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DPS elaboration

• Consider a transmission line and a series of generators
• Generation Gi and power angle change δi is continuously
distributed over the spatial dimension
• Rotor dynamics of the i th generator:(2Hi

Ωs

)
Gi δ̈i + ξδ̇i = Pi (1)

with
. Hi : inertia constant
. Ωs : electrical ferquency with 60Hz base
. Pi : real power flowing out the i th machine
. ξ: damping coefficient
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DPS elaboration (cont.)
• Real power flow from node i to node i + 1 over a lossless line

Pi ,i+1 =
EiEi+1 sin(δi − δi+1)

xi

with Ei the voltage magnitude at bus i .
• With small δi and Ei = 1, one gets

Pi = Pi+1,i − Pi ,i+1
(δi−1 − δi )(δi − δi+1)

xi

• By substitution, one obtains

2
Ωi

Hi
∆L δ̈i +

ξ

∆l δ̇i =
∆L
xi

δi − δi−1
(∆L)2

− ∆L
xi

δi − δi+1
(∆L)2
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DPS elaboration (cont.)
• Taking the limit ∆L→ 0, and setting

HT =
1
L

∫ L

0
dH(z) =

H(L)

L , γ =
x(L)

L , η =
ξ(L)

L

yields, with ν =
√
377/2HTGTγ

∂2t δ(z , t) + η ∂tδ(z , t) = ν2 ∂2z δ(z , t) (2)

• The corresponding power flow is

P(z , t) = −1
γ
∂zδ(z , t)

• This type of model has been used to take into account inter
area oscillation phenomena.
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Various boundary conditions

• Adding power injection to the previous model leads to

∂2t δ(z , t) + η ∂tδ(z , t)− ν2 ∂2z δ(z , t) = W (z , t) (3)

wiht boundary conditions

P(0, t) = P(1, t) = 0, or ∂zδ(0, t) = ∂zδ(1, t) = 0
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Various boundary conditions (cont.)

• A first model, used in [1], is a point source injection

W (u, t) = ρPg (t)δ̄(z − α)

where δ̄ denotes the delta Dirac distribution, and Pg the net
power injected.

• Another possible model is a power flow injection

W (u, t) = −γPg (t)δ̄′(z − α)

with δ̄′ is the Dirac’s derivative, in the distributional sense.
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Various boundary conditions (cont.)
• The previous model (3) with point source injection

∂2t δ(z , t) + η∂tδ(z , t)− ν2∂2z δ(z , t) = ρPg (t)δ̄(z − α)

is equivalent to the following model

For z ∈ [0, α], ∂2t δ
−(z , t) + η ∂tδ

−(z , t)− ν2 ∂2z δ−(z , t) = 0
∂zδ
−(0, t) = 0 (4a)
δ−(α, t) = ρPg (t) (4b)

For z ∈ [α, L], ∂2t δ
+(z , t) + η ∂tδ

+(z , t)− ν2 ∂2z δ+(z , t) = 0
δ+(α, t) = ρPg (t) (4c)

∂zδ
+(L, t) = 0 (4d)

At z = α, ∂tδ
−(α, t) = ∂tδ

+(α, t) (4e)
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Various boundary conditions (cont.)
• The previous model (3) with power flow injection

∂2t δ(z , t) + η∂tδ(z , t)− ν2∂2z δ(z , t) = −γPg (t)δ̄′(z − α)

is equivalent to the following model

For z ∈ [0, α], ∂2t δ
−(z , t) + η ∂tδ

−(z , t)− ν2 ∂2z δ−(z , t) = 0
∂zδ
−(0, t) = 0 (5a)

∂zδ
−(α, t) = −γPg (t) (5b)

For z ∈ [α, L], ∂2t δ
+(z , t) + η ∂tδ

+(z , t)− ν2 ∂2z δ+(z , t) = 0
∂zδ

+(α, t) = −γPg (t) (5c)
∂zδ

+(L, t) = 0 (5d)

