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Doubly-Indexed Dynamical Systems: 
State-Space Models and Structural Properties 

E. Fornasini and G. Marchesini* 

Dept. of Electrical Engineering, University of Padova, Padova, ltaly 

Abstract. Doubly-indexed dynamical systems provide a state space realiza- 
tion of two-dimensional filters which includes previous state models. Alge- 
braic criteria for testing structural properties (reachability, observability, 
interna1 stability) are introduced. 

1. Introduction 

State space representations of two-dimensional filters are a recent field of 
investigation; yet there are quite a few contributions [3, 6-12, 16-20, 241. 

At first sight these contributions look hard to compare since they are based 
on state space models having different structures. 

If we consider these differences from the realization point of view, it turns 
out that the state space models we find in the literature realize transfer function 
classes of different sizes. The recursiveness of the state equations implies the 
rationality of the transfer function; nevertheless the realization of a generic 
(strictly causal) rational transfer function cannot be achieved by every model. 
For instance, the model proposed by Attasi [3] realizes only the subclass of 
recognizable transfer functions (also called "separable filters"). 

As proved in [6, 91, the state space models introduced by Roesser [20] and 
by Fornasini-Marchesini [6, 7, 91 realize the whole class of causal rational 
functions in two indeterminates. We will show that if we consider any model so 
far presented in the literature, this can be embedded in the Fornasini-Marchesini 
model [9 ]  extended to include al1 causal (not only stnctly causal) transfer 
functions. Moreover it is interesting to notice that the embedding of the Roesser 
model preserves the dimension of the local state space, whereas the reverse 
embedding requires in general increasing the dimension of the local state space. 
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Recently Kung-Lévy-Morf-Kailath [16, 171 considered the Roesser model as 
a starting point for extending Rosenbrock's theory of coprimeness [21] to 2-D 
systems. This approach led to the concepts of modal-controllability and modal- 
observability and to defining as minimal realizations those which are both 
modal-controllable and modal-observable. This theory looks very interesting 
from an algebraic standpoint but unfortunately so far it does not reach a 
consistent conclusion. Actually the existence of realizations which are both 
modal-controllable and modal-observable has been only conjectured by Kung- 
Lévy-Morf-Kailath on the basis of low order examples. 

Since the comparison between available state space models indicates that 
the model introduced by the authors is the most general, we shall focus our 
attention to anaiyze its structural properties. 

We shall first extend from [7] and 191 the concepts of local reachability and 
observability and their properties. Then the definition of internal stability will be 
naturally introduced and we shall develop a stability criterion and connections 
between internal and external stability. 

2. State Space Models 

A detailed discussion of the realization theory for two dimensional filters has 
been presented in [6, 7). So, in this section we shall introduce directly a state 
space model without deriving it from the definition of the state via Nerode 
equivalence classes. 

We shall first list some notations: 

K arbitrary field 
K[zl,z2] ring of polynomials in two indeterminates over the field K 
K[[z,,z,]] ring of forma1 power series in two indeterminates over the field K 
K[(z,,z,)] subring of rational power series 
Kd(zl. z,)] ideal generated by z1 and z2 in K[(z,,z,)]. 

A generic element in K[[zi,z2]] will be denoted by 

where (3, zfz,k) E K is the coefficient of the monornial z t.72. 
Let us introduce the following definition. 

\ 
Definition. A doubly-indexed linear, stationary, finite-dimensional, dynamical 
system (DlDS) Z=(A,,A,,B,,B,, C) is defined by the first order partial dif- 
ference equation 

@ in K and h , k ~ Z ,  AiEKnX", Bi€ K"", CEK"", i =  1,2 and x € X = K n  (local 
[ state space). 

Let 9 be a partially ordered set. A crus-cut (2 c bp is a set of incomparable 
points such that-if i E  8 exactly one of the following is true [19]: 

(a) i € e  

(b) i >j for some j E e 
(c) i < j f o r s o m e j E e  

The partition induced on 9 by a cross-cut C? evidentiates three disjoint sets 
of points. We shall cal1 present, future, and part with respect to C? the sets of 
points satisfying (a), @), (c) respectively. 

In Z x Z partially ordered by the product of the orderings, the cross-cut 
through the point ( i  j) EH X H is uniquely determined as the set 

( ( i  + m,j - m), m EE)  ei+, 
Introduce the following notation. 

