
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-24, NO. 4, APRIL 1977 201 

[ 1 l] -“Algebraic techniques for the analysis and design of digital 
filters,” Tech. Rep. TR-EE 74-27, School of Electrical Engineering, 
Purdue University, West Lafayette, In. 

W. Kenneth Jenkins was born in Pittsburgh, PA, 
on April 12, 1947. He received the B.S.E.E de- 
gree in 1969 from Lehigh University, Bethlehem, 
PA, and the M.S.E.E. and Ph.D. degrees in 1971 
and 1974, respectively, from Purdue University, 
West Lafayette, IN. 

As a Graduate Instructor, he taught courses at 
Purdue in analog and digital computers and in 
linear and nonlinear electronics. He also held a 
Research Assistantship which supported doc- 
toral research in digital filtering. In 1974 he 

joined the Communication Sciences Laboratory at the Lockheed Palo 
Alto Research Laboratory where his research interests are in high data 
rate digital filter implementation techniques and digital processing for 
synthetic aperture radar. 

Dr. Jenkins is a member of the IEEE Circuits and Systems Committee 
on Digital Signal Processing and is the Chairman of the Santa Clara 
Valley CAS Chapter. He is also a member of Tau Beta Pi, Eta Kappa 
Nu, and Phi Eta Sigma. 

Benjamin J. Leon (s’5 I-A’54M’59-F’70) re- 
ceived the B. S. degree from the University of 
Texas, Austin, in 1954, and the S. M. and Sc.D. 
degress from the Massachusetts Institute of 
Technology, Cambridge, in 1957 and 1959, re- 
spectively. 

He joined the faculty of Purdue University as 
an Associate Professor of Electrical Engineering 
in 1962 and advanced to Professor in 1965. 
Prior to his affiliation with Purdue University, 
he was on the staff of MIT Lincoln Laboratories 

and Hughes Research Laboratories. He has consulted with Components 
Corporation and spent the summer of 1965 at the Bell Telephone 
Merrimack Valley Laboratories. From 19641973 he was the Consulting 
Editor for Holt, Reinhart and Winston, Inc. In addition to supervising 
graduate thesis work at the masters and doctoral levels, he has published 
some three dozen papers, two books, and several book chapters. He 
holds a U.S. patent. 

Dr. Leon is a past Editor (1967-1969) of the IEEE TRANSACTIONS ON 
CIRCUIT THEORY and past Chairman of the Circuit Theory Group of the 
IEEE. He is a member of the American Association for the Advance- 
ment of Science (AAAS), the American Association of University Pro- 
fessors (AAUP), Tau Beta Pi, Eta Kappa Nu. Sigma Xi, and Phi Eta 
Sigma. 

Some Stability Properties of Two-Dimensional 
Linear Shift-Invariant Digital Filters 

DENNIS GOODMAN 

Abstract--This paper presents a detailed discussion of stability of two- 
dimensional linear digital filters, and the subtle differences between the 
one-dimensional and two-dimensional cases. In particular, it is shown that 
the fact that the impulse response trails off to zero, or more stringently is 
square summable does not guarantee BIB0 (bounded-input-bounded-out- 
put) stability. 

Necessary conditions for the impulse response to be bounded and 
sufficient conditions for it to be square summable and to approach zero 
geometrically along any fixed column (or row) are stated. 

I. INTRODUCTION 

T HE PURPOSE of this paper is to discuss certain 
stability properties of two-dimensional linear shift 
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invariant digital filters. Most of these properties have no 
analogs in the one-dimensional case. The effect of the 
numerator polynomial on stability will be discussed, and 
an example in which the necessity of Shank’s theorem 
fails will be presented. Two other examples which exhibit 
behavior different from the one-dimensional case will also 
be presented; it will be shown that the fact that the 
impulse response trails off to zero or, more stringently, is 
square summable, does not guarantee BIB0 stability. 
Lastly, a necessary condition for the impulse response to 
be bounded, a sufficient condition for the impulse re- 
sponse to be square summable, and a sufficient condition 
for the impulse response to approach zero geometrically 
along any fixed column (or row) will be stated. 