At z = α, δ−(α, t) = δ+(α, t) (5e)
∂tδ
−(α, t) = ∂tδ

+(α, t) (5f)
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Point source model general solution

• Let us consider the point source model for z ∈ [0, α]

∂2t δ
−(z , t) + η ∂tδ

−(z , t)− ν2 ∂2z δ−(z , t) = 0 (6a)
∂zδ
−(0, t) = 0 (6b)
δ−(α, t) = ρPg (t) (6c)

• The temporal Laplace transform of (6) yields

s2δ̂−(z , s) + ηs δ̂−(z , s)− ν2∂2z δ̂−(z , s) = 0
∂z δ̂
−(0, s) = 0
δ̂−(α, s) = ρP̂g (s)
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Point source model general solution (cont.)

• Freezing s leads to an ODE in space:

s2δ̂−(z) + ηs δ̂−(z)− ν2 d δ̂
−

dz2 (z) = 0 (7)

d δ̂−
dz (0) = 0, δ̂−(α) = ρP̂g (s) (8)

where we have kept the symbol δ− by abuse of notation.
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Point source model general solution (cont.)

• The general solution of the previous ODE is investigated
through the characteristic equation in ξ:

s2 + ηs − ν2ξ2 = 0

yielding, with σ = 1/ν:

ξ = ±σ
√
s2 + ηs

• Thus, the general solution of (7) is

δ̂−(z) = eσz
√

s2+ηs λ̂1 + e−σz
√

s2+ηs λ̂2

Hugues Mounier Wind power DPS 12 / 53



Modelling
Associated I/O systems

Structural properties

Distributed parameter system
Point source model solution
Power flow model solution

Weak damping case free boundary solution

• For simplicity’s sake, consider the weak damping case: η � 1

ξ = ±σs
√
1 +

η

s = ±σs
(
1 +

η

2s

)
+ o(η)

= ±σs +
ση

2 + o(η)

• And we shall consider the approximation, where ζ = η/2:

ξ ≈ ±σs + σζ
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Weak damping case free boundary solution (cont.)
• which corresponds to the following characteristic equation:

−ν2ξ2 + (s + ζ)2 = −ν2ξ2 + s2 + 2ζs + ζ2

or to the following PDE

∂2t δ
− + 2ζ ∂tδ

− + ζ2 δ− − ν2 ∂2z δ− = 0 (9)

which can also be considered as a model to exhibit inter area
oscillations.

• Then, taking

ξ = ±σs + σζ
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Weak damping case free boundary solution (cont.)
• The general solution of (9) is

δ̂−(z , s) = eσz(s+ζ)µ̂1(s) + e−σz(s+ζ)µ̂2(s)

= eσzζeσzs µ̂1(s) + e−σzζe−σzs µ̂2(s) (10)

• Note that the solution of the undamped wave equation is

eσzs µ̂1(s) + e−σzs µ̂2(s)

which corresponds to the D’Alembert solution (superposition
of incoming and outgoing waves).

• The temporal form of (10) is (eσzζ , e−σzζ being close to 1):

δ−(z , t) = eσzζµ1(t + σz) + e−σzζµ2(t − σz) (11)
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Weak damping case free boundary solution (cont.)

• The functions µ1 and µ2 are determined through the
boundary conditions.

• Note that the analysis which follows could also have been
conducted without the assumption ζ � 1.

• The only difference is that the associated operators are more
involved, being distributed instead of point delays.

