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Abstract— This paper introduces a model for the dynamics of
a sorption process from the industrial water supply and sewage
treatment industries that is a continuous version of the Roesser
state-space model for2D discrete systems. Conditions for unique
solvability and the representation formula are then developed
together with the solution of an optimization problem using
boundary control. The solution of this optimization problem
by state feedback is also developed.

I. INTRODUCTION

Many physical processes must be modeled using repre-
sentations withn > 1 indeterminates. Applications of both
practical and/or theoretical interest, such as [1], [2], and [3] –
[6], arise, as a representative sample, across the general areas
of circuits, image processing, signal processing and control.
Also, considering the 2D case as a representable example,
the propagation of the dynamics in the two independent
directions can be a function of i) two discrete variables, ii) a
continuous variable in one direction and discrete in the other,
or iii) two continuous variables.

Multidimensional, writtennD for short, systems cannot, in
general, be analyzed by direct extension of techniques from
the theory of systems in one indeterminate, also known as 1D
systems. For example, if a transfer-function representation
can be used then coprimeness is a very important analysis
tool but in the nD case there is more than one form of
primeness. Also there arenD systems theoretic properties
that have no 1D systems counterparts.

In case of examples under i) above, there has been a very
large volume of work has been reported based, in the main,
on the Roesser [7] and Fornasini Marchesini [8] state-space
models. Repetitive processes [2] are a class of 2D systems
where information propagation in one of the two directions
only occurs over a finite duration, where this is an intrinsic
property of the dynamics and not an assumption introduced
to simplify analysis. The equation updating the dynamics
in one of the two directions is governed by a discrete
variable but in the other by either a continuous or discrete
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variable. Hence these processes fit under i) and ii) above
as appropriate. Systems theory for these processes is well
developed [2], [10], [11] and they do have applications areas
such as iterative learning control where recently control laws
have been experimentally validated on a gantry robot [12].

The subject area of this paper is 2D systems from iii)
above, where previous work, such as [13], [14], has focused
on special cases with the work in [14] having a gas pipeline
application. A model for a sorption process, which arises
in waste water and sewage treatment, in the form of a
2D continuous Roesser model, also known in some of the
mathematical literature as Goursat-type equations is given.
Conditions for its unique solvability and a representation
formula for the solution are then developed. The control
of this model can only be by boundary action and the
paper formulates and develops a solution to a quadratic
optimization problem in the form of state feedback.

II. BACKGROUND AND PROBLEM FORMULATION

The term sorption refers to the action of absorption or
adsorption, where the former is of interest in this paper and
is the incorporation of a substance in one state into another
of a different state. Networks and tandems of connected
sorption devices are widely used for waste-water treatment
in industrial water supply and sewerage. In this paper, the
starting point is the mathematical model of a single sorption
process under the assumption of non-equilibrium sorption
dynamics and linear isotherm [15]. This model can be written
as a 2D continuous systems model of the form

∂ s(x,t)
∂ t

= p(x,t)− s(x,t), 0≤ t ≤ t1,

∂ p(x,t)
∂x

= s(x,t)− p(x,t), 0≤ x ≤ l1, (1)

where l1 and t1 are the length and operation period of the
considered device, respectively,s(x,t) denotes the density
of absorbed substance, that is, the concentration of the
polluting substance in the sorbent material, andp(x,t) is the
concentration of the polluting substance in the flow at point
x and time instantt, see Fig. 1.

The boundary conditions are

p(0,t) = ψ(t), 0≤ t ≤ t1,

s(x,0) = u(x), 0≤ x ≤ l1, (2)

whereψ(t), 0 ≤ t ≤ t1 is a given continuous function, and
u(x) is the control function, which is the sorbent concentra-
tion in the device at the initial timet = 0. Hence boundary
control is the only possibility for this model.



This paper considers the problem of finding the control
function u(x) that minimizes the cost function

J(u) =

l1
∫

0

|u(x)|2 dx +
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+
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dx dt, (3)

where Gi(x,t) > 0, i = 0,1,2, and Rk(x) > 0, k = 0,1, are
given square integrable functions. The aim is to minimize
the concentration of the polluting substance in the output
flow, sorbent consumption, and the rates of change of these
variables.
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Fig. 1. Schematic diagram of the sorption process.