II. PRELIMINARIES 

We will use the symbols 3, 3, and V to stand for “there 
exists,” “ such that,:’ and “for each,” respectively. 
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We will be concerned with two-dimensional linear shift and follows from the fact that two mutually prime poly- 
invariant filters which are causal (i.e., have a first nomials have at most finitely many common zeros [l]. 
quadrant impulse response) and have a rational transfer 
function. Hence our transfer functions will be of the form III. THEEFFECTOFTHENUMERATORPOLYNOMIAL 

ON STABILITY 
p (ZP%) 

G(z,,z2)= Q(zI,z2) Perhaps the most important stability theorem for two- 
dimensional filters is Shank’s theorem which states that 

where P(z,,zJ and Q ( z,, zz) are two variable polynomials G(z,,zJ is BIB0 stable iff Q(z,,z,)#O V(Z,,Z*)E fi’ [4], 

in z, and z2. We will assume that Q (O,O)#O so that [5]. Clearly, before applying this theorem, all irreducible 

Q(z,,z,)#O in some neighborhood U,‘g {(z,,z~):]z,]<E, factors common to P(z,,z2) and Q(z,,z,) should first be 

Jql <i> of tO,O), h ence in U,’ the function G(z,,z2) is 
cancelled to make the numerator and denominator mutu- 

analytic and has power series expansion ally prime; this operation is analogous to cancelling all 
common poles and zeros in the one-dimensional case. A 

cm 

G(z,J~)= z gmnzF% 
m.n=O 

g,,,, is defined to be the impulse response of G (zi,z2), and 
it is well known that the digital filter represented by 
G(z,,z2) is bounded-input-bounded-output (BIBO) stable 
iff {g,,} EZ,, i.e., Cz,n=olg,,]< cc. We will say the im- 
pulse response is square summable if {g,,,,} E 12, i.e., 
2: n=O1 g,,]* < cc, and we will say the impulse response is 
bounded if for some finite M we have 1 g,,,] < M Vm,n. 

We define U2 &?= {(z,,z2): lz,l< 1, lz2] < l} to be the 
open unit bidisc, c’ A {(z,,z2): lz,l Q 1, It21 < l} to be the 
closed unit bidisc, and T2= {(z,,z2): Iz,I= 1, ]z2] = l} to be 
the distinguished boundary of the unit bidisc. Note that 
T2 is a proper subset of the boundary of the unit bidisc. 

Certain properties of two variable polynomials and 
rational functions which will be needed later will now be 
discussed. It is well known that a two variable polynomial 
is not in general factorable into first-order polynomials; 
rather, a two variable polynomial can be factored into 
irreducible factors which are themselves two variable 
polynomials but which cannot be further factored [l]. (Of 
course a given polynomial may itself be irreducible.) 
These irreducible polynomials are unique up to multi- 
plicative constants [l]. Two polynomials which have no 
irreducible factors in common are said to be mutually 
prime. Consider the two variable rational function 

p (Zl9Z2) 

G (‘1,‘2) = Q (z,,z2) 

where P(z,,z,) and Q(z,,z,) are mutually prime. Using 
the terminology of [2], a point (z,,z,)3 Q(z,,z2)=0 but 
P (zi, z2)# 0 will be called a pole or a nonessential singu- 
larity of the first kind (such a point is analogous to a pole 
in the one variable case). A point (z,,z2)3Q(z,,z2)= 
P (zi, z2) = 0 will be called a nonessential singularity of the 
second kind (such points have no one variable analog). 
Clearly, if (z,,z2) is a pole, G(z,,z2)= co. If (z,,z2) is a 
nonessential singularity of the second kind, the value of 
G (z,,zz) is undefined and in any open neighborhood F of 
(z,,z~)~(~~,~~)E~~(z~,z~) is a pole of G(z,,zJ. This 
result may be proved using the argument in [3, pp, 14-151 

test for the existence of common factors is given in [6], 
and an algorithm for extraction of the greatest common 
factor is given in [7]. Shank’s theorem is essentially correct 
except that cases may arise where G(z,,z2) has a nones- 
sential singularity of the second kind on T2 but { g,,,,} E 
I,. Such an example will be given below. For the rest of 
the paper we will assume that P (z,,z2) and Q (z,, z2) are 
mutually prime. 

