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T-P Azevedo-Perdicoúlis—ISR Coimbra & UTAD, Portugal

ANR MsDos Workshop
CIRM, Marselle, France

3–7 October 2016
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Motivation of the work

Practical applications exist where distributed boundary control is required.

Example: Gas networks

Relevance of the work

Practical applications exist where boundary control is required.

Example: Gas networks
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T-P Azevedo-Perdicoúlis et al. The good behaviour of the gas network 10 September 2013

The gas problem has a repetitive (“periodic”) behaviour:

CHAPTER 3. LPV MODELLING 18

A0 = I2 + TaĀ0, I2 = identity matrix of dim. 2

Ap = TaĀp, B0 = TaB̄0, Bp = TaB̄p

C0 = C̄0, Cp = C̄p

D0 = D̄0, Dp = D̄p.

See [22] for further detail.

3.2. Gas pipeline identification models

Reporting to the case study described in Section 2.2, the pipeline is modelled as an LPV system

with the mass-flow at TERMINAL A and BV 12400 A nodes as input and output, respectively. The

detrended sum (variation around its mean value) of the pressures at TERMINAL A and BV 12400 A

nodes is the scheduling signal. Both the intake mass-flows and the pressures are measured while

the offtake mass-flow is simulated by SIMONE R⃝ software. The LPV model is identified by the

successive approximations subspace identification algorithm [19].

Figure 3.3 depics the two days data, with the intake and offtake mass-flows and pressures in the first

and second frames, respectively. The pressure over time patterns seem to be the same. As a matter

of fact, it presents a correlation coefficient value of 0.9998. Therefore, the system is described by an
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Figure 3.3: Left: Intake and offtake mass-flows qi(t) (blue) and qo(t) (red). Right: Intake and offtake node

pressures pi(t) (blue) and po(t) (red).

LPV model with a scheduling parameter equal to the pressure pattern. The identification algorithm
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A gas pipeline
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Gas dynamics: Hyperbolic PDE

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂q(t, x)
∂t

= −S ∂p(t, x)
∂x

− λc2

2dS

q2(t, x)
p(t, x)

,

∂p(t, x)
∂t

= −c
2

S

∂q(t, x)
∂x

,

(1)

where

x is space
t is time
p is pressure
q is mass flow
S is the cross-sectional area
d is the pipe diameter
c is the isothermal speed of sound
λ is a friction factor.

Th
is c
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d b

e li
nea

rise
d .

. .

See (J. Niep locha, 1988) and (A. Osiadacz, 1987).
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Gas dynamics: Linearisation of the hyperbolic PDE

The linearisation is done around the operational levels: (q̄, p̄(x))

▸ q̄ is constant

▸ p̄(x) is averaged over period of operation T: p̄(x) = 1

T ∫
T

0 p(x , t)dt∣
x=x0

and

p̄(x) =
√

p̄2(x0) −
λc2

2dS2
q̄2 (x − x0)

{ q = q̄ +∆q(t, x)
p = p̄(x) +∆p(t, x) ∆p and ∆q are deviations from the reference values

Hence:
q2

p
= (q̄ +∆q)2

p̄ +∆p
≅ q̄2

p̄(x) + 2
q̄

p̄(x)∆q − q̄2

p̄(x)2 ∆p. (2)
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Linear hyperbolic PDE

Substituting (2) into (1), we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂∆q(t, x)
∂t

= −S ∂∆p(t, x)
∂x

− S
∂p̄(x)
∂x

− λc2

2dS
( q̄2

p̄(x)
+ 2

q̄

p̄(x)
∆q(t, x))

+ λc
2

2dS

q̄2

p̄(x)2
∆p(t, x)

∂∆p(t, x)
∂t

= −c
2

S

∂∆q(t, x)
∂x

.

(3)
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Discretisation of the linear hyperbolic PDE

qi(t) = q(0, t)

ℓ0 ℓ1 ℓ1 ℓ2 ℓ2 ℓ3 ℓk−1 ℓk ℓN−3 ℓn−2 ℓN−2 ℓN−1 ℓn−1

p1 p2 p3 pN−2 pN−1 pNp0 pk−1 pk pN−3

ℓN = L

q1 q2 q3 qk qN−2 qN−1 qN

qN+1q0

pi(t) = p(0, t) po(t) = p(L, t)

L

qo(t) = q(L, t)

Figure 3.2: Pipeline segmented into sections.