• The assumption has been kept for pedagogical reasons.
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Boundary value problem solution

• The general solution (9) is rewritten as

δ̂−(z , s) = C−z (s)µ̂1(s) + S−z (s)µ̂2(s), where

C−z (s) = cosh (σz (s + ζ)) , S−z (s) =
sinh(σz (s + ζ))

σ (s + ζ)

• The sole advantage of using these operators is that:

C−0 (s) = 1, S−0 (s) = 0

which simplifies the boundary conditions expressions.
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Boundary value problem solution (cont.)
• The spatial derivatives of C−z and S−z are:

∂zC−z (s) = (σs + ζ)2S−z (s), ∂zS−z (z) = C−z

• And the spatial derivative of δ̂− is

∂z δ̂
−(z , s) = (σs + ζ)2S−z µ̂1 + C−z µ2

• The boundary conditions of the point source model (6)

∂2t δ
−(z , t) + η ∂tδ

−(z , t)− ν2 ∂2z δ−(z , t) = 0
∂zδ
−(0, t) = 0
δ−(α, t) = ρPg (t)
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Boundary value problem solution (cont.)

are then expressed as

∂z δ̂
−(0, s) = µ̂2 = 0
δ̂−(α, s) = C−α µ̂1 + S−α µ2 = C−α µ̂1 = ρP̂g (s)

• And the general solution is

δ̂−(z , s) = C−z µ̂1
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Power flow model general solution

• Let us consider the power flow model for z ∈ [0, α]

∂2t δ
−(z , t) + η ∂tδ

−(z , t)− ν2 ∂2z δ−(z , t) = 0 (12a)
∂zδ
−(0, t) = 0 (12b)

∂zδ
−(α, t) = −γPg (t) (12c)

• The general solution remains the same as for the point source
injection model

δ̂−(z , s) = C−z (s)µ̂1(s) + S−z (s)µ̂2(s), recalling that

C−z (s) = cosh (σz (s + ζ)) , S−z (s) =
sinh(σz (s + ζ))

σ (s + ζ)
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Boundary value problem solution
• The boundary conditions of this power flow model (12)

∂2t δ
−(z , t) + η ∂tδ

−(z , t)− ν2 ∂2z δ−(z , t) = 0
∂zδ
−(0, t) = 0

∂zδ
−(α, t) = −γPg (t)

are then expressed as

∂z δ̂
−(0, s) = µ̂2 = 0

∂z δ̂
−(α, s) = (σs + ζ)2S−α µ̂1 + C−α µ2

= (σs + ζ)2S−α µ̂1 = −γP̂g (s)

• And the general solution is

δ̂−(z , s) = C−z µ̂1
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• Recalling the controlled boundary condition and general
solution for the point source model:

δ̂−(α, s) = C−α µ̂1 = ρP̂g (s)

δ̂−(z , s) = C−z µ̂1

• Multiplying the first equation by C−z and the second by C−α
yields the I/O system

C−α (s) δ̂−(z , s) = ρC−z (s) P̂g (s)

• Or, what is the same

cosh(σα(s + ζ)) δ̂−(z , s) = cosh(σz(s + ζ)) P̂g (s)
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• With

cosh(σz(s + ζ)) =
1
2
(
eσζzeσzs − e−σζze−σzs

)
=

1
2
(
β−z∆̂−z − βz∆̂z

)
• with

The damping term βz = e−σζz

The delay ∆̂z = e−σzs
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• The I/O system

C−α (s) δ̂−(z , s) = ρC−z (s) P̂g (s)

is then rewritten as

(β−α∆−α + βα∆α) δ−(z , t) = ρ (β−z∆−z + βz∆z) Pg (t)
(13)

• This is an I/O system between any point z of the line and the
control.

• Thus, the Distributed system is viewed as the collection of the
previous systems for all z ∈ [0, α].
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Point source I/O system (cont.)
• By multiplication of βα and action of ∆α:

(1− β2α∆2α) δ−(z , t) = ρ (βα−z∆α−z + βα+z∆α+z) Pg (t)

• which, in developed form, is given by

δ−(z , t) = β2αδ
−(z , t − 2σα) + ρ

[
βα−zPg

(
t − σ(α− z)

)
+

βα+zPg
(
t − σ(α + z)

)]
(14)