Given a cross-cut er c E X  H (see Fig. l), the solution of equation (1) in the 

\ere u(h, k), the input value at (h,k) and y(h,k), the output value at (h,k), are 
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future is uniquely determined by 3i, and by the input values on er and on the 
future set with respect to er. 

Let !&,=O. The following rational power series: 

represents the output function of Z corresponding to the input function u= 
2 h , k ~ ( h , k ) ~ ; ~ $ =  1. 

The senes s, is called tramfer function of L. 
Let L start from Xr =O, then the output function y corresponding to an 

input u is given by 

Definition. A DIDS Z is a zero-state realization of a series S E  K[[zl ,z2]] if 
s = s,. The dimemion of the realization is the dimension of the local state space 
X. 

Then the following proposition holds: 

Proposition 1. Let S E  K[[zl ,z2]].  Then there exists a DIDS which is a zero-state 
realization of s if and only i f s  E Ko[(zl,z2)]. 

Proof: The necessity is a trivial consequence of (2). 
Conversely let s E Ko[(zI,z2)]. This means that s = n(z,, z2)p - ' ( z , ,~ , ) ,  n,p E 

K[z , ,  z,], n(0, O )  = O and p(0,O) = 1. Consider two polynomials v and a in the ring 
K(&,[,) of noncommutative polynomials such that their commutative images 
are n and p respectively. 

The commutative image of the noncommutative series a =  va-' is the series 
S .  Since a is recognizable [5], there exist an integer N and matrices Al ,A2E 
K N X N ,  B € K N X 1  and C € K l X N  such that 

where we put BI = A,B, B,= A,B. 
Since the projection map from the algebra of noncommutative power series 

\ K((Sl , t2) )  ont0 K[[z,,z2]] is an algebra homomorphism, the series s can be 
expressed as 

\ s = C ( I - A , Z ,  - A,z,)-'(B,z, + B,z,) 

Then the DIDS L=(A,,A,, B,,B,, C )  is a zero-state realization of S. • 

Remark. See [9] for an explicit construction of Al,A2,Bl,B2,C. 

\ 
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We shall now prove that the models investigated by Roesser [ I l ,  12, 201, 
Kung-Lévy-Morf-Kailath [16], Fornasini-Marchesini [6, 71 and, a fortiori, Attasi 
[3] can be embedded in ( 1 ) .  

In fact, consider first the model introduced in [6, 71: 

The model of Attasi is a special case of (3) when io = - 42, = - i2i,. 
An embedding of (3) in (1) is accomplished assuming in (1)  as local state the 

following vector: 

so that model (3) can be rewntten in form (1) with 

Roesser's model can be described as follows: 

where x h  is called the horizontal state and x v  the vertical state. 
It is clear that assuming in ( 1 )  the vector 
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as local state space, mode1 (4) can be recast in form (1) with 

It is interesting to notice that in Roesser's model the local state is the direct 
sum of the horizontal and vertical states, so that the embedding above does not 
require any increasing of dimension. Conversely, embedding (1) in (4) cannot be 
accomplished in general without increasing the dimension of the state space. 

In fact for this ernbedding we need a preliminary increase of dimension to 
be able to put matrices A,, B, and C of (1) in the partitioned form (5). 

Example. Consider the rational function (z, + z2)(l - z, - 2,)-'. A realization 
in form (1) is L=(1,1,1,1,1). Clearly the dimension of a realization in Roesser's 
form is at least two. 

The idea of splitting the local state space X in horizontal and vertical 
cornponents, which leads to Roesser's model, implies that the structure of the 
updating equations is not invariant under similarity transformations in X .  
Clearly equations (1) keep their structure under such transformations. 

3. Stmctural Properties of State Space Representations 

Reachability and observability notions for DIDS have been introduced in 16, 9, 
201. We shall now adjust them to model (1) for obtaining reachability and 
observability criteria. 

We say that a local state XE X is reachable from zero initial states if there 
exists an input u EK[[z,,z2]] and integers i > O, j > O such that x(i,j) = X, when 2 
starts from identically zero. 

Since the DIDS we consider are stationary, we introduce the following 
definitions: 

Definition . A state x E X is reachable i f  x=( ( I -  A,z, - A2z2)-'(B,z, - 
B2zJu, 1) for sorne u E K[z;',z;']. 