16

Assumption: constant mass flow in every segment.
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Discrete linear hyperbolic PDE

Model (3) becomes:

⎧⎪⎪⎨⎪⎪⎩

∆qk+1(`) = α(`)∆qk(`) + β∆pk(` − 1) + γ(`)∆p(k, `) − β∆pk(` + 1) + F (`)

∆pk+1(`) = ∆pk(`) + ρ∆qk(` + 1) − ρ∆qk(` − 1)
(4)

where f (kh1, `h2) ∶= fk(`) and

β :=
Sh1

2h2
, ξ(`) :=

λc2

dS

h1q̄

p̄(`)
,

γ(`) :=
ξ(`)

2p̄(`)
q̄, α(`) := 1 − ξ(`),

ρ :=
c2h1

2Sh2
,

F (`) := −γ(`)p̄(`) − β (p̄(` + 1) − p̄(` − 1)) .

T-P Azevedo Perdicoúlis Gas Nash eq. with wave dynamics October 4, 2016



Discrete linear hyperbolic PDE

Model (3) becomes:

⎧⎪⎪⎨⎪⎪⎩

∆qk+1(`) = α(`)∆qk(`) + β∆pk(` − 1) + γ(`)∆p(k, `) − β∆pk(` + 1) + F (`)

∆pk+1(`) = ∆pk(`) + ρ∆qk(` + 1) − ρ∆qk(` − 1)
(4)

where f (kh1, `h2) ∶= fk(`) and

x1 ∶= ∆q
x2 ∶= ∆p

Ô⇒ x = (x1

x2
)
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Wave gas model

that is

xk+1(`) = A−1xk(` − 1) +A0xk(`) +A1xk(` + 1) + (F(`)
0

)

yk(`) = Cxk(`)
k = 0,1, . . . ,T − 1

` = 0,1, . . . ,L
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Wave gas model

that is

xk+1(`) = A−1xk(` − 1) +A0xk(`) +A1xk(` + 1) + (F(`)
0

)

yk(`) = Cxk(`)
k = 0,1, . . . ,T − 1

` = −N, . . . ,N and N ∶= [L
2
]
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What is missing?

▸ Boundary conditions: the most convenient regime of operation of the controllable
units (or players), i.e., gas pressure and mass flow need to be kept at some
desirable levels through time.

▸ Initial conditions: a starting regime of operation; two possibilities to initialise the

flow/pressure vector are:

(i) using the optimum solution found at the previous period of operation;

(ii) a starting value could be found in pre-computation.

yk(0) = dk and yk(L) = gk , k = 0,1, . . . ,T − 1 (5)

x0(`) = φ(`), ` = 0,1, . . . ,L (6)

dk is the pumping regime at the inlet
gk is the contracted delivery level at the offtakes.
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Presentation outline

1 Motivation: Gas dynamics in the pipeline

2 Gas Wave RP model

3 Formulation of the differential game with boundary control

4 Open-Loop Nash equilibrium

5 Necessary and Sufficient conditions for the existence of Nash equilibrium

6 Controllability and observability

7 Conclusions and future work
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Wave model of length N

xk+1(`) =
N

∑
i = −N

∣` + i ∣ ≤ N

Aixk(` + i) +
p−2

∑
j=1

Bjuj,k(`), (7)

yk(`) = Cxk(`) k ∈ K, ` ∈ L

L ∶= [−N,N] ∩ Z with N = [L
2
] (8)

K ∶= {k ∣xk(`) = 0, k = T + 1, . . . and k = . . . ,−2,−1}
K × L is the compact support of xk(`),uj,k(`), yk(`)

xk(`) ∈ Rn state vector along pass–k Ai ∈ Rn×n

uj,k(`) ∈ Rrj control vectors along pass–k, j = 1,p − 2 Bj ∈ Rn×rj

yk(`) ∈ Rm pass profile vectors along pass–k C ∈ Rm×n,Dj ∈ Rm×rj

See (K.Galkowski, C.Cichy, E. Rogers, 2006), (R. Palucki et al., 2012), (T. Schewerdtfeger, K. Galkowski, A. Kummert, 2013).
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Autonomous wave model of length N

xk+1(`) =
N

∑
i = −N

∣` + i ∣ ≤ N

Aixk(` + i) +
p−2

∑
j=1

Bjuj,k(`),

yk(`) = Cxk(`) k ∈ K, ` ∈ L

L ∶= [−N,N] ∩ Z with N = [L
2
]