The sufficiency of Shank’s theorem can be proved 
easily. If Q (z,, z2) #O in c2, then by the continuity of 
Q (~1, ~213 there exists a slightly larger bidisc 
Uf+, k {(zi,z2) : lzil < 1 + e, ]z2] < 1 + e} such that 
Q(z,,z,)#O V(z,,z2)E Uf+,+G(z,,z2) is analytic in UF,, 
*x,,=o&nz;IL; is absolutely convergent in Uf+c~ 
Zz,,=,] g,,( < cc. The necessity of Shank’s theorem may 
fail to apply under conditions previously mentioned. The 
following necessary condition does hold, however. 

Theorem I: If G(z,,z2) represents a BIB0 stable filter, 
then G (z,, z2) has no poles in u2, and no nonessential 
singularities of the second kind on I!?’ except possibly on 
T2. 

Proof: If G(z,, z2) has a pole (zp, z,“) E c*, then 
WA=X,n=og,,,n 1 2 z”z” is not absolutely convergent in 
~2=+xt,n=ol &ml = cc, and so the filter is BIB0 unstable. 
To complete the proof we show that if G(z,,z2) has a 
nonessential singularity of the second kind, (zp,zi), in 
fi’- T2 then it has a pole in U*. If (z~,z,“)E U*, the 
result follows from the argument at the end of Section II, 
and we are left with the case (zp,z,b)~(e~- T2)- U2= 
{(zI,z2>: lzll < 1, 1z21= 1> u {(z,,z2): lz,l= 1, Iz21 < I>. In 
the following argument we assume Izfl = 1, the argument 
for ]z~] = 1 is similar. Either Q (zp,z,) is identically zero as 
a function of z2 or it is not. If Q(z,“,z,)-0, then any zi 
with Iz;l< 1 and P(zp,z~)#O is such that (zf,zi)E c2 is 
a pole of G(z,,z2). If Q(z~,z,)$O, then setting E= $(l- 
Iz,“]), we have by a continuity argument [I] that 36 >0 3 
if zf satisfies IzF - zpI<S then 3z;3lz~-z~l<e and 
Q(zf,z$)=O. Choosing zf to satisfy both lzf]< 1 and 
Izf-zp] < 6 and then selecting z; as in the previous 
sentence, we see that (z;,z;) is in U* and is either a pole 
or a nonessential singularity of the second kind of 
G(z,,z2). In either case it follows that G(z,,z,) has a pole 
in 0*. Q.E.D. 
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The special case where Q(z,,z,)#O t/(z,,zJE I?‘- T2 
but G(z,,z2) has a nonessential singularity of the second 
kind on T2 presents problems: it appears that G(z,,z2) 
may or may not be stable. In particular, both 

G, (z+z> k 
(1 - ZdV -z2j8 A PI (z192> 

2-z,-z2 = Q(Zl7Z2) 

and 

G, (z,,+> ~2 
(l-z,)(l-z2) a P2(-7+2) 

2-z,-z, = Q(Z,J,) 

are transfer functions which have mutually prime numera- 
tor and denominator polynomials, and Q (z,, z,)#O on c2 
except at zl=z2=1. Both G,(z,,z2) and G2(z,,z2) have 
nonessential singularities of the second kind at z i = z2 = 1, 
but we will show that G,(z,,z,) is BlBO stable and 
G2(z,,z2) is BIB0 unstable. GZ(.zirz2) will be considered in 
Section IV; the stability of G,(z,,z& is proved below. 

Example I: G,(z,,z,) represents a stable filter. In prov- 
ing the stability of G,(z,,z,) we will use the notation of 
[3]; page numbers given below will refer to the ap- 
propriate page of [3]. We will give two definitions and 
prove four lemmas in the course of proving stability. The 
proof of Lemma 1 is long, tedious, and uninteresting, so it 
has been relegated to the Appendix. 

