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Stability Criterion for N-Dimensional Digital Filters
J. H. JUSTICE axp J. L. SHANKS

Abstract—The stability requirement for one-dimensional re-
cursive filters is well known. A stability theorem for n-dimensional
recursive filters is proved wherein the denominator of the filter is an
n-dimensional power series. A Tauberian theorem due to Wiener
yields the desired result in the general case.

I. IXNTRODUCTION

Linear digital filtering is a useful tool for processing discrete se-
quences of data [1],[2]. It is used in a variety of applications, in-
cluding processing of seismic data, radar signals, cardiographic re-
cordings, and many other ‘‘signals” which have been sampled and
stored in digital form.

One of the more efficient types of digital filters is the ‘“‘recursive
filter”” [3],[4]. For one-dimensional sequences, the recursive filter
can be described by its z-transform

&

Z a2t E biz’ (1)

where the a and b coefficients define the filter. In applying this filter
to a data sequence, we use the recursive algorithm

B4 N
Yo = bo{z TiTni = Y b,-y,._,-} 2)

i=1

F(z) =

where the =, £ = 0,1,2,- - -, represent the input data sequence and
the yr, & = 0,1,2,- - -, represent the output sequence. In using this
algorithm, we assume that the z; and yz are zero for all & < 0.

This type of filter is used extensively in processing one-dimensional
sampled data. It is also possible to extend this technique to n-dimen-
sional data [3], [6], [10]. Such filters are useful in processing two-
dimensional data, such as seismic data sections, digitized photo-
graphic data, and gravity and magnetic maps. In the case of a two-
dimensional recursive filter, the filter can be deseribed using two-
dimensional polynomials or power series in (z),22), such as

F(21,22) = A(21,2:)/B(21,22) (3)
where
M, M.
A (2’1,22) = Z Z aij2) 1297 (4.)
1=05=0
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and

N N

B(Z[,Zz) = Z E bklzlkZo (5)

k=01=0

A filtering algorithm similar to (2) can be written for the two-
dimensional and higher dimensional filters.

One of the problems in using recursive filters is stability. We re-
quire that the output of the filter not become unbounded if
the input is bounded. The stability depends on the coefficients of the
denominator of the recursive filters. In the case of the one-dimen-
sional recursive filter, it has been shown in many places that the filter
will be stable if the roots of the denominator polynomial B(z) are all
outside the z-plane unit circle [7]. However, these proofs all depend
on our ability to factor the polynomial B(z) into its distinet roots.
In the case of n-dimensional polynomials or power series, no such
factorization exists. Huang [11] has shown a proof for the two-
dimensional case in which the B(z),2;) is a finite polynomial. There-
fore, it is the purpose of this paper to state and prove the conditions
on the denominator polynomial or power series of an n-dimensional
recursive filter which will allow that filter to be stable.

II. DEVELOPMENT

Let us begin by developing the rationale for the precise definition
of stability which we shall use. It is well known that multiplication of
two power series may be performed by convolving their sequences of
coefficients; this is the process inherent in recursive digital filtering.
We shall not distinguish between a power series and its sequence of
coefficients but shall refer to a power series as a sequence, or vice
versa, when convenient. The term stability of a filter is generally
used to indicate that the result of convolving the filter with some
bounded input sequence should have, in some sense, a bounded out~
put. Since all of this is rather vague, let us be more precise. One of the
simplest classes of power series which we might choose to work with
is the class of power series in z and 1,z which has absolutely summable
coefficients. That is, those series of the form

®
Z a2t

n=—c

where

i [a,.l < o,

n=—o

This class offers the advantage that a product (convolution) of
two members of the class is again of this class. As a result, if a filter
and an input sequence are chosen from this class, the output sequence
must also be of this class, and so the filter is necessarily of the type
we choose to think of as stable. Since the recursive filter is in general
a quotient of two power series, we shall require that the two series be
of this class and seek the conditions which will guarantee that the
resulting quotient will again be represented by a power series in this
class. Our procedure will be to use a Tauberian theorem proved by
Wiener [9, p. 37] to derive the necessary criterion. Because this result
does not rely on dimension, but only on the algebraic and topological
structure of the class of absolutely summable sequences, we are
able to derive the stability criterion for the large class of N-dimen-
sional recursive filters. Our ultimate aim is to give the necessary and
sufficient condition that, given an N-dimensional absolutely sum-
mable power series in the denominator of the filter, the filter will be
stable no matter what N-dimensional absolutely summable numer-
ator may be chosen for the recursive filter.

To simplify our work in N-dimensions, let us use the following
notation.

Notation: We shall represent the integers by Z, the set of non-
negative integers by P, and the set of nonpositive integers by N.

The sequences (coefficients of power series) which we use must be
indexed. We shall consider index sets which belong to the set Z* X
P8 X N7 where «, 8, v are nonnegative integers. A zero exponent on
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a set indicates that no index takes its value in that set. We denote
indices by lower case letters and will always indicate the range of an
index (the set in which it takes its values) to avoid confusion.