K ∶= {k ∣xk(`) = 0, k = T + 1, . . . and k = . . . ,−2,−1}
K × L is the compact support of xk(`),uj,k(`), yk(`)

xk(`) ∈ Rn state vector along pass–k Ai ∈ Rn×n

uj,k(`) ∈ Rrj control vectors along pass–k, j = 1,p − 2 Bj ∈ Rn×rj

yk(`) ∈ Rm pass profile vectors along pass–k C ∈ Rm×n,Dj ∈ Rm×rj

space

tim
e

L
0
1

2

T

k indexes the pass number
` indexes the steps per pass
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Autonomous wave model of length N

xk+1(`) =
N

∑
i = −N

∣` + i ∣ ≤ N

Aixk(` + i) +
p−2

∑
j=1

Bjuj,k(`), (9)

yk(`) = Cxk(`), k ∈ K, ` ∈ L (10)

x0(`) = φ(`), ` = −N, . . . ,N (11)

yk(−N) = dk and yk(N) = gk , (12)

k = 0,1, . . . ,T − 1

l

pa
ss-
k ...

L
0
1

2

T

I ∶= K × L
x⋅(.) ∈ `2,n(I) =∶ X
uj,⋅(.) ∈ `2,rj (I) =∶ Uj the controls are admissible
y⋅(.) ∈ `2,m(I)

`2,ν(I) Hilbert space of ν-dim sequences defined on I with the standard scalar product.

However, in this presentation we start with the case T <∞.
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Operational objectives

There is a quadratic cost functional associated to each player:

Jj(u1, . . . ,up,Φ) =
N−1

∑
`=−N+1

x∗T (`)MjxT (`) +
T−1

∑
k=0

N−1

∑
`=−N+1

x∗k (`)Qjxk(`)+

+
p−2

∑
i=1

T−1

∑
k=0

N−1

∑
`=−N+1

u∗i,k(`)Rjiui,k(`),
(13)

where −∗ is the hermitian transpose

Mj ,Qj ∈ Rn×n, Rji ∈ R rj×ri ; j , i = 1, . . . ,p − 2, k = 0, . . . ,T − 1.
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Compacting the notation

Xk ∶= (xk(−N + 1) ⋯ xk(N − 1))∗ ,

Φ ∶= (φ(−N + 1) ⋯ φ(N − 1))∗ , Xk ,Φ ∈ X (2N−1)

Uj,k ∶ = (uj,k(−N + 1) ⋯ uj,k(N − 1))∗ ∈ U(2N−1)
j , j = 1, . . . ,p

A ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A0 A1 ⋯ AN 0 . . . 0 0
A−1 A0 ⋯ . . . AN . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ . . . ⋮ ⋮

A−N ⋮ ⋮ ⋮ ⋮ AN

0 A−N ⋮ ⋮ ⋮ AN−1

⋮ ⋮ ⋮ ⋮ ⋮ . . . ⋮ ⋮
0 0 0 0 A−N . . . A−1 A0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Compacting the notation

up−1,k ∶= dk and up,k ∶= gk
Bp−1 ∶= (A−1 A−2 ⋯ A−N 0 ⋯ 0)∗

Bp ∶= (0 ⋯ 0 AN AN−1 ⋯ A0)
∗

R(m,p) := R(2N−1)m × (2N−1)p

Bj := I2N−1 ⊗Bj(t) ∈ R(n, rj)
Rji := I2N−1 ⊗ Rji ∈ R(rj , ri),
Sj := BjR

−1
jj BT

j ∈ R(n,n)
Qj := I2N−1 ⊗Qj ∈ R(n,n)
Mj := I2N−1 ⊗Kj ∈ R(n,n), j = 1, . . . ,p

⊗ is the Kronecker product and Ii is the i-dim unit matrix
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Differential game with boundary control