Definition: G*ieieI, eie2) b lim,,,G (re”), reiez) (p. 24). 
Definition: G (t,,z2) E H m if G (t,,z2) is holomorphic in 

L” and ]G(zi,z2)] < M< cc tl(z,,zJ~ U2 (p. 51). 
‘Lemma 1: (a 2/i3t?$(a 2/a/3~)G:(eiel,ei82) exists and is 

continuous (see Appendix). 
Lemma 2: G,(z,,zZ)EHm. 
Proof: 

IGI (Z1~Z2)lE: 

(1 - zJ8( 1 - z2)8 

2-z,-z, 

=p-z,yp-z2~7 1 l 1 . 
- - 
l-z, + l-z, 

Since 

VzEU2 {z:]z]<l) 

yz,,Q) E u2 

1 * <I 
1 1 

yzp4 E u2 
-- 
l-z, + l-z, 

=e-(G, (z,,z2)( < 2’02’. 1 yz,,4 E u2 

‘47 

therefore G,(z,,z~EH”. 

Lemma 3: The Fourier coefficients of Gf(eie~,eie~): 

G: (eie ,,,ie2),-ime,,-i4 de, de, 

are equal to the power series coefficients of G,(z,,z,), i.e., 
&,,=g,, Vm,n. 

Proof: By problem c of p. 53 G,(z,,z2) E H m (by lemma 
2)+G,(z,,z2) is the Poisson integral of G:(eie1,eie2). By 
Theorem 2.1.4 of p. 21, G,(z,,z2) analytic in U2+.&,,=0 
except for (m, n) E z + A {m,n:m>O, n>O}. The series 
representation of the Poisson integral (p. 17) gives 

G, ( r,,eie l,r2e”z) = m ,C,, &,,r~eimeV,“eine2 
> + 

substituting z, = r,e”l, z2 = r2e i02 

G, (z,J~)= c bnz;1zz” 
m,n=O 

therefore g,,,, = &,,, tlm,n by uniqueness of power series. 
Lemma 4: { &,} E I,. 
Proof: 

&VI= - (2L)2 I,‘“s,‘“[ GF (eiel,eiez)e-imel dB,]e-‘“‘2 d/3,. 

Integrate the inner integral twice by parts (as in [8, p. 
1571) to give 

6,=- (2:)2 %“,,““(- 5) 

. $!-G; (eie,,eie,)e-‘mele-;ne, &I, d&I,. 
1 

Change the order of integration and again integrate the 
inner integral twice by parts to give 

. 

I 

= --& 

.e- id ,e -in& de, de, 

where fj?,, are the Fourier coefficients of (a2/@) 
(a2/aef)q(eie l,e”z). By Lemma 1 this function exists 

and is continuous; it follows from the Riemann-Lebesgue 
theorem (in [9, p. 3011) thatjm ;z,+O. Hence 3M < co’3 

*{ &,,} E 1,. This completes the proof of Lemma 4 and 
also the proof that G,(z,,zJ is BIB0 stable as { &“} E 1, 
=+{ g,,} E I, by Lemma 3. 



204 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, APRIL 1977. 

IV. Two COUNTEREXAMPLES 

The two filters 

G2 (ZlJ2) = 

(1 -z,)(l -z2) 

2-z,-z2 

G3 (z13z2> = 
2 

2-z,-z2 

exhibit behavior not found in the one-dimensional case. 
In particular, it is well known that a one-dimensional filter 
with rational transfer function H(z) = E~=oh,z m is BIB0 
stable iff {h,} E l2 or lim h m+cc m = 0. G2(z,,z2) is of interest 
for three reasons: first, because although it is similar to G, 
in that its only singularity on 6’ is a nonessential singu- 
larity of the second kind at z, = z2= 1, it is BIB0 unstable; 
second, because it serves as a warning to anyone who 
might mistakenly interpret a nonessential singularity of 
the second kind on T2 as a “pole-zero cancellation;” 
third, because although { g,,} @I,, {g;,} E I2 (hence also 
lim,,.,, g,, = O}. G, is interesting because it shows that 
impulse response behavior different from the one-dimen- 
sional case is not confined to filters having nonessential 
singularities of the second kind; we will show that the 
impulse response of G,(z,,z2) trails off to zero. 