Remark 1: In (1) unit coefficients for variables is assumed
for ease of notation, as have unit weighting terms in the cost
function (3).
Suppose that the functionp(x,t) is continuously twice dif-
ferentiable and the first derivative∂ s(x,t)

∂x is continuous. Then
the model described by (1) and (2) can be rewritten as the
following partial differential equation

∂ 2p(x,t)
∂x∂ t

+
∂ p(x,t)

∂x
+

∂ p(x,t)
∂ t

= 0, (4)

with mixed boundary conditions

p(0,t) = ψ(t), 0≤ t ≤ t1,

p(x,0)+
∂ p(x,0)

∂x
= u(x), 0≤ x ≤ l1 (5)

and

s(x,t) = p(x,t)+
∂ p(x,t)

∂x
.

III. SOLVABILITY AND REPRESENTATION FORMULA

For the optimization problem defined by (1)–(3), letC(K)
denote the space of continuous functions defined on some set
K, AC(K) the space of absolutely continuous functions on
K, L2(K) the space of measurable and square integratible
functions on K, and C1(Π), Π := L × T , the space of
differentiable functionsf (x,t) defined on some open domain
Ω ⊃ Π with continuous partial derivatives∂ f

∂x and ∂ f
∂ t .

Lemma 1: The system model described by (1) and (2) has
an unique absolutely continuous solutionp(x,t), s(x,t) for
any initial functionψ(·) ∈ C[0,t1] and control inputu(·) ∈
L2[0, l1].

Proof: It is routine to verify by differentiation that if
the absolutely continuous functionp(x,t) is a solution of the
following integral equation

p(x,t) = e−(x+t)

x
∫

0

t
∫

0

eξ+η p(ξ ,η)dξ dη+

e−(x+t)

x
∫

0

ezu(z)dz+ e−xψ(t),

(6)

then p(x,t) and

s(x,t) =

t
∫

0

eη−t p(x,η)dη + e−tu(x) (7)

satisfy (1) and (2). Also it can be shown that the operatorT
given by

(T f )(x,t) =

x
∫

0

t
∫

0

eξ+η f (ξ ,η)dξ dη+

e−(x+t)

x
∫

0

ezu(z)dz+ e−xψ(t),

(8)

is contractive [16] in the corresponding Sobolev space
W 1

2 (Π) for any given functionsψ(·) ∈ C[0,t1] and u(·) ∈
L2[0, l1].

The fixed-point theorem provides the solution of the
integral equation (6), the correspondings(x,t) can be found
from integral expression (7), and the proof is complete.

To obtain the representation formula forp(x,t) introduce
the following parametric integral equation

p(x,t) = µe−(x+t)

x
∫

0

t
∫

0

eη+ξ p(η ,ξ )dηdξ

+e−(x+t)

x
∫

0

ezu(z)dz+ e−xψ(t), t ∈ [0,t1], x ∈ [0, l1],

(9)

with respect to the unknown functionp(x,t), where µ is
some scalar parameter. This equation is of the Volterra



type whose right-hand side is a contractive operator for any
given functionsψ(·)∈C[0,t1] andu(·)∈ L2[0, l1]. Hence, the
existence of an unique solution of (9) again follows from the
fixed-point theorem [16].

The solution of the integral equation (9) can also be written
as a power series in the parameterµ as

p(x,t) =
∞

∑
n=0

pn(x,t)µn
, (10)

where

p0(x,t) = e−xψ(t)+ e−(x+t)

x
∫

0

ezu(z)dz,

pn(x,t) = e−(x+t)

x
∫

0

t
∫

0

Kn(x,t,ξ ,η)p0(ξ ,η)dξ dη ,

n = 1,2, . . .

(11)

and the kernelsKn(x,t,ξ ,η) are defined by the following
recursion formula

Kn+1(x,t,ξ ,η) =

x
∫

ξ

t
∫

η

Kn(z,τ,ξ ,η)dzdτ,

n = 0,1,2, . . . , K1(x,t,ξ ,η) = eξ+η
.