Opt Jj(u1, . . . ,up,Φ) = X ∗
TMXT +

T−1

∑
k=0

X ∗
k QXk +

p

∑
i=1

T−1

∑
k=0

U∗
j,kRjiU

∗
i,k , (14)

s.t. Xk+1 = AXk +
p

∑
j=1

Bjuj,k (15)

X0 = Φ (16)

The two last players are boundary controls
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Differential game with boundary control

Opt Jj(u1,u2,Φ) = X ∗
TMXT +

T−1

∑
k=0

X ∗
k QXk +

2

∑
i=1

T−1

∑
k=0

u∗j,kRjiu
∗
i,k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rji=0,j=1,...,p−2

, (17)

s.t. Xk+1 = AXk +
2

∑
j=1

Bjuj,k (18)

X0 = Φ (19)

Assumptions: Single pipe: 2 player game
Finite time horizon
OL information structure: the only information is at the initial pass
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OL Nash equilibrium: Assumptions

▸ p-player game

▸ finite time horizon

▸ OL information structure

Ð→

players choose their strategies u1,u2

prior to beginning of the game
+
Their only information is the initial state of the game
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

initial pass: x0(`)=φ(`), `∈L
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Open-loop Nash equilibrium

Consider a p-player game, Γp=2, on a finite time horizon, T < ∞, with OL information
structure:

Definition (OL Nash equilibrium)

(û1, û2) is called a (2-player) OL Nash equilibrium strategy on the system (9)–(5) if

J1(û1, û2,Φ) ≤ J1(u1, û2,Φ),

J2(û1, û2,Φ) ≤ J2(û1,u2,Φ)
(20)

for all initial states Φ ∈ X (2N−1) and all admissible strategies u1,u2 ∈ U(2N−1)
1 × U(2N−1)

2 .

See (Başar and Olsder, 1995).
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Best reply

Definition (Best reply)

An admissible control ûj , j = 1,2, is called the best reply of player-j , to any set of
admissible controls ū = {ui ∣i ∈ {1,2}/{j}} on system (18)–(19) if

Jj (ûj , ū,Φ) ≤ Jj (uj , ū,Φ)

and Jj , j = 1,2, is given in (17).

Corollary (1)

1 û1, û2 is an OL Nash equilibrium in a 2-player game for system (18)–(19) if both
players simultaneously achieve their best replies.

2 In a one player game, i.e., p = 1, the Nash equilibrium coincides with the best reply
and is the solution of a standard optimisation problem.
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Value function approach

Value functions for the cost functionals of (17)?

Vj(k) ∶=
1

2
X ∗

k Ej(k)Xk + e∗j (k)Xk + dj(k), k = 0, . . . ,T , j = 1,2 (21)

where

▸ Ej(k) ∈ R(n,n)
▸ Xk , ej(k) ∈ R(n,1)
▸ dj(k) ∈ R
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To make functions Vj value functions for Jj

Theorem

Let solutions Ej(k) of the symmetric standard discrete time matrix Riccati equations
(SSRDE)

0 = A∗Ej(k + 1)A − Ej(k) +Qj−

−A∗Ej(k + 1)Bj × (Rjj + B∗j Ej(k + 1)Bj)
−1 B∗j (t)Ej(k + 1)A

Ej(T) = Mj , j = 1,2.

(22)

exist for k = 0, . . . ,T

(hence necessarily Sj(k) ∶= Rjj + B∗j Ej(k + 1)Bj is invertible).