Example 2: 

G, (z,+) A 
(1 -z,)(l-12) 

2-z,-z2 

is BIB0 unstable but has square summable impulse re- 
sponse. 

Proof: Writing 

G, (~194 =. 
1 

~ ~ 
(dz,) + (lYz2) 

and arguing as in Lemma 2; we see that (G2(z,,z2)( < 1 
V(Z,,Z~)E lJ2+G2~Hm. Noting that G,(z,,z,) is analytic 
in U2 and arguing as in Lemma 3 we see that the power 
series coefficients g,, of G,(z,, z2) equal the Fourier series 
coefficients &,n of Gf(eiel,eiez) for all m,n. Since 

G: (1, I)= lim 
Cl-r)(l-r) = lim (1-r) =. 

r+l 2-2r r-1 2 

and G2(z,,z2) is continuous everywhere else on T2 

G: (e” I, eh) = 
G, (eiel,eie2), 
o 

7 

But taking the limit as (8,,B2).+0 
directions 

(be2 > 73070) 

(e,,e,)=o. 

from two different 

lim Gz (eie,epie)= lim 
(1-eie)(l-eeie) 

e+o e+o 2-eiB-e-i8 

= lim 2-2cd = 1 
e-0 2-2 c0s e 

FrnoGr (eie,eie)= jimo 
(I-eie)(l--eie) 

+ -3 2-eie-eie 

=limL$Z=O 
e-*0 

we conclude { &,} @I, and so G2(z,,z2) is not BIB0 
stable. 

We now show {g,,} E 12. For r < 1 

G2(reie1,reie2)= 2 g,,,n(reiel)m(reie~)” 
m,n=O 

= ,,g, [ 
gmnrmrn]eim4ein4e 

Using Parseval’s relation (in [9, p. 3011) and the fact that 
IG,(z,,zJ < 1 V(z,,z2)E U2 gives 

IG, (reiel,reie2)12 de, de, 

< 1, rE[O,l) 

hence 

5 lgmnl +2(m + n) < 1 , rE[O,l). 
m,n=O 

Since 

5 1 gmn12r2(m+n) 
m,n=O 

is continuous in r for any M, 

5 l&nl +.Xm+n) G 1 
m,n=O 

for r E[O, l],VM 

Example 3: 

2 
G,(z,72) s 2-z,-z2 = 

1 
1-;z,-fZ2 

is BIB0 unstable but has an impulse response { g,,} such 
that limm,n+m g mn = 0. 

Proof G3(z,,z2) is BIB0 unstable by Theorem 1. The 
impulse response of such a filter was calculated in [lo] 
using Cauchy’s theorem and was shown to be g,,,, 
= (+jm+n((m + n)!/m!n!). Writing m+n=k, 

gm.=(f)k(;)* Since the binomial coefficients have the 
properties: 

for k even: 
(3 4kk/2)9 

O<I<k 
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for k odd: (:,q~k+1),2)<(~l..l),2)~ O<l<k* 

We may conclude 

kk! 
($!)’ ’ 

m+n=k, k even 

k (k+l)! 
m+n=k, k odd. 

I-) 1 k+l , 2’ 
2 . 