(12)

Moreover, the solution of the integral equations in (12) can
be written in the form

Kn+1(x,t,ξ ,η) = e−(x+t)eξ+η (x− ξ )n

n!
(t −η)n

n!
0 ≤ x,ξ ≤ l1, 0≤ t,η ≤ t1. (13)

Since the functionspn(x,t) are bounded on the domainΠ
the power series (10) is absolutely and uniformly convergent
for each finite parameter valueµ . Also, under the given
assumptions, for any finite parameterµ and for t ≥ τ the
following power series

R(x,t,ξ ,η ,µ) =
∞

∑
n=0

Kn(x,t,ξ ,η)µn (14)

is absolutely and uniformly convergent to the resolvent
function R(x,ξ ,t,τ,µ). It is easy to check that this function
satisfies the both integral equation

R(x,ξ ,t,η ,µ) = eξ+η + µ
x
∫

ξ

t
∫

η

R(z,τ,ξ ,η)dzdτ, (15)

and the integro-differential equation

∂R(x,t,ξ ,η ,µ)

∂x
= µ

t
∫

η

R(x,τ,ξ ,η ,µ)dτ, (16)

with initial conditions

R(x,t,x,η ,µ) = ex+η
, R(x,t,ξ ,t,µ) = eξ+t

. (17)

Settingµ = 1 in these last two formulas yields the solution
p(x,t) of (1) and (2), and the correspondings(x,t) is given

by (7). The following theorem is a formal statement of these
facts.

Theorem 1: For the given admissible control functionu(x)
the system described by (1) and (2) has a unique solution
(p(x,t),s(x,t)) given by

p(x,t) = e−xψ(t)+ e−(x+t)

x
∫

0

ezu(z)dz

+e−(x+t)

[ x
∫

0

t
∫

0

e−ξ R(x,t,ξ ,η)ψ(η)dξ dη

+

x
∫

0

ezu(z)
[

x
∫

z

t
∫

0

e−(ξ+η)R(x,t,ξ ,η)dξ dη
]

dz

]

,

s(x,t) =

t
∫

0

eη−t p(x,η)dη + e−tu(x),

(18)

where the functionR(x,t,ξ ,η) satisfies (15) and (17) with
µ = 1.

IV. OPTIMALITY CONDITIONS

In this section the representation formula of (18) and
the operator setting are used to develop a solution of the
optimization problem (1)–(3) in the form of the next theorem.

Theorem 2: For any initial function ψ(·) ∈ C[0,t1] the
optimization problem (1)–(3) has an unique optimal solution
u0(·) ∈ L2[0, l1].

Proof: Introduce the inner product

(

u,v
)

2 ,

l1
∫

0

u(x)v(x)dx, ∀ u,v ∈ L2[0, l1], (19)

on the spaceL2[0, l1]), and define the inner product on the
spaceAC(Π) as

(

φ ,ψ
)

1 ,

t1
∫

0

l1
∫

0

ϕ(x,t)ψ(x,t)dxdt+

t1
∫

0

l1
∫

0

[

∂ϕ(x,t)
∂x

∂ψ(x,t)
∂x

+
∂ϕ(x,t)

∂ t
∂ψ(x,t)

∂ t

]

dxdt.

(20)

Also introduce the operatorL : L2[0, l1] → AC(Π)

(

L u
)

(x,t) = e−(x+t)

x
∫

0

ezu(z)dz

+

x
∫

0

ezu(z)
[

x
∫

z

t
∫

0

e−(ξ+η)R(x,t,ξ ,η)dξ dη
]

dz,

(21)



and the operatorF : C[0,t1] → AC(Π)

(

F
)

(x,t) = e−xψ(t)

+ e−(x+t)

x
∫

0

t
∫

0

e−ξ R(x,t,ξ ,η)ψ(η)dξ dη .

(22)

Then the solutionp∈ AC(Π) of the first equation of (1) with
the initial conditions (2) can be rewritten in operator form
as

p = L u +Fϕ , (23)

and hence the cost function (3) can be written as

J(u) =
(

p, p
)

1
+
(

u,u
)

2

=
(

(L u +Fϕ),(L u +Fϕ)
)

1
+
(

u,u
)

2

=
(

u,(L ∗
L +E )u

)

2
+2
(

u,(L ∗
F )ϕ

)

2

+
(

ϕ ,F
∗
Fϕ

)

2
,

(24)

whereE denotes the identity operator inL2[0, l1] andL ∗ :
AC(Π)→ L2[0, l1] denotes the adjoint operator of the opera-
tor L with respect to the scalar products defined above.

Since the operatorL ∗L +E is invertible, the following
control function in operator form can be introduced

u0 = −(L ∗
L +E )−1

L
∗
Fϕ , (25)

and in order to prove thatu0 is an optimal solution of the
problem it is sufficient to check the inequalityJ(u)−J(u0)≥
0 for all admissibleu ∈ L2[0, l1]. Let Γ = (L ∗L +E ). Then

J(u)− J(u0) = (Γ(u−u0),(u−u0))2,

and, sinceΓ = L ∗L +E > 0,

J(u)− J(u0) =

((E +L
∗
L )(u−u0),(u−u0))2 > 0,

for any admissibleu, u 6= u0. This last fact means that the
function u0 given by (25) is the unique optimal control and
p0 = L u0 +Fϕ is the corresponding optimal state for the
problem (1)–(3), and the proof is complete.

