Computer algebra methods for testing the stability and the stabilizability of multidimensional systems

Yacine Bouzidi*, Alban Quadrat*, Fabrice Rouillier**

* INRIA Saclay - Île-de-France, Disco project
 ** INRIA Paris - Roquencourt, Ouragan
 * yacine.bouzidi@inria.fr, alban.quadrat@inria.fr
 ** Fabrice.Rouillier@inria.fr

supported by the ANR MSDOS

Workshop ANR MSDOS, 2016, Marseille, France.

<ロ> (四) (四) (三) (三) (三) (三)

- 2 Structural stability of multidimensional systems
- Solving systems of algebraic equations
- 4 Stabilizability of multidimensional systems

Problems under consideration

- 2 Structural stability of multidimensional systems
- Solving systems of algebraic equations
- 4 Stabilizability of multidimensional systems
- 5 Systems with parameters

Problems under consideration

• Input: MIMO linear n-D systems given under a matrix fraction description

$$P(z) = D^{-1}(z) N(z)$$

where N(z), D(z) are *n*-D polynomial matrices.

• The closed unit polydisc of \mathbb{C}^n :

 $\overline{\mathbb{D}}^n := \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n \mid |z_i| \le 1, i = 1, \ldots, n, \}.$

• Stability: All the entries of the matrix $D^{-1}(z) N(z)$ do not have zeros inside $\overline{\mathbb{D}}^n$, i.e.:

 $d(z_1,\ldots,z_n)\neq 0, |z_1|\leq 1,\ldots,|z_n|\leq 1$

• **Stabilizability:** The reduced minors of [D(z) - N(z)] do not have common zeros inside $\overline{\mathbb{D}}^n$, i.e.:

$$V(\langle p_1(z_1,\ldots,z_n),\ldots,p_s(z_1,\ldots,z_n)\rangle)\cap\overline{\mathbb{D}}^n=\emptyset$$

1-D linear systems

- Matrices with entries polynomials in $\mathbb{Q}[z]$
- Localization of complex zeros of univariate polynomials
- $\mathbb{Q}[z]$ is an Euclidean domain \rightsquigarrow Remainder sequence, gcd
 - Numerically: Netwon method ~ Non-certified
 - Symbolically: Cauchy index, Sturm sequences ~> certified
- Algebraic stability tests, e.g. Hurwitz, Jury, Bistritz,...

$$d(z) := a_n z^n + \ldots + a_0 \qquad \begin{cases} T_n(z) := d(z) + d^*(z), \\ T_{n-1}(z) := \frac{d(z) + d^*(z)}{(z-1)}, \\ T_{i-1}(z) := \frac{\delta_{i+1}(1+z)T_i(z) - T_{i+1}(z)}{z}, \end{cases}$$

where $\delta_{i+1} := \frac{T_{i+1}(0)}{T_i(0)}$ for i = n - 1, ..., 1.

→ The system is stable if and only if the sequence is normal and the number of sign variation in $\{T_n(1), \ldots, T_0(1)\}$ is zero.

- Matrices involving polynomials in $\mathbb{Q}[z_1, \ldots, z_n]$
- Geometric objects: Algebraic varieties of arbitrary dimension in \mathbb{C}^n
- Stability and stabilizability conditions: Semi-algebraic sets in \mathbb{R}^{2n}
- Goal: Generalization of the 1-D case
- Existing work:
 - *n* = 2 Several practical algorithms (Bose, Jury, Bistritz, ...)
 - $n \ge 3$ Very few results and no practical criterion
- Our tools: Algebraic-geometric dictionnary (Ideals, Varieties, Variable elimination, Nullstelensatz,...)

Study via semi-algebraic sets

•
$$z_k := x_k + i y_k, \ x_k, y_k \in \mathbb{R}, \ k = 1, \dots, n, \ i^2 = -1.$$

Problems are equivalent to the study of semi-algebraic systems:

$$(S) \begin{cases} \rho_{1} := \mathcal{R}_{1}(x_{1}, y_{1}, \dots, x_{n}, y_{n}) + i\mathcal{I}_{1}(x_{1}, y_{1}, \dots, x_{n}, y_{n}) \neq 0 \\ \vdots \\ \rho_{s} := \mathcal{R}_{s}(x_{1}, y_{1}, \dots, x_{n}, y_{n}) + i\mathcal{I}_{s}(x_{1}, y_{1}, \dots, x_{n}, y_{n}) \neq 0 \\ x_{1}^{2} + y_{1}^{2} - 1 \leq 0, \\ \vdots \\ x_{n}^{2} + y_{n}^{2} - 1 \leq 0. \end{cases}$$

 \bullet Zero-dimensional systems \leadsto univariate representation, triangular representation, Gröbner bases.