• This system is purely a difference equation, i.e. it has no
dynamics as a delay system.
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Power flow I/O system
• Recalling the controlled boundary condition and general
solution of the power flow system:

∂z δ̂
−(α, s) = (σs + ζ)2S−α µ̂1 = −γP̂g (s)

δ̂−(z , s) = C−z µ̂1

• Taking cross products of the operators (σs + ζ)2S−α and C−z
yields the I/O system

(σs + ζ)2S−α δ̂−(z , s) = −γC−z (s) P̂g (s)

• which can be rewritten as

(β−α∆−α + βα∆α)
(
σδ̇− − ζδ−

)
= −γ (β−z∆−z + βz∆z) Pg

(15)
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Power flow I/O system (cont.)
• By multiplication of βα and action of ∆α:

(1− β2α∆2α)
(
σδ̇− − ζδ−

)
= −γ (βα−z∆α−z + βα+z∆α+z) Pg

• Or, in developed form:

σδ̇−(z , t) = σβ2αδ̇
−(z , t − 2σα) + ζδ−(z , t)− (16)

ζβ2αδ
−(z , t − 2σα)− γ

[
βα−zPg

(
t − σ(α− z)

)
+

βα+zPg
(
t − σ(α + z)

)]
(17)

• This system is a differential difference equation, more precisely
it is a neutral delay system.
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Module

Definition
A ring (R,+, .) is a group (R,+) with distributivity of
multiplication wrt addition

∀r1 ∈ R,∃r2 ∈ R, r1 + r2 = 0, inverse for +

∃e ∈ R, ∀r ∈ R, r + e = e + r = r , élt. neutre for +

∃ε ∈ R,∀r ∈ R, r .ε = ε.r = r , élt. neutre for .
∀r1, r2, r3 ∈ R, r1.(r2 + r3) = r1.r2 + r1.r3, ditributivity

• Examples : (R[x ],+, .), (C∞,+, ∗)
• A field is a ring with inverse for the multilication (R, R(x))
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Module (cont.)
• We consider a commutative ring R with unity elt for . and
without zero divisors

Definition
An R–module M is a commutative group together with an action
on R, i.e. a map R ×M → M, written (r ,m) 7→ rm, such that, for
all r , s ∈ R and m, n ∈ M, we have:

r(sm) = (rs)m (associativity)
r(m + n) = rm + rn
(r + s)m = rm + sm (distributivity)

1m = m (identity)
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Module (cont.)

• A module has the same axioms as a vector space, but its
scalars are taken in a field instead of in a ring.

Definition
An R-system is a finitely generated R-module.
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Module : examples
• Hence one gets less simple properties, since the scalars cannot
be necessarily inverted
• Example

ẏ = Ty + u

corresponds to a module over R[ d
dt ]. Integration is not

authorized.
• On the contrary, within a transfer function

sŷ = T ŷ + u writes ŷ =
1

s − T û

and we have a vector space over R(s). Any differential
equation integration is allowed.
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Controllability notions

• An R-system Λ is called R-torsion free (resp. R-projective,
R-free) controllable if Λ is torsion free (resp. projective, free).

• An R-module is torsion free if it contains no torsion element,
i.e. no element w satisfying pw = 0, with p ∈ R, p 6= 0.

• A torsion element satisfies a differential equation not
influenced by the input.
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Controllability notions (cont.)

• This is impossible in a vector space, since pw = 0 implies
w = 0, p being invertible.

• For example in

ẋ1 = x2 ẋ1 = x1
ẋ2 = x2 + u ẋ2 = x2 + u

the first system is R[ d
dt ]-torsion free controllable and the

second is not, since x1 is torsion.
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Controllability notions (cont.)
• An R-module is projective if any presentation matrix admits a

right inverse.

• For example in  d
dt −1 0

0 d
dt − 1 −1


x1x2
u

 = 0

We have d
dt −1 0

0 d
dt − 1 −1


 0 0
−1 0
0 −1

 =

(
1 0
0 1

)

• Directly related to the existence of Bézout equations.
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Controllability notions (cont.)
• An R-module is free if it admits a basis, i.e. a R linearily

independant and generator set.