The reachable local state space 1s 

\ 
X R  = { X : X = ( ( I - A ~ Z ~ - A ~ Z ~ ) - ' ( B , Z ~ + B ~ Z ~ ) U ,  I),UEK[Z;~,Z;']} 

The realization L is L-reachable if X =  XR. 

We introduce the following matrices M, E KnX":  

M, = ((1-A,z,- A,z,)-',z;z:'). 

(i.e., Mm= I ,  MlO=Al, Mol=A2, M ~ ~ = A : ,  M11=AIA2+A2A1,...). 

Doubly-Indexed Dynamical Systems 

Then the columns of the infinite matrix 

span X R .  Consequently system X is L-reachable if 3, is full rank. 
Also the notion of indistinguishable states is extended to this system. 

Definition. A state x E X  is indistinguishable from the state O E X if 

The indistinguishable local state space X' is defined as: 

The subspace X' coincides with the nul1 space of the rnatrix: 

The realization Z is L-observable if x'= {O) c X ,  i.e. if O, is full rank. 
The rank evaluation of 0, and Q, can be reduced to compute the rank of 

two finite dimensional submatrices, by using the following extension of the 
Cayley-Hamilton theorem. 

Proposition 2. Let (1- Alz, - A2z2)-' = Z,M,z{z{. Then the M, with i + j  2 n 
are linear combinations of the M, with i + j < n, i. e. 

The proof is a straightfonvard consequence of the identity: 

An immediate application of Proposition 2 is the result that the rank of 3, 
coincides with the rank of the n x f (n + 2)(n - 1) submatrix of 3,: 
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Analogously the rank of O, is the rank of its f (n + 1)n x n submatrix: 

Let C = (A,,A,, BI,  B,, C) be a realization of a rational series s and assume 
that X is not L-reachable. An L-reachable realization having as state space the 
reachable state space X R  of C, can be obtained following a procedure analogous 
to that outlined in [9,10]. In a similar way it is possible to derive an L-observ- 
able realization whose dimension is the rank of O .  

In [16, 171, Kung-Lévy-Morf-Kailath considered the controllability prob- 
lems of Roesser's model through the extension of the coprimeness property to 
matrices with entries in K[z,,z,]. 

The transfer function of Roesser's state space description has the following 
structure: 

which is a particular form of (2), as we can see comparing (5) and (6). 
The system matrix appearing in (6) shows the peculiar property of being 

partitioned in block-matrices each containing either z, or z, separately. 
Kung-Lévy-Morf-Kailath were motivated by this fact to define the system 

(4) to be modal-controllable and modal-obseruable if the matrix pairs 
C 

are left-coprime and right-coprime respectively. 
. 

The analysis of modal-controllability and modal-observability can be based 
on the following interesting coprimeness criterion [Kung-Lévy-Morf-Kailath]: 

Let M(z,,z,) and N(z,,z,) be polynomial matrices of size n X n and m X n 
with entries in K[Z,,Z,]. Then M(z,,z,) and N(z,,z,) are right-coprime if and 
only if 

for any generic point ({,,{,) of any algebraic curve generated by the irreducible 
factors of det M(z,, z,). 

In this framework, the interesting problem to be solved relies in establishing 
whether realizations both modal-controllable and modal-observable do exist. \ 
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This kind of realization would be rather interesting since the dimension of 
the local state space would be minimal with respect to Roesser's model. Of 
course, since Roesser's models are a subclass of models (l), a modal-controllable 
and modal-observable Roesser's realization of a transfer function is not in 
general minimal in the class of realization (1). However, Kung-Lévy-Morf- 
Kailath failed to prove the existence of such realizations. 

4. Stability 

The stability problém for two-dimensional filters in input-output form has been 
investigated by several authors [ l ,  2, 4, 14, 15, 231. Attasi [3] was considering the 
stability of realizations of separable two-dimensional filters, i.e. DIDS haxing 
transfer functions with structure C(I - xlz;  l)-'(1- A2z; l)-'B and A ,A2 = 
&~l,Obviously, the factorized form of the system matrix in the product 
(1- A z )-'(1-&Z,)-' reduces the stability problem to the stability analysis of L 
Al and A, separately. 