Therefore, to show lim =0, it suffices to show 
lim,,,( f)2k[(2k)!/(k!)~%~~plying [ 11, eq. (6), p. 21 l] 

where 0 < a(n) < 1 Vn, we see that 

l 2k (2k)! 
>m, z - +o ( k!)2 

1 1 = - lim - Qt(2k) Q(k) -~ 
l/Y k+aJ fi 24k-12 6k-6 

Since lim,,,l/fi =0, and lim,,, exp {(52(2k)/24k- 
12) - (O(k)/6k - 6)) = 1; limk,,(i)2k(2k)!/(k!)2 = 0, 
therefore, we conclude lim =O. It is also interest- 
ing to note that on the dia~~~~~~~=(f)2”n!/(n!)2, hence 

g nn+O as l/G . This is behavior contrasting with that in 
the one-dimensional case where if the impulse response 
approaches zero, it must do so geometrically. It is also 
interesting to note { g,,} @Z,. 

V. SOME STABILITYTHEOREMS 

Theorem 2: If G (z,,z2) has a bounded impulse re- 
sponse, then G(z,,z2) is analytic in U2 (i.e., Q(zi,z2)#0 
in U2). 

Proof: 1 g,,] <M Vm,n*Zgg,,,zyz; is absolutely con- 
vergent V(z,,z2)~U2~G(z,,z2) has no poles in U2+ 
G(z,,z2) is analytic in U2 (recall that in Theorem 1 we 
argued that if 3 a nonessential singularity of the second 
kind E U2, 3 a pole E U’). 

Remark: From Example 3 one might be tempted to 
conclude the converse of Theorem 2; however, the con- 
verse is false, e.g., 

G4 (ZPZ2> = 
1 

Cl- z1z2)2 

is analytic in U2 but has impulse response 

g = 
( 

0, mfn mn m, m=n. 

Theorem 3: If G(z,,z,) is bounded in U2, then {g,,} is 
square summable. 

Proof: G(z,,z2) < M< 00 in U2*G(z,,z2) has no poles 
in U2+.G (z,,z2) has no nonessential singularities of the 
second kind in U2*G(z,,z2) is analytic in U’*G(z,,z,) 
has power series expansion X~,,=egmnz~z~ which is ab- 
solutely convergent in U2. Using the same argument as in 
Example 2: 

2 1 g,,12r2(m+n)= & 
m,n=O 77 

277 277 
*I J IG(reiel,rei*2 )12&, de,< M2, VrE[O,l). 

0 0 

It follows that Z] g,,,12 < cc or { g,,,,} E I,. 
Theorem 4: Let G(z,,z,) = P(z,, z2)/Q(z,,z2). If 

Q(z,,O)#O for z, E cg {z, 3]z,] < l}, then for any fixed 
n,g,,+O geometrically in m and Zz,,] g,,,,] < co. 

Proof: Since Q (0,O) # 0 is assumed, 3~ > 0 3 

q= {(q,ZZ):lz,l<~, IZ,I<~} 

so for (z,,z~)E U2 we may iterate the sum to give 

G(z,,z2)= 5 z; g g,,z;” 
n=O m=O 

G(z,,z2)= 5 z;g,(z,) 
n=O 

where g,(z,)=C~,,g,,z;“. For (z,,z~)E U,’ we may dif- 
ferentiate term-wise k times to give 

setting z2 = 0 gives 

$ G ~123 [ ( = k!g,(z,). 
2 r,=O 

The left-hand side is a rational function of the form 

‘k (‘1) 

[QW’)]” 
so we conclude 

5 s,,zT”=sn(z,)= -!- pn (Zl) 
m=O ‘! [Q W’)]” 

and since g,(z,) is a ratio@ function of one variable with 
denominator nonzero on U, we conclude g mn +O geo- 

In*03 
metrically for any fixed n, and XzXo] g,,] < cc. 
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Remark: A filter satisfying Q(z,,O)#O 
Q (O,z,) #O Vz, E U is not necessarily stable. 

G(z)= i’ 
12 

has impulse response 

g = 1, m=n>O 
Inn 

0, otherwise 

and hence is unstable, but 

5 g,,=l, Vn and 5 g,,,,=l, 
m=O n=O 

tlz, E c and Because the notation gets messy in proving existence 
For example, and continuity at (O,O), we let 8 A 0,, + k e2 and 

G (e,+) A GF(ej*,e’+). The proof proceeds as follows: 
show, in order 

1) G&0,0)=0 
2) G&0,0)=0 
3) Gee,+ (0, 0) = 0 
4) Geeepo (0, 0) = 0 
5) G,,,,(e,+) is continuous at (0,O). 