• For example in

ẋ1 = x2 ẋ1 = x1
ẋ2 = x2 + u ẋ2 = x2 + u

The first system is R[ d
dt ]-free controllable, since it admits x1

as a basis; indeed, x2 = d
dt x1, u = − d

dt x1 + d2

dt2 x1.
The second is not, since x1 is torsion; indeed

• R-free (resp. projective) controllability implies R-projective
(resp. torsion free) controllability.
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Controllability notions (cont.)
• For example, in

d
dt y = −y + u

we have
ŷ =

1
1 + s û

• The corresponding R[ d
dt ]-module is free, with basis y :

u =

( d
dt + 1

)
y

• Enables a very easy trajectory tracking; being given yd (t), the
open loop control ud (t) is directly given by

ud (t) = ẏd (t) + yd (t)
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Class of systems

• For simplicity’s sake, we shall restrict ourselves to
• w1, . . . ,w l and u = (u1, . . . , um) (concentrated) s.t. :

∂xw i = Aiw i + Biu, w i : Ωi → (E ′∗)2, u ∈ (E ′∗)m

Ai ∈ (R[s])2×2, Bi ∈ (R[s])2×m, i ∈ {1, . . . , l}
(18a)

where E ′∗ is a compact support ultradistribution space.
• The matrices A1, . . . ,Al have the charcteristic polynomial:

det(λ1−Ai ) = λ2−σ, σ = as2+bs+c 6= 0, a, b, c ∈ R, a > 0.

Hugues Mounier Wind power DPS 37 / 53



Modelling
Associated I/O systems

Structural properties

Module, Freeness, torsion
Controllability notions
Freeness character

Class of systems (cont.)
• The intervals Ωi (i = 1, . . . , l) are open sets of

Ω̃i = [xi ,0, xi ,1], `i = xi ,1−xi ,0 = qi`, qi ∈ Q, ` ∈ R. (18b)

• The boundary conditions are
l∑

i=1
Liw i (0) + Riw i (`i ) + Du = 0 (18c)

where D ∈ (R[s])q×m and Li ,Ri ∈ (R[s])q×2.
• Remark: The study can be extended to any PDE system where the

matrices Ai are ξ × ξ, ξ > 0, such that the associated characteristic
polynomials λξ − σ(s), with σ(s) a polynomial of order ξ in s
yielding solutions σi such that exσi corresponding to C∞ functions
of Ω in a compact support ultradistributions ring E ′∗.

Hugues Mounier Wind power DPS 38 / 53



Modelling
Associated I/O systems

Structural properties

Module, Freeness, torsion
Controllability notions
Freeness character

Cauchy problem solution

• Cauchy problem with initial conds in x = ξ

∂xw = Aw + Bu, w(ξ) = wξ (19)

• Joint initial value problem:

(∂2x − σ)v(x) = 0, v(0) = v0, (∂xv)(0) = v1, (20)

associated with the characteristic equation
det(λ 1− A) = λ2 − σ avec σ = as2 + bs + c 6= 0
• Let S be a non trivial solution of (20) and C = ∂xS
• Let’s suppose that S and C correspond to C∞ functions of Ω

in the compact support ultradistributions ring E ′∗.
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Cauchy problem solution (cont.)

• The unique solution x 7→ Φ(x , ξ) of the intial value problem

∂x Φ(x , ξ) = AΦ(x , ξ), Φ(ξ, ξ) = 1,

with 1 designating the identity of R2×2, is

Φ(x , ξ) = AS(x − ξ) + 1C(x − ξ). (21)

with the characteristic polynomial compagnon matrix A, i.e.,

A =

(
0 1
σ 0

)
, Φ(x , ξ) =

(
C(x − ξ) S(x − ξ)
σS(x − ξ) C(x − ξ)

)
, (22)
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Cauchy problem solution (cont.)