 \bullet Systems with positive dimensions \leadsto cylindrical algebraic decomposition, critical points methods.

Drawback: The number of variables is doubled!

Problems under consideration

- 2 Structural stability of multidimensional systems
- Solving systems of algebraic equations
- 4 Stabilizability of multidimensional systems
- 5 Systems with parameters

Structural stability

- Given a polynomial $d(z_1, \ldots, z_n) \in \mathbb{R}(z_1, \ldots, z_n)$
- **Definition:** *d* is structurally stable if it is devoid of zero in $\overline{\mathbb{D}}^n$, i.e.:

$$\forall z = (z_1, \ldots, z_n) \in \overline{\mathbb{D}}^n : d(z_1, \ldots, z_n) \neq 0.$$
 (1)

• The affine algebraic set associated to $d \in \mathbb{R}[z_1, \dots, z_n]$:

$$V_{\mathbb{C}}(d) := \{ z = (z_1, \dots, z_n) \in \mathbb{C}^n \mid d(z_1, \dots, z_n) = 0 \}.$$

• Condition (1) is equivalent to:

$$V_{\mathbb{C}}(d) \cap \overline{\mathbb{D}}^n = \emptyset.$$

Structural stability : simplified conditions

• Condition (1) is equivalent to the set of conditions [DeCarlo et al.].

$$\begin{cases} d(z_1, 1, \dots, 1) \neq 0, & |z_1| \leq 1, \\ d(1, z_2, 1, \dots, 1) \neq 0, & |z_2| \leq 1, \\ \vdots & \vdots \\ d(1, \dots, 1, z_n) \neq 0, & |z_n| \leq 1, \\ d(z_1, \dots, z_n) \neq 0, & |z_1| = \dots = |z_n| = 1. \end{cases}$$

• All the conditions except the last one can be tested using classical univariate stability tests.

• Focus on the condition: $d(z_1, \ldots, z_n) \neq 0$, $|z_1| = \ldots = |z_n| = 1$.

 \rightsquigarrow Searching for zeros in an *n*-D subspace of the 2*n*-D complex space.

Möbius transformation

• Definition: A Möbius transformation is a rational function

$$\begin{split} \phi:\overline{\mathbb{C}} &:= \mathbb{C} \cup \{\infty\} \quad \longrightarrow \quad \overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\} \\ z \quad \longmapsto \quad \frac{az+b}{uz+v}, \end{split}$$

for $a, b, u, v \in \mathbb{C}$ satisfying $av - bu \neq 0$ $\left(\phi\left(-\frac{v}{u}\right) = \infty, \ \phi(\infty) = \frac{a}{u}\right)$.

• The Möbius transformation $\phi(z) := \frac{Z-i}{Z+i}$ maps the real line $\overline{\mathbb{R}} := \mathbb{R} \cup \infty$ to the unit complex circle \mathbb{T} .

•
$$z_k := \frac{(x_k-i)}{(x_k+i)}, \quad k=1,\ldots,n.$$

• Let $\mathcal{R}(x_1, \ldots, x_n) + i\mathcal{I}(x_1, \ldots, x_n)$ be the numerator of the fraction:

$$d\left(\frac{x_1-i}{x_1+i},\ldots,\frac{x_n-i}{x_n+i}\right).$$

- Theorem: $\mathcal{V}_{\mathbb{C}}(d) \cap [\mathbb{T} \setminus \{1\}]^n = \emptyset \iff \mathcal{V}_{\mathbb{R}}(\mathcal{R}, \mathcal{I}) = \emptyset.$
- **Remark:** The total degree of \mathcal{R} and \mathcal{I} is bounded by $\sum_{i=1}^{n} deg_{z_i}(d)$

The test of stability reduces to deciding the existence of real zeros of algebraic systems of the form

$$\{\mathcal{R}(x_1,\ldots,x_n)=\mathcal{I}(x_1,\ldots,x_n)=0\}$$

- The corresponding algebraic varieties are of two types:
- The case of 2-D systems ~> zero-dimensional variety
- The case of *n*-D systems, $n \ge 3 \rightsquigarrow$ Variety of codimension at most 2