Then, for admissible controls u1,u2 the difference equations:

0 = B∗j ej(k + 1) − Sj(k)bj(k) + B∗j Ej(k + 1)γj(k)

0 = −A∗Ej(k + 1)Bjbj(k) +A∗(t)Ej(k + 1)γj(k) +A∗ej(k + 1) − ej(k)

0 = ej(T) = bj(T), j = 1,2,

(23)

are solvable backwards, where γj(k) =∑
s≠j

Bsus,k .
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To make functions Vj value functions for Jj

Furthermore, with dj(k) a solution of the simple difference equation:

dj(k + 1) − dj(k) −
1

2
b∗j (k)Sj(k)bj(k) +

1

2
∑
s≠j

u∗s,kRjsus,k+

+1

2
γj(k)∗Ej(k)γj(k) + e∗j (k + 1)γj(k) = 0

dj(T) = 0, j = 1,2,

(24)

we obtain for j = 1,2

Jj =
1

2
(X ∗

0 Ej(0)X0 + e∗j (0)X0 + dj(0) +
T−1

∑
k=0

∣∣uj,k + cj(k)∣∣2Sj) , (25)

where we used cj(k) = S−1
j (k)B∗j Ej(k + 1)AXk + bj(k) and Xk is the solution of

(17)–(19).
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Convexity conditions

Remark

In case of convexity assumptions, i.e. if Qj ≥ 0, M ≥ 0 and Rjj > 0, j = 1,2, the SSRDE
(22) is always solvable ( see [Kandil, Freiling, Ionescu, Jank, 2003]), hence we always
can obtain the representation (25) of the cost functionals.

However, such convexity assumptions appear to be too restrictive in real application
problems, since they are violated, for example, in zero-sum games or in general rather
conflicting game situations.
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Unique best reply representation

Player j obtains a unique best reply to any action of the other players if Sj(k) > 0 and

ûj,k = −cj(k) = −S−1
j (k)B∗j Ej(t + 1)AXk − bj(k).

The existence of a minimum of Jj in (25) necessarily implies Sj(k) ≥ 0.
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Sufficient conditions for existence of Nash eq.

Theorem

Let Ej(k) be a solution of SSRDE such that Sj(k) = Rjj + B∗j Ej(k + 1)Bj > 0, for
k = 0, . . . ,T − 1, j = 1,2. Then controls

uj,k = −S−1
j (k)B∗j Ej(k + 1)AXk − bj(k), j = 1,2, (26)

determine a Nash equilibrium for any solution of the following BVP

0 = B∗j ej(k + 1) − Sj(k)bj(k)+

−B∗j Ej(k + 1)∑
s≠j

Bs (S−1
s (k)B∗s Es(k + 1)AXk + bs)

0 = +A∗Ej(k + 1)Bjbj(k)+

+A∗Ej(k + 1)γj(k) +A∗ej(k + 1) − ej(k)

0 = ej(T) = bj(T), j = 1,2,

Xk+1 = AXk −∑p
j=1 Bj (S−1

j (k)B∗j Ej(k + 1)AXk + bj)

X0 = Ψ.

(27)
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Sufficient conditions for existence

Theorem

Consider that solutions Ej(k) of SSRDE (22) exist for k = 0, . . . ,T ; j = 1,2.
If the BVP

ψj(k) = QjXk +A∗ψj(k + 1)

ψj(T) = MjXT , (ψj(T + 1) = 0)

Xk+1 = AXk −∑p
s=1 BsR

−1
ss B∗s ψs(k + 1)

X0 = Ψ

(28)

admits a solution then ej(k),bj(k),Xk are a solution of the BVP (27) if we set

ej(k) = ψj(k) − Ej(k)Xk

bj(k) = S−1
j (k)B∗j (k) [Ej(k + 1)∑s≠j Bs ûs,k + ej(k + 1)] ,

(29)

where
ûj,k = −R−1

jj B∗j ψj(k + 1), t = 0, . . . ,T − 1. (30)

On the other hand, if ej(k),bj(k),Xk are a solution of the BVP (27) then, with the
settings (29),(30), we obtain a solution of the BVP (28).
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Sufficient conditions for existence/uniqueness

Corollary

Let SSRDE (22) admit solutions Ej(k) such that

Sj(k) = Rjj + B∗j Ej(k + 1)Bj > 0

for all k = 0, . . . ,T − 1 and j = 1,2.

1 The functions uj,k in (30) are a Nash equilibrium if and only if the BVP (28) is
solvable. This is an explicit condition for playability as it was obtained in the operator based approach [Same

authors, Controlo’08].