• The solution of the problem associated with the
inhomogeneous equation

∂x Ψ(x , ξ) = AΨ(x , ξ) + B (23)

is obtained through constants variation
• This yields

Ψ(x , ξ) =

∫ x

ξ
Φ(x , ζ)dζB. (24)

• The general solution of the problem (19) is then

w(x) = Φ(x , ξ)wξ + Ψ(x , ξ)u.

Hugues Mounier Wind power DPS 41 / 53



Modelling
Associated I/O systems

Structural properties

Module, Freeness, torsion
Controllability notions
Freeness character

Cauchy problem solution (cont.)

• or, equivalently

w(x) = W (x , ξ)c, W (x , ξ) =
(

Φ(x , ξ) Ψ(x , ψ)
)
, cξ =

(
wξ

u

)

• The components of the matrix Φ belong to C[s,C , S]

• On the contrary, and after (24), the components of Ψ may
contain integrals of S and C .∫ x

0
C(ζ)dx = S(x),

∫ x

0
S(ζ)dx = (C(x)− 1)/σ.
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Module associated to the system

• Injecting the solutions of the initial value problem into the
boundary conditions, we get

w(x) = Wξ(x)cξ, Pξcξ = 0. (25)

• Here, ξ = (ξ1, . . . , ξn) is arbitrary but fixed,
cT

ξ = (wT
1 (ξ1) · · ·wT

l (ξl ),uT ),

Wξ =

Φ1(x , ξ1) 0 0 Ψ1(x , ξ1)

0
. . . 0

...
0 · · · Φl (x , ξl ) Ψl (x , ξl )

 , Pξ =
(
Pξ,1 · · ·Pξ,l+1

)
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Module associated to the system (cont.)

with

Pξ,i = Li Φi (0, ξi ) + Ri Φi (`i , ξi ), i = 1, . . . , l

Pξ,l+1 = D +
l∑

i=1
Li Ψi (0, ξi ) + Ri Ψi (`i , ξi ).

• The system is represented by a module generated by cξ with a
presentation given by (30)
• The coefficient ring must contain Wξ(x) and Pξ, whose
entries are values of C , S and their spatial integrals
• A possible ring is RI

R[s,S,SI ], isomorphic to a subring of E ′∗

through inverse Laplace transform
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Module associated to the system (cont.)
• For all X ⊆ R, we denote RI

X = C[SX,S
I
X], with

S = {C ,S}, SX = {C(z`), S(z`)|z ∈ X},
SI = {C I , S I}, SI

X = {C I(z`),S I(z`)|z ∈ X},

` defined as in (18b), and

S I(x) =

∫ x

0
S(ζ)dζ, C I(x) =

∫ x

0
C(ζ)dζ.

• To simplify the analysis of the module theoretic properties, we
shall use, instead of RI

R, a slightly larger ring, given by
RR = C(s)[SR] ∩ O (where O designates the entire functions
ring in s).
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Module associated to the system (cont.)

Definition
The convolution system Σ = ΣR associated to the boundary
problem (18) is the module generated by cξ over RR with Pξ as
presentation matrix. The module ΣQ will designate the same
system, but over RQ.
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Boundary value system of point source model
• The boundary values of the point source model are

Ĉαδ̂+p0 + Ŝαδ̂+
′

p0 = Ĉαδ̂−p0 (26a)

σ2ŜLδ̂
+
p0 + ĈLδ̂

+′

p0 = 0 (26b)

with Ĉz(s) = cosh (σz (s + ζ)), Ŝz(s) = sinh(σz(s+ζ))
σ(s+ζ)