The proofs of l), 2), 3) are similar to the proof of 4) and 
will be omitted. Assuming 3) has been proved 

Vm. 

VI. CONCLUSION I 

a a2 (1 -e”)B*(l -e’+)* 
-- 

Gee+ te7+)= &#I a82 2-ei@-ei+ , ww(o,o) 

In this section we summarize the results discussed in 103 (0, +I= (o,o). 

this paper. Let 
Now 
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P(ZPZ2) m 
G(z1’z2)= Q(z,,z,) m,n=O = 2 s,,zT”z; 

a a2 (l-eie)*(l-e’+)* 
-- 

= (1-e’e)6(1-ei+)7A(eieei+) 

where P(z,,z2) and Q(z,,z,) are mutually prime and a+ ae2 2- ei@-ei+ 

Q (O,O)# 0. Then the following relationships hold: 
p- ei@- ei+)3 

a) BIB0 stability w 

b) Q(z,,z,)#O in fi’ ez 
==.a 

c) Q(z,,z,)#Oin fi2- T2 z 

4 { gmn) El2 
* 
k 

e) lim g,, = 0 dF 
P 

f) Q(z,,z,)#O in U2 * 
+ 

g) IG(z,,z2)l < N< 00 in U2 + 

h) Q(z,,O)#O in c ==+ 

{ lL”> El, 
BIB0 stability 

,BIBO stability 

BIB0 stability 

bnnF40’bwJ~~2 

l&l,l~~<~9 Vm,n 

{&“}E~2 

E Igmnl<m vn. 
m=O 

APPENDIX 

Proof of Lemma I: We first determine the values of 
G:(eiB,,ei02). Since G,(z,,z2) is continuous on Tf except at 
z, =z2= 1, G:(eiB,*erez)= G,(eiel,ei’2) except at (e,,S,)= 
(0,O). At (O,O), G:(e”, 
/2(1- r)=O. Hence 

e’O)=lim,~,G,(r,r)=(l -r)*(l -r)* 

(i-ei@t)8(1-ei@2)8 

G;(eie l,e4 = ) 

I 

2-ei@l-ei@2 , (e,,e,)+(o,o) 

0, (e,,e,)=(o,o). 

Since P,(e” I, ei@z) A (1 _ ei@t)*(l - ei@z)* and Q(~~@I, 

ei@2) g 2-e4-e jez are both differentiable in 8, and 0, 
and Q(eiel,eie2)#0 except at (0,,0,)=(0,0), applying the 
formula (x/y”)‘=(x’y-ny’x)/y”+,) (y#O, n any integer 
> 1)’ four times we conclude that (a ‘/ 30:) 
. (a2/M~)G:(eiel,eie2) exists and is continuous except 
possibly at (0,O). 

where A (e”, e’*) is some polynomial in eie and ei*, and 

Gee*+ (QO) = i$ 
Gee, (0, c) - Gee+ (@O) 

E 

(1-1)6(1-eif)7A(l,ei’) -o 

(l-ei’)3 
= lim 

C-+0 c 

= lim O-0 
c-+0 c 

=o. 
Hence 

i 

a2 32 (l-e”)*(l-e”)* 
-- 

Gee+.+ (Ed+)= 382 a@ 2-ei@-ei@ , (e,w(o,o) 

10, (e,+)=o 
and it remains to show the continuity of G,,, at (0,O). 
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Since for (e,(p) # (0,O) 

Gee++ (03 +I = 
(I- ei*)6(1 - ew)6B(ei*,ei+) 

(2-ei*-eie)4 

where B (e’@, e’@‘) is some polynomial in e’@ and e’@‘, it is 
sufficient to show that 

where 1](8,$)11 L max {I@(, ]$I}. Simplifying, 
Fig. 1. Behavior of a(0) in neighborhood of (0, +) = (0,O). 