If 8§ = Z* X PP X NYand n € 8§, then, by the symbol 2%, we shall
mean z™,2:", > - -,2," where each z; is a complex number and n =
(g, *,np) withn;in Z, P,or N, and p = a -+ 8 + v. We denote
by B; the range of n;.

We shall consider complex valued functions defined on an index set
8 = Z= X PP x N7 and shall represent these by lower case letters
subscripted by the index, or by the lower case letter with the index
appearing as an argument; that is, d, and d(n) are to have the same
meaning. We do this to follow familiar usage of indices for various
purposes.

Let the index set § = Z2 X Pf X N7 be chosen, where o + 8 +
¥> 0.

Lemma: Let the complex function d(n), n € 8, satisfy the func-
tional equation d(n + m) = d(n)d(m). Then

d(n) = 2" = Z",5", . - - 2"

for some collection of complex numbers zi, - - «,25.

Proof: First consider the case in which » is an integer belonging
toZ,P,or N.If d=0, wetake z = z; = 0. If d & 0, then it is easy
to verify that d(n) = d(1)" for all n. Setting 21 = d(1), the result
follows.

We proceed to the general case and let

n = (ny,ne,-*-,np) €8
m = (myms,---,my) E8
and suppose
d(n + m) = d(n)d(m) 6)
for all choices of n, m & 8. Setting
e = v =Np =M= -+ =mp =0,
we get
d(ny + my,0,---,0)
If we define

= d(n1,0, s ':O)d(ml’oi .t ’O)

d(n1,0,- - -,0) = r(n),
we get
r(r + mi) = r(rorim)

where ny, m; are integers, and so r(n;) = r(1)m = z™ from above,
where

z = r(1) = d(1,0,--,0).
Continuing in this manner, we conclude that
d(0,- - -0,n4,0,- - -,0) = zm

where 2z = d(0,--+,0,1,0,---,0).
Wenow choosemy =mzg = +-- =0andny = n3 = - -
We then obtain the relationship

- =01in (6).

d(n1,ms,0,- - -,0) = d(ny,0,- - ,0)d(0,m2,0, - - -,0)
so that
d(n,me,0,- + +,0) = 2™z,

Choosing

Ny = =n, =10

My = Me = Mg = =my =0,
we get

A(ny,ma,ma,0, -+ +,0) = (zmzsm)(zy™) = zy™izgrezgma,
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Continuing this process, we conclude

d(n) = d(nhn?: o '7n1’) = Mty 2yt = 20

where the z, are defined above.

II1. MaiNn ResoLT

In Section II we gave the rationale for a reasonable definition of
stability, and at this point we would like to make this definition
precise. Our notation is that introduced in Section II. Let an index
set S be chosen as § = Z= X P8 X N7,

Definition: L,(S) is defined to be the space of functions b(n) de-
fined on S which salisfies ans [b(n)| < = with ‘convolution as
multiplication.

We define the z-transform b(z) of a function b(n) in L,(S) by

b(z) = Z ba2" = Z Bagseensmp?t™y * + 250,
nes nes

If b(n) € Li(S), we shall call 1/b(z) stable if and only if there
exists a(n) € L,(S) such that a(z) = 1/b(z) [or a(n)xb(n) = &
(convolution identity)]; that is, b(z) has a convolution inverse in
Ly(8S).

It is easy to see that this definition agrees with our previous indica-
tion of the meaning of stability since, if 1/b(z) has a representation
as an absolutely summable power series, then it follows (previous
discussion) that the filter a(z)/b(z) is represented by an absolutely
summable power series whenever a(z) is represented by an absolutely
summable power series. Hence, multiplying this filter by any abso-
lutely convergent power series (input) results in an absolutely con-
vergent output, and so we would agree to call the filter stable.

It is easy to verify that the space L;(S) is a commutative Banach
algebra with identity (with convolution as multiplication), and it is
well known that its dual is L (S) [8, p. 239].

Let us state the Tauberian theorem due to Wiener in the form
which we shall use (see [9, p. 37]).

Theorem: Let A be a commutative Banach algebra with identity,
and let 4’ be its dual. An element @ € A is invertible if and only if
the equation ®(a) = 0is not satisfied by any homomorphism @ in the
(topological) dual of 4.

In our analysis, we have equated stability with invertibility in
L,(8). We shall show that the homomorphisms in the dual of L,(8)
correspond to evaluation of the z-transform of an element of Li(S) at
a point in a suitable subset of a eross product of complex planes. The
Tauberian theorem then says that an element b(n) in L,(8) is in-
vertible if and only if its z-transform does not vanish (equal zero) on
that subset, which in turn yields our desired result.

We may now state our result in the following desired form.