2 Nash equilibrium is unique iff BVP (28) is uniquely solvable.

3 Nash costs for each player can be calculated from (25):

1

2
[X ∗

0 Ej(0)X0 + e∗j (0)X0 + dj(0)] ,

where ej(0) was defined in (29) and dj(0) is obtained by solving (24).
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Sufficient condition for existence/uniqueness

Theorem

Let SSRDE (22) admit solutions Ej(k) such that Sj(k) > 0 for k = 0, . . . ,T − 1, j = 1,2.

Furthermore, if the discrete time OL Nash Riccati difference equation (OLNRDE)

Kj(k) = Qj +A∗Kj(k + 1)Ω−1A,

Kj(T) = Kj , j = 1,2, k = 0, . . . ,T − 1,
(31)

admits a solution, where Ω ∶= (I +
p

∑
s=1

BsR
−1
ss B

∗
s Ks(k + 1)) , then there exists a unique OL

Nash equilibrium defined in quasi-feedback form by

ûj,k = −R−1
jj B∗j (Kj(k + 1)Xk+1 +Dj(k + 1)) , k = 0, . . . ,T − 1,

whence Dj(k),Gj(k) are defined as:

Dj(k) = A∗Dj(k + 1) +Gj(k), Dj(T) = 0, (32)

Gj(k) = −A∗Kj(k + 1)Ω−1
p

∑
s=1

BsR
−1
ss B

∗
s Dj(k + 1) (33)

See (T-P Azevedo Perdicoúlis & G. Jank, 2008).
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Team controllability

Definition (Team controllability)

Let Γ2 be a 2-player game. We say that the game is team controllable if for any initial
and terminal states X0,X1 ∈ X and initial time k0 ∈ K there exist a terminal time k1 > k0

and a set of control functions uj,k ∈ Uj , j = 1,2, such that for the solution of the
difference equation

Xk+1 = f (k,Xk ,uj,k , û̄,k) = AXk + Bjuj,k + B̄ û̄,k , X0 = Φ

X(k1) = X1 holds.

See (Kun,2000) and (T. Perdicoulis, nDS2013)

T-P Azevedo Perdicoúlis Gas Nash eq. with wave dynamics October 4, 2016



Individual controllability

Definition (Individual controllability)

Let Γ2 be a 2-player game. Suppose that strategies are chosen such that (û1, û2) is an
equilibrium for Γ2. Then, we say that the game is controllable at this equilibrium point,
from the point of view of the jth player, if the control system

Xk+1 = f (k,Xk ,uj,k , û̄,k) = AXk + Bjuj,k + B̄ û̄,k

is controllable in the admissible set of uj,k , j = 1,2.

See (Kun,2000).
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Characterisation of individual controllability

Lemma

Let Γ2 be a linear OL quadratic differential game. Suppose (û1, û2) (and X̂ its respective
trajectory) to be a Nash eq. for Γ2, based on the solutions Kj(k), j = 1,2, of the
correspondent OLNRDE, then Γ2 is individually controllable for the jth player iff any
triple (k0,Φ,Φ) ∈ K ×X (2N−1) ×X (2N−1) of the following linear control system

( Xk+1

X̂k+1
) = ( Ω−1

̄ A 0
0 Ω−1A

)( Xk

X̂k
) + ( Ω−1

̄ Bj

0
)uj,k , (34)

with

Ω̄ ∶= I +
2

∑
s = 1
s ≠ j

BsR
−1
ss B

∗
s Ks(k + 1) and Ω ∶= I +

2

∑
s = 1

BsR
−1
ss B

∗
s Ks(k + 1)

can be controlled to a pass Xf ×X (2N−1) for all Xf ∈ X (2N−1).

Proof: See (Kun,2000).
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Individual pass controllability

Definition (Individual pass controllability)

System (9) is (completely) pass boundary controllable for player j in k0, k0 + 1, . . . , k1

with k0, k1 ∈ K if for any initial conditions φ(−N + 1), . . . , φ(0), . . . , φ(N − 1) in (6) and
any vector pass xf (`), ` ∈ L, if there exists sequences of boundary data dk (or
gk), k = k0, . . . , k1 such that xk1 (`) = xf (`) , ` ∈ L.
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Individual pass controllability

Theorem

The wave model (9) is completely pass controllable on 0,1, . . . ,T , if and only if the
grammian matrix