)1-eie]6]1-ei+]6 =4 [i-c0se]3[i-c0s+]3 

p-ei*-eie14 [3-2 cos e-2 cos ++cos (e-+)12 ’ set vke to give 

Claim: Let M(e,G) 2 3-2 c0s e+2 c0s ++c0s (e-+). 
M(e,ke)=(l-k)2e2+~[(1-k)4-2(1-k4)]e4. 

Then 3e>030< ll(e,+)II <c=af(e,+p ;11(8,+)114. 

Proof of Claim: In the proof 0( *) will denote a function 
+(0,(es)+02[(ke)5]+03[(1-k)‘e5]) 

which satisfies lim,,, 0(x)/x =O. We will show 3r >03 
for (e,+) with O<]le,cp]J <e and ]e]>O, M(e,@)>fe4. 

a&[ (1- k)4-2(1 - k4)]e4 

Since M(t?,+)= M(+,8) this suffices to prove the claim as +(0,(e5)+02[(kB)5]+03[(1-k)5e5]) 
reversing the roles of 8 and $ we get for the same c. 

and for - 1.1 <k< -0.9 

w~te,~)ii~~, i4x-~(e99)>f~4 
and so, 

~(e,ke)~f84+(0,(e5)+02(k5e5)+03[(l-k)5e5]) 

Taking partials with respect to 9 

M+(e,+)=2sin+-sin(+--8) 

h4e+(e,+)=2co~+-~os(+-e). 

We note that 3e, >O 3 if 8,+ satisfy 0 < I](e,+)]] <E,, then 
M(0,+))0, M,,(8,$)>0 with M(&$)=O only at (0,O). 
Next consider Zt4,(0, +): since M,(O, 0) = 0, M,,(O, 0) = 
l,M,,(O,O)=l, and M,(8,+) is analytic in 8 and 9, it 
follows by the implicit function theorem (pp. 270-273 of 
[12], the analyticity follows from 10.2.4 on p. 272) that 
3e2 > 0 and a unique analytic @a(e) 3 i’t4,(0, (a(e)) =0 for 
lOI < c2. Furthermore, @(O) = 0 and dcp(B)/dB],=, = 
- M+.* (09 O>/ M++ (02 0) = - 1 SO that a(e) = - 8 + O(0). We 
next select c3 > 0, e3 < min {cl, c2} such that 0 < 10 ] < c3+ 

4 IWQI < El 
@(@I 

b) -l.l<- < -0.9. 

It follows that Bfor cp,030<]](&+)j(<c3 with je]>O we 
have 

q-w 2 M(e,qe)po 

and (e,@(e)) is in the sector bounded by lines of slope 
-1.1 and -0.9, i.e., @(e)=ke for some k3-l.l<k< 
-0.9 (see Fig. 1). We now take the Taylor expansion of 
M(e,+) to give 

therefore 3 e4 > 0 3 

h4(e,ke)+e4, ve:lel<E4 k:-l.lGkg0.9. 

Finally, let e = min{ r,,e,} from which we conclude: for 
(6 8 3 0 < iit4 (PIII < cl, Iel>o:M(e,cp)>M(e,~(e))> 
e4/4. As discussed previously, this completes the proof of 
our claim that for (8,+)3 0 < \](0,+)]] < e, M(8, (p) 
> $jl(0,+)]]4. Next, consider the function 1 -cos 8= 
+e2/2+0(e3).Itfollowsthat3c5>O~[1-cose]<e2for 

le[<e,. Hence, for (e,~)30<Il(e,~)II<ro=min{~,E5} 

4[i-c0se]3[l-c0s~]3 

O’ [3-2c0s e-c0s ++c0s (e-+)12 ’ 

4[ e213[+213 

1 wwii4 4 1 2 

c 6411&~l14 

* lim 
4[1 --OS e]‘[ 1 --OS $1’ 

lvwl+” [3-2 cos e-2 cos ++COS (e-+)12 

=o 

=+GeeM (e,+) is continuous at (0,O). 

Q.E.D. 
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