- Problems under consideration
- Structural stability of multidimensional systems
- 3 Solving systems of algebraic equations
- Stabilizability of multidimensional systems
- 5 Systems with parameters

 \bullet Goal: Numerical isolating boxes around the real solutions \leadsto answer for the existence of real solutions

• Several methods:

Numerical: Local analysis, non certified results except for particular systems (e.g. squarefree)

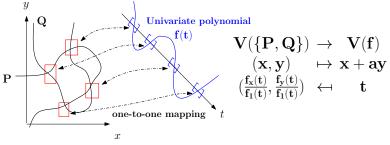
Symbolic: Global solutions, certified

• The principle of symbolic methods is to reduce the problem to a univariate one

• Our tool: Rational Univariate Representation [Rouillier 99]

Zero-dimensional systems : The 2D case

- Consider a zero-dimensional ideal $I := \langle P(x_1, x_2), Q(x_1, x_2) \rangle$
- A Rational Univariate Representation of *I* is a one-to-one mapping between the points of $V_{\mathbb{C}}(I)$ and the roots of a univariate polynomial



- Computation:
- \rightarrow Linear algebra in the finite-dimensional Q-vector space $\frac{\mathbb{Q}[x_1, x_2]}{I}$
- ~ Resultant and subresultant polynomials

Rational Univariate Representation

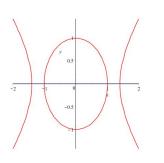
- $I \subset \mathbb{R}[x_1, \ldots, x_n]$ a zero-dimensional ideal and $V(I) \subset \mathbb{C}^n$ its variety.
- A Rational Univariate Representation of *I* is given by:
 - A linear form $a_1x_1 + \ldots + a_nx_n$ that separates the points of *V*.
 - A one-to-one mapping between the roots of a univariate polynomial *f* and the solutions of *V*:

$$\begin{aligned} \phi_t : & V_{\mathbb{C}}(I) & \approx & V_{\mathbb{C}}(f) \\ & \alpha & \longmapsto & t(\alpha), \\ & \left(\frac{f_{x_1}(\beta)}{f_1(\beta)}, \dots, \frac{f_{x_n}(\beta)}{f_1(\beta)}\right) & \longleftarrow & \beta. \end{aligned}$$

• $V(I) \cap \mathbb{R}^n = \emptyset$ if and only if $V(f) \cap \mathbb{R} = \emptyset \rightsquigarrow$ Sturm sequence.

Systems with positive dimension

- Goal: Deciding the existence of real zeros
- Principle: Search for one real zero in each connected component
- Example: $f(x, y) = (x^2 y^2 2) * (x^2 + y^2 1) = 0$, a curve in \mathbb{C}^2



$$\pi : \mathbb{C}^{2} \to \mathbb{C}$$

$$(x, y) \mapsto x$$
Critical points of $\pi : \begin{cases} f(x, y) = 0 \\ \frac{\partial f}{\partial y}(x, y) = 0 \end{cases}$

$$\sim \begin{cases} f(x, y) = 0 \\ \frac{\partial f}{\partial y}(x, y) = 0 \\ -4 * y^{3} - 2 * y = 0 \end{cases}$$

• The critical points of π are $(-\sqrt{2},0),(-1,0),(1,0),(\sqrt{2},0)$

• **Principle:** Computation of the critical points of a polynomial application Φ restricted to the algebraic set $\mathcal{V} := \mathcal{V}(\langle \mathcal{R}, \mathcal{C} \rangle)$.

• **Theorem:** Under mild conditions, the set of critical points of Φ is finite and meets the algebraic set \mathcal{V} on each of its real connected components.

• Compute zero-dimensional systems that encode these critical points and check if they admit real solutions.

~ Rational Univariate Representation (RUR).

The overall algorithm

Procedure: IsStable begin **Data** : $D(z_1, ..., z_n) \in R[z_1, ..., z_n]$ **Result** : return True if $V(D(z_1, \ldots, z_n)) \cap \mathbb{D}^n = \emptyset$ for k = 0 to n - 2 do Compute S_k , the set of polynomials obtained from $D(z_1, \ldots, z_n)$ after substituting k variables by 1 foreach D_k in S_k do $\{\mathcal{R}, \mathcal{C}\} = M\"obius_transform(D_k)$ if $\mathcal{V}_{\mathbb{R}}(\{\mathcal{R},\mathcal{C}\}) \neq \emptyset$ then return False end end end if all the univariate polynomials in S_{n-1} are stable then return True else return false end end end ▶ < □ ▶ < □ ▶ <</p>