In this section we shall deal with the stability of DIDS represented by model 
(1). 

From now on we assume that K =  R and the euclidean norm in X =  Rn. 
Moreover we introduce 

We therefore have the following definition. 

Definition. Let 2 be described by equations (1). The system 2 is asymptotically 
stable if assuming u=O and 1 1 % , 1 1  finite IIXi ll+O as i+ + m. 

As is well known, the asymptotic stability analysis of discrete time linear 
systems reduces to investigating the position of the zeros of the characteristic 
polynomial of the one-step state transition matrix A. 

The asymptotic stability of a DIDS 2=(Al,A2, BI, B,, C) is related to the 
algebraic curve defined in @ x @ by the equation 

as stated in the following Proposition. 

Proposition 3. Let Z be as in (1). Then C is a.syrnptotically stable if and only i f  
the po[ynomial det(1 - A,z, - A,z,) is not zero in the closedpolydisc: // 
Proof: Sufficiency. Let det(1- ZIA, - z2A2)f O in 9, and cal1 V the algebraic 
curve defined by det(1- A ,z, - A,z,) = O. Since V and 9, are closed, V n 9, =0 



68 E. Fornasini and G. Marchesini 

implies that there exists E > O such that the polydisc 

does not intersect V. 
Then the rational matrix (1- A,z, -A,z2) can be inverted in 9,+, and its 

McLaurin series expansion, given by 

converges normally in the interior of ql+, [13]. 
It follows that the series L,I(M,(J converges. Consequently 2i+j,rllMij(l+0 

as r+m, [22]. This implies the asymptotic stability of Z. For, assume 11!&ll finite 
and pick in Xr, r > O, any local state x(m,r - m), then 

Necessity. Assume Z be asymptotically stable. Then for any x EX, M,x+O as 
i + j > m. This fact and 

(with {ek)i the standard basis in X =  Rn) imply 

By Abel's Lemma, the series X,~,z[z( converges in the interior of 9,. Then 
(1- Alzl - A2z2) is invertible in the interior of 9,. 

The proof will be completed by showing that det(1- A,zl- A2z2)#0 on the 
boundary p 9 ,  of 9,. For, let (a,,a,) belong to p q l  and assume that 

Hence there exists a nonzero vector u E Cn which satisfies u = A ,aIu + A2a2u. It 
is not restrictive to assume that l a l (=  1, so that it makes sense to consider 
GX, = {xn, -n)  with 
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Assume now that CI = & and write a ,  = e-j* and u = r + jw. Then the state values 
on (k, O), k =O, 1,2,. . . are given by the sequence 

and it is always possible to select a phase + which makes the sequence not 
infinitesimal as k goes to infinity. • 

As far as stability criteria are concerned, the result presented in Proposition 
3 makes those tests elaborated for input-output stability [l, 2, 4, 14, 15, 231 
suitable for asymptotic stability analysis. In fact for a two-dimensional filter, 
with transfer functionp(z,,z2)/q(z,,z2), q(O,O)= 1, to be input-output stable it is 
necessary and sufficient that q(z,,z2) not be zero in 9 , .  

Coprimeness properties are relevant in analyzing the relations between 
input-output stability and asymptotic stability of DIDS. For this, it is important 
to note [16] that if L =(Al,A2, BI, B,, C) is a realization of a transfer function 
p(z1,z2)/q(zl,z2) withp and q relatively prime and 

( 9  (CJ -A~ZI -A$Z)  are left-coprime 
and 

(ii) (1- Alzl - A2z2, B,z, + B2z2) are right-coprime, 

then det(1- A,zl - A,z2)= q(zl,z2). 
Realizations satisfying (i) and (ii) will be called coprime. 
For DIDS, input-output stability and interna1 stability are related as shown 

in the following Corollary: 

Corollary. Let Z = (A ,, A,, BI, B,, C). Then we have the following implications: 

C asymptotically stable + Ç input-output stable 

Z asymptotically stable t Z input-output stable + Ç coprime 

In the Appendix we shall show that any transfer function p(zl,z,)/q(zl,z2) 
admits coprime realizations, so it is always possible to construct asymptotically 
stable realizations starting from stable transfer functions. 

Appendix 

A coprime xealization Z =(A ,,A2, BI, B,, C) of the transfer function 
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