number of nonzero co- 
efficients of the filter denominator  should be finite. 
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A General Dynamic Programming Solution of 
Discrete-Time  Linear  Optimal  Control Problems 

S. E. DREYFUS . k t i ~  Y .  C. KAK 

Abstract--An optimal  control  problem with linear dynamics and 
quadratic criterion is imbedded in a family of problems characterized 
by  both initial and terminal points. The optimal value function is  
jointly quadratic in initial and terminal points, and the optimal con- 
trol is jointly linear. Recursive formulas for the coefficients of these 
functions are developed. This generalized procedure can be  used to 
solve several versions of the problem not solvable by the standard 
one-ended imbedding technique. In particular, a procedure  doubling 
the number of stages at each iteration is  given for problems with 
time-invariant coefficients. 

I. INTRODUCTION 
We consider the following problem. Choose yi, i = 1,.  . .J: - 1, 

that minimize J where 

subject to 

X ~ + I  = Gi~i + Hiyi, XI = b1, X&\' = b.v (2 1 
where the  subscript denotes the  stage  and  superscript T denotes 
transpose, A; and Gi are n X n matrices, Ci is m X m, Hi is n x m, 
x;, b,, and bh- are n X 1 vectors, and yi  is m X 1 wit.h m 5 n. We 
assume, with no loss of generalit.g, that d ;  and Ci are symmetric. 

The usual  dynamic  programming computational  algorithm for the 
solution of this problem ([l], [4], [ 5 ] )  proceeds backwards  from 
the terminal time  and solves for the  optimal control as a  function 
of the initial stage  and  state. This is the case whether the terminal 
point is free to be chosen optimally as a  function of the  initial point 
or is specified (independent.ly of the  initial  point) or is to  be chosen 
subject  tolinear  constraints.  The optimal cont.ro1 is a  linear  function 
of the initial stat.e  with coefficients depending on the  stage.  The 
optimal value is a quadratic function of t.he state mith coefficients de- 
pending  on the  stage.  The coefficients are determined by backwards 
solution of Riccati and linear  recurrence  relations  with  terminal COII- 
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