Implementation

- A Maple procedure is provided based on:
 - The univariate stability test of Bistritz.
 - The library RS for the real zero of 2D systems
 - The Maple routine HasRealRoots for the study of real zeros of polynomial algebraic systems

	degree	3	5	8	10
nb var				0	10
2	sparse	0.074	0.087	0.21	0.38
2	dense	0.078	0.13	0.61	1.82
3	sparse	0.31	0.51	2.31	4.71
3	dense	0.36	1.05	9.77	36.70
4	sparse	2.03	4.87	19.68	32.64
4	dense	3.32	75.71	350	t/o

Table: CPU times in seconds of IsStable run on random polynomials in 2,3 and 4 variables with rational coefficients.

Problems under consideration

- Structural stability of multidimensional systems
- Solving systems of algebraic equations
- 4 Stabilizability of multidimensional systems
- 5 Systems with parameters

Stabilizability

• { p_1, \ldots, p_s } are the reduced minors of the matrix $[D(z) - N(z)]^T$

• $I = \langle p_1, \dots, d_s \rangle \subset \mathbb{R}[z_1, \dots, z_n]$ is the ideal generated by these polynomials

• The associated algebraic variety $V_{\mathbb{C}}(I)$ is given as

$$\{(z_1,\ldots,z_n)\in\mathbb{C}^n\mid p_1(z_1,\ldots,z_n)=\cdots=p_s(z_1,\ldots,z_n)=0\}.$$

• Definition: P is Stabilizable if

$$V_{\mathbb{C}}(I) \cap \overline{\mathbb{D}}^n = \emptyset.$$

- •No simplified conditions in the general case
- We restrict the study to zero-dimensional ideal $I := \langle p_1, \dots, p_s \rangle$:

$$\sharp V_{\mathbb{C}}(I) < \infty$$

Stabilizability through RUR computtion

• Compute a Univariate Representation of $\langle p_1, \ldots, p_s \rangle$

$$f(t) = 0$$

$$z_1 = \frac{f_{z_1}}{f_1}(t)$$

$$\vdots \vdots \vdots$$

$$z_n = \frac{f_{z_n}}{f_1}(t)$$

- Isolate solutions into pair of intervals $z_k = [a_{k,1}, a_{k,2}] + i[b_{k,1}, b_{k,2}]$
- Compute the sign of $[a_{k,1}, a_{k,2}]^2 + [b_{k,1}, b_{k,2}]^2 1$

~ May requires some refinements

• What if some solutions are close to the poly-circle ?

~ Cannot conclude

• Construct an algebraic system that characterize these solutions

• Apply $z_k = \frac{x-i}{x+i}$, $i = 1, ..., n \rightsquigarrow$ Real zeros of $\{p_1(x), ..., p_s(x)\}$

Stabilizability and stabilization

• To summarize, testing the stabilizability resumes to test that

Theorem (Polydisk Nullstelensatz)

Let $p_1, \ldots, p_s \in \mathbb{Q}[z_1, \ldots, z_s]$ be such that $V_{\mathbb{C}}(\langle p_1, \ldots, p_s \rangle) \cap \overline{\mathbb{D}}^n = \emptyset$, then there exists a polynomial *S* as well as u_1, \ldots, u_s in $\mathbb{Q}[z_1, \ldots, z_s]$ and an integer e > 0 such that

$$S^{e}(z_1,\ldots,z_n) = \sum_{i=1}^{s} u_i(z_1,\ldots,z_n) p_i(z_1,\ldots,z_n)$$

and $V_{\mathbb{C}}(S(z_1,\ldots,z_n))\cap\overline{\mathbb{D}}^{\prime\prime}=\emptyset$

- $S(z_1, \ldots, z_n)$ is used to construct a stabilizing compensator
- First constructive proof for the zero-dim case (Guillaume talk)

Problems under consideration

- Structural stability of multidimensional systems
- Solving systems of algebraic equations
- 4 Stabilizability of multidimensional systems

Stability of 2D systems with parameters

• $\frac{N(z_1, z_2, U)}{D(z_1, z_2, U)}$ is a transfert function where $N, D \in \mathbb{R}[U][z_1, z_2]$ and $U = [U_1, \dots, U_k]$ is a set of real parameters.

• **Goal:** Compute regions in the parameter's space \mathbb{R}^k in which the underlying system (after substitution of the parameters) is stable.