GT =
T−1

∑
s=0

M(s)M(s)∗ (35)

is positive definite, and where

M(s) ∶= ( Ω−1
̄ A 0
0 Ω−1A

)
s

( Ω−1
̄ Bj

0
) .
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Individual pass controllability

Proof.
Consider the linear control system (34) written in terms of the initial pass and recall
that the boundary conditions are written as controls in (18). Hence:

( Xk

X̂k
) = ( Ω−1

̄ A 0
0 Ω−1A

)
k

( Φ
Φ

) +
k

∑
s=1

( Ω−1
̄ A 0
0 Ω−1A

)
k−1

( Ω−1
̄ Bj

0
)uj,s−1.

Then the grammian GT is defined in terms of the transition matrix ( Ω−1
̄ A 0
0 Ω−1A

)

and the output matrix ( Ω−1
̄ Bj

0
) .

Then the proof is the same as in classical systems and therefore omitted here.

See (T-P Azevedo Perdicoúlis & G. Jank,2008) and (Knobloch & Kwakernaak, 1985).
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Individual initial pass controllability

Definition

System (9) is completely pass controllable by initial pass control if for any boundary
conditions d0,d1, . . . ,dT and g0,g1, . . . ,gT in (5) and any vector pass xf (`), ` ∈ L, there
exists a sequence of initial data φ(−N + 1), . . . , φ(0), . . . , φ(N − 1), subsumed in Φ, such
that XT = Xf .

Theorem (Simple criterion)

System (9) is completely pass controllable by initial pass control if

( Ω−1
̄ A 0
0 Ω−1A

) ∈ R(2n,2n) has full rank.

Proof: See (T-P Azevedo Perdicoúlis & G. Jank, 2010).
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Observability

Definition (Boundary observability)

System (9)–(10) is pass-boundary observable in {0,1, . . . ,T} , if for all t1 ∈ N,0 < t1 ≤ T
and boundary data Φ for any two trajectories Xk , X̃k ,0 < k ≤ t1, corresponding to the
same input uj,k , j = 1,2,0 < k ≤ t1, from

CXk = CX̃k ,0 < k ≤ t1,

it follows necessarily that Xk = X̃k ,0 < k ≤ t1.

Theorem (pass-boundary observable)

System (9) and (10) is pass-boundary observable in {0,1, . . . ,T} , if
rank (CAk−1Bs) = n.
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Observability

Proof.
Using the compact notation, we define C = diag{C , . . . ,C}.
If we set X̂k = Xk − X̃k , k = 1, . . . ,T , i.e., X̂k is the solution of the homogeneous equation, then
pass boundary observable is equivalent to the condition:

CX̂k = 0 Ô⇒ X̂k = 0,0 < k ≤ t1,

considering Φ = 0. Hence:

Ŷk = Yk − Ỹk = CXk −CX̃k

= C
2

∑
s=1

k−1

∑
i=0

Ak−1Bs (us,i − ũs,i)

Considering Ŷk = 0, k = 1,2, . . . , t1, we obtain:

Ŷ1 = C
2

∑
s=1

Bs (us,0 − ũs,0) = 0 Ô⇒ us,0 = ũs,0

Ŷ2 = C
2

∑
s=1

Bs (us,0 − ũs,0) +ABs (us,1 − ũs,1) = 0

Ô⇒ us,1 = ũs,1
⋮

Then we have that the boundary controls are uniquely defined by a measured output.
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Conclusions

▸ Formulation of a wave RP as an OL Nash game where the strategies are the
boundary settings.

▸ We state sufficient conditions for the existence/uniqueness of the equilibrium
strategies.

▸ These sufficient conditions are suitable for numerical calculations.

▸ We study structural properties of the equilibrium strategies.
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Future Work

▸ Consider the same problem for the infinite time horizon/moving horizon.

▸ Then, questions such as individual stabilisation of the solution by the different
players become relevant as well as uniqueness of the equilibrium strategies.

▸ Consider other type of information structures and equilibria for the same problem.

▸ Consider a system whose parameters are not constant but depend on k, `, instead.

▸ Extend the wave model/differential game to a complex network
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Thank you!
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