The solution of the linear quadratic optimal control prob-
lem for 1D linear systems can be written as state feedback.
The next theorem shows that the solution of the optimization
problem considered in this paper can also be written as state
feedback.

Theorem 3: The optimal controlu0(z), 0≤ z ≤ l1, for the

problem (1)–(3) can be written as

u0(z) = ez

[ t1
∫

0

e−t ∂ p0(z,t)
∂ z

dt +

l1
∫

z

t1
∫

0

(

e−(x+t) p0(x,t)

+ (t − e−(x+t))
∂ p0(x,t)

∂x
+(x− z− e−(x+t))

∂ p0(x,t)
∂ t

+

x
∫

z

t
∫

0

e−(ξ+η)

(

p0(x,t)R(x,t,ξ ,η)+
∂ p0(x,t)

∂x
∂R(x,t,ξ ,η)

∂x

+
∂ p0(x,t)

∂ t
∂R(x,t,ξ ,η)

∂ t

)

dξ dη

)

dxdt

]

,

where R(x,t,ξ ,η) satisfies (15) and (17), withµ = 1 and
p0(x,t) is solution of (1) and (2) at optimality.

Proof: From (25)

L
∗
(

L u0 +Fϕ
)

+E u0 = 0, (26)

and using (23) it follows thatp0 ∈ AC(Π) satisfies

p0 = L u0 +Fϕ .

Also (26) can be rewritten as

L
∗p0 +E u0 = 0,

and hence

u0 = −L
∗p0

. (27)

The adjoint operatorL ∗ of L of (21) satisfies, withu ∈
L2[0, l1], ϕAC(Π) and the scalar product of (19),

(ϕ ,L u)1 = (L ∗ϕ ,u)2. (28)

In particular

(ϕ ,L u)1 =

l1
∫

0

t1
∫

0

(

ϕ(x,t),(L u)(x,t)
)

dxdt+

l1
∫

0

t1
∫

0

∂ϕ(x,t)
∂x

∂ (L u)(x,t)
∂x

+
∂ϕ(x,t)

∂ t
∂ (L u)(x,t)

∂ t
dxdt,

where

(

L u
)

(x,t) = e−(x+t)

x
∫

0

ezu(z)dz

+

x
∫

0

ezu(z)
[

x
∫

z

t
∫

0

e−(ξ+η)R(x,t,ξ ,η)dξ dη
]

dz,

and it is routine to verify that

∂ (L u)(x,t)
∂ t

= e−tu(x)+ (t − e−(x+t))

x
∫

0

ezu(z)dz

+

x
∫

0

ezu(z)

( x
∫

x

t
∫

0

e−(ξ+η) ∂R(x,t,ξ ,η)

∂ t
dξ dη

)

dz.



Calculating the required derivative
∂ (L u)(x,t)

∂x
in the

same manner as above, substituting in the last formula, and
interchanging the order of integration givesL ∗ : AC(Π) →
L2[0, l1] as

(L ∗ϕ)(z) = ez

[ t1
∫

0

e−t ∂ϕ(z,t)
∂ z

dt +

l1
∫

z

t1
∫

0

(

e−(x+t)ϕ(x,t)

+ (t − e−(x+t))
∂ϕ(x,t)

∂x
+(x− z− e−(x+t))

∂ϕ(x,t)
∂ t

+

x
∫

z

t
∫

0

e−(ξ+η)

(

ϕ(x,t)R(x,t,ξ ,η)+
∂ϕ(x,t)

∂x
∂R(x,t,ξ ,η)

∂x

+
∂ϕ(x,t)

∂ t
∂R(x,t,ξ ,η)

∂ t

)

dξ dη

)

dxdt.

]

Substitution in (27) gives the required formula and the proof
is complete.

V. CONCLUSIONS AND FURTHER WORK

In this paper the sorption process has been modeled as a
2D system described by the continuous variable form of the
Roesser model. Moreover, an optimal control problem has
been formulated and solved. Further research should aim to
extend to more complicated sorption networks, which are
much more relevant for applications.
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