•
$$\bigcup_{i} U_i$$
 such that U_i are semi-algebraic sets in \mathbb{R}^k and $\forall (u_1, \dots, u_k) \in U_i$

$$D(z_1, z_2, u_1, \dots, u_k) \neq 0$$
 for $|z_1| \le 1, |z_2| \le 0$

Or, according to Decarlo et al.

$$\begin{cases} D(z_1, 1, u_1, \dots, u_k) \neq 0, |z_1| \leq 1, \\ D(1, z_2, u_1, \dots, u_k) \neq 0, |z_1| \leq 1, \\ D(z_1, z_2, u_1, \dots, u_k) \neq 0, |z_1| = |z_2| = 1. \end{cases}$$
(3)

• Compute regions in the parameter's space \mathbb{R}^k such that

•
$$D(z, U) \neq 0 \mid |z| \leq 1$$

• $S := \{\mathcal{R}(x, y, U) = \mathcal{I}(x, y, U) = 0\}$ does not have real zeros.

• **Approach:** Use elimination to compute a set of polynomials in $\mathbb{Q}[U]$ that decomposes \mathbb{R}^k into the desired regions.

- We focus in the sequel on the second condition
- Decompose \mathbb{R}^k depending on the number of real solutions of S and select the region for which this number is zero.

Discriminant variety

• Generalization of the classical discriminant.

•
$$\Pi_U$$
: $\mathcal{V} := V(\mathcal{S}) \rightarrow \mathbb{C}^k$
 $(x, y, U) \mapsto U$

The canonical projection

Definition [D. Lazard and F. Rouillier, 04]

• $D(\mathcal{V}) \subset \mathbb{C}^k$ s.t. for all connected open set $\mathcal{U} \subset \mathbb{C}^k / D(\mathcal{V})$:

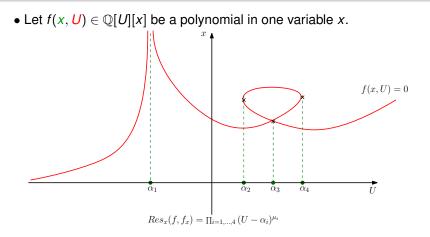
 $(\Pi_U^{-1}(\mathcal{U}) \cap \mathcal{V}, \Pi_U)$ is an analytic covering of \mathcal{U} .

Key property in the real

• For all connected open set $\mathcal{U} \subset \mathbb{C}^k / D(\mathcal{V})$:

Number of real zeros of S_u is constant for all $u \in U$

Discriminant variety : a simple case



- The discriminant is the resultant of *f* and its derivative w.r.t *x*.
- $\forall u_0$ in any open interval (α_i, α_{i+1}) , the number of real roots of $f(x, u_0)$ is constant.

Discriminant variety: computation

- In our setting, the discriminant variety of $\{\mathcal{R}=\mathcal{I}=0\}$ is union of:
 - *O_{mult}* Projection of the multiple solutions.
 - O_{∞} Projection of the solutions at infinity.

Computation of the discriminant variety

• $O_{mult} = \Pi_U(V(\mathcal{R}, \mathcal{I}, Jac_{x,y}(\mathcal{R}, \mathcal{I}))) \rightsquigarrow$ Elimination via Gröbner bases

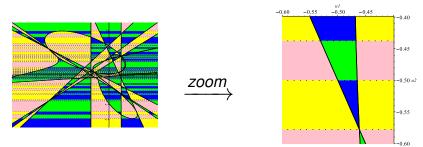
- O_{∞} : The leading coefficients of some Gröbner basis.
- $D(\mathcal{V}) = O_{\textit{mult}} \cup O_{\infty}$

Computation of $\mathcal{U} \subset \mathbb{R}^k / D(\mathcal{V})$

• Cylindrical Algebraic Decomposition adapted to $\mathcal{I}(D(\mathcal{V}))$

Example

- $D(z_1, z_2) = (4u_1 + 2u_2 + 3)z_1 + (-2u_1 + 1)z_2 + (4u_1 2u_2 2)z_1 z_2 + (2u_1 2u_2 + 4)z_1^2 z_2 + (-u_1 u_2 + 1)z_1 z_2^2$.
- DV consists of an union of 10 lines, 2 quadrics and one curve of degree 6.
- Decomposing the parameter's space w.r.t this DV yields 1161 cells



• 1043 cells correspond to stable systems, e.g. the cell corresponding to the point ($u_1 = -.5952602220$, $u_2 = -.5389591122$)