Theorem (Desired Form): Let 8 = Z= X PP X N7 where o + 8 +
¥y =p>0,andletb = {b,.} & Lyi(8). Then 1/b(z) is stable if and
only if b(z) 0 for

=1 iR =2
o] {<1, ifR,=P
>1, iR =N

and 1 < k < p, where B; = range of the kth index.
Proof: If  is a continuous linear functional on L, (S), then there
is a function ¢(n) on 8 satisfying

sup Ic(n)l <
nESs
and

¥(@) = D cnn
nEs
for all ¢ in Z;(8). This follows from the fact that the dual of L;(S) is
L,(S). We wish to determine those continuous linear functionals ¥
which are nonzero homomorphisms from Z;(S) to the secalar field.
Any such functional ¥ must satisfy the equation
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dlaxd) = ¢(a) v(d)

for all funections a,b in L,(8S).
We recall that

(the homomorphism condition)

> em Z Gxbm-a (from above)

mZS§ nes

v(ash) =

where supmcs lem| < e ; but then,

Z Qn Z Cmbm_n = Z Qn E Cn+mbm (7)

nES mES nes meS

Yla*b) =

for all functions a,b in L,(S). We now let nq, m, be fixed elements of 8
and define

a(n) = 8™,

where 8 is the Kronecker delta. Clearly, a,b € L;(S) and

b(m) = §p™

¥(axd) = enim,
from (7). On the other hand,
l)b(a) ‘!’(b) = Z GnCn Z bmcm = Cnglmy;

ncS LIS

so that, if ¢ is a homomorphism and a,b are chosen ss indicated, we
obtain the following necessary condition on :
Crytmy =

cﬂﬂcﬂl“

for all ne, mo & 8.

By the lemma we conclude that
Cp = 2% = Mt - 2"

for some sequence of complex numbers 2y, - -
require

,2p # 0. Since we must

sup |27 < » (sincesup |c,) < @),
S8

then, in particular,

sup lzk’*f < oo, 1<k<Lp,
7 CRy
from which it follows that
o] =1 R, =2
ol <1 ifR =P
lal €1 if Ry = N. (8)

It follows that ¢ is a continuous homomorphism from Z,(S) to the
scalar field if and only if ¢ = {2} where |2 satisfies the conditions
prescribed in (8). (It is easy to check that these necessary conditions
are also sufficient.)

1t follows that y is a continuous homomorphism on Ly(a) if and
only if ¢(b) = b(z) for all b € L,(S) and some z satisfying (8).

By the Tauberian theorem due to Wiener [9, p. 37], we conclude
that 1/b(z) is stable if and only if b(z) satisfies the hypotheses of the
theorem.

IV. ConcLusiox

In the case of two-dimensional causal recursive filters first con-
sidered by Shanks et al. [3], [5], [6], we see that the above theorem
vields the result that the filter 1/ B(Zl,lz) is stable if and only if
B(z1,2;) has no zeros for z,] < 1, 1z < 1 simultaneously (where
B(z1,2:) has absolutely summable coefﬁcients). However, we go
significantly beyond this level in allowing the filter to be defined in
any number of variables and in dropping the requirement that it
should be (though it might be) causal in any variable. We have
further dropped the requirement that the number of nonzero co-
efficients of the filter denominator should be finite.
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A General Dynamic Programming Solution of
Discrete-Time Linear Optimal Control Problems

S. E. DREYFUS anxp Y. C. KAN

Abstract—An optimal control problem with linear dynamics and
quadratic criterion is imbedded in a family of problems characterized
by both initial and terminal points. The optimal value function is
jointly quadratic in initial and terminal points, and the optimal con-
trol is jointly linear. Recursive formulas for the coefficients of these
functions are developed. This generalized procedure can be used to
solve several versions of the problem not solvable by the standard
one-ended imbedding technique. In particular, a procedure doubling
the number of stages at each iteration is given for problems with
time-invariant coefficients.

I. INTRODUCTION

We consider the following problem. Choose ;, 7 = 1,--- )N — 1,
that minimize J where
N-~1
=3 > @TAz + yTCuy) 1)
=1
subject to
i = Gixs + Hiys, 1 = by, v = by (2)

where the subscript denotes the stage and superscript 7 denotes
transpose, A; and G; are n X n matrices, C;ism X m, Hiisn X m,
x;, by, and by are n X 1 vectors, and y; is m X 1 with m < n. We
assume, with no loss of generality, that A; and C; are symmetric.
The usual dynamic programming computational algorithm for the
solution of this problem ({1], [4], [3]) proceeds backwards from
the terminal time and solves for the optimal control as a function
of the initial stage and state. This is the case whether the terminal
point is free to be chosen optimally as a function of the initial point
or is specified (independently of the initial point) or is to be chosen
subject tolinear constraints. The optimal control is a linear function
of the initial state with coefficients depending on the stage. The
optimal value is a quadratic function of the state with coefficients de-
pending on the stage. The coefficients are determined by backwards
solution of Riccati and linear recurrence relations with terminal con-
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