• The presentation of Λp
Q is then

(
−Ĉα Ĉα Ŝα
0 σ2ŜL ĈL

)
δ̂−p0
δ̂+p0

δ̂+
′

p0

 = 0 (27)

viewed as an RQ-module Λp
Q generated by = [δ̂−p0, δ̂

+
p0, δ̂

+′

p0 ]RQ .
• where RQ = C(∂t)[SR] ∩ E ′∗, SX = {C(z`), S(z`)|z ∈ X}

and E ′∗ a space of Gevrey ultradistributions.
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Boundary value system of power flow model

• The boundary values of the power flow model are

σ2Ŝαδ̂f
+
0 + Ĉαδ+

′

f 0 = σ2Ŝαδ̂−f 0 (28a)
σ2ŜLδ̂

+
f 0 + ĈLδ

+′

f 0 = 0 (28b)

• The presentation of Λf
Q is then

(
−σ2Ŝα σ2Ŝα Ĉα

0 σ2ŜL ĈL

)
δ̂−f 0
δ̂+f 0

δ̂+
′

f 0

 = 0 (29)

viewed as an RQ-module Λp
Q generated by = [δ̂−p0, δ̂

+
p0, δ̂

+′

p0 ]RQ .
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Controllability of PDE systems

Proposition
The ring RQ = C(s)[SQ] ∩ O is a Bézout domain, i.e., such that
any finitely generated ideal is principal.

• This type of ring can be built as R̃X := C(s)[C̃a, S̃a; a ∈ X]/a

• with the ideal a generated by (σ ∈ C(s), a, b ∈ X)

C̃aC̃b ± σS̃aS̃b − C̃a±b, S̃aC̃b ± C̃aS̃b − S̃a±b, C̃0 − 1, S̃0
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Controllability of PDE systems (cont.)

Proposition
The convolution system Σ defined by the RR-module
(RR = C(s)[SR] ∩ O) generated by cξ and admitting

Pξcξ = 0 (avec w(x) = Wξ(x)cξ) (30)

as presentation is free, if, and only if it is torsion free. More
generally Σ = tΣ⊕ Σ/tΣ where tΣ is torsion and Σ/tΣ is free.
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Controllability results
Theorem (Point source system)
The RQ-system Λp

Q is RQ-free controllable if, and only if, ĈL−α

and Ĉα have no common zeros in C, i.e. iff

L− α
α
6= 1 + 2k1

1 + 2k2
, for any k1, k2 ∈ N

Theorem (Power flow system)
The system RσQ ⊗RQ Λf

Q is RσQ-free controllable if, and only if, Ŝα
and ŜL−α have no common zeros in C, i.e. iff

L− α
α
6= k1

k2
, for any k1, k2 ∈ N
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Conclusion

I We have examined two possible modelisations for inter area
oscillations.

I One with a point source power injection leads to a delay
system with no dynamics.

I Another one, with power flow injection, leads to a neutral
delay system.

I The first model bears some resemblance with a pure transport
equation.

I Whereas the second one exhibits some dynamics probably
expected in a wave equation model.

I Both associated modules are free with some conditions.
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End

• Thank you for your attention.

• I’ll be glad to answer questions, if any.

Hugues Mounier Wind power DPS 53 / 53



Modelling
Associated I/O systems

Structural properties

Module, Freeness, torsion
Controllability notions
Freeness character

K.S.T. Magar, M.J. Balas, D.F. Gayme, Adaptive Suppression of
Inter-Area Oscillation using Multiple Wind Power Systems in a
Distributed Parameter Control Methodology, proc. of 19th IFAC
World Congress, Cape Town, South Africa, 2014.

S. Chandra, D.F. Gayme, A. Chakrabortty, Coordinating Wind Farms
and Battery Management Systems for Inter-Area Oscillation
Damping: A Frequency-Domain Approach, IEEE Transactions on
Power Systems, 2014.

Hugues Mounier Wind power DPS 53 / 53


	Modelling
	Distributed parameter system
	Point source model solution
	Power flow model solution

	Associated I/O systems
	Structural properties
	Module theoretic setting
	Module, Freeness, torsion
	Controllability notions
	Freeness character


