## Nash equilibrium with wave dynamics, boundary control

T-P Azevedo-Perdicoúlis—ISR Coimbra \& UTAD, Portugal


ANR MsDos Workshop
CIRM, Marselle, France
3-7 October 2016

## Motivation of the work

Practical applications exist where distributed boundary control is required.

## Example: Gas networks



The gas problem has a repetitive ("periodic") behaviour:



## A gas pipeline



## Gas dynamics: Hyperbolic PDE

$$
\left\{\begin{array}{l}
\frac{\partial q(t, x)}{\partial t}=-S \frac{\partial p(t, x)}{\partial x}-\frac{\lambda c^{2}}{2 d S} \frac{q^{2}(t, x)}{p(t, x)}  \tag{1}\\
\frac{\partial p(t, x)}{\partial t}=-\frac{c^{2}}{S} \frac{\partial q(t, x)}{\partial x}
\end{array}\right.
$$

where
$x$ is space
$t$ is time
$p$ is pressure
$q$ is mass flow
$S$ is the cross-sectional area
$d$ is the pipe diameter
$c$ is the isothermal speed of sound
$\lambda$ is a friction factor.
See (J. Niepłocha, 1988) and (A. Osiadacz, 1987).

## Gas dynamics: Hyperbolic PDE

$$
\left\{\begin{array}{l}
\frac{\partial q(t, x)}{\partial t}=-S \frac{\partial p(t, x)}{\partial x}-\frac{\lambda c^{2}}{2 d S} \frac{q^{2}(t, x)}{p(t, x)}  \tag{1}\\
\frac{\partial p(t, x)}{\partial t}=-\frac{c^{2}}{S} \frac{\partial q(t, x)}{\partial x},
\end{array}\right.
$$

where
$x$ is space
$t$ is time
$p$ is pressure
$q$ is mass flow
$S$ is the cross-sectional area
$d$ is the pipe diameter
c is the isothermal speed of sound
$\lambda$ is a friction factor.
See (J. Niepłocha, 1988) and (A. Osiadacz, 1987).

## Gas dynamics: Linearisation of the hyperbolic PDE

The linearisation is done around the operational levels: $(\bar{q}, \bar{p}(x))$

- $\bar{q}$ is constant
- $\bar{p}(x)$ is averaged over period of operation $\mathrm{T}: \bar{p}(x)=\left.\frac{1}{T} \int_{0}^{T} p(x, t) d t\right|_{x=x_{0}}$ and

$$
\bar{p}(x)=\sqrt{\bar{p}^{2}\left(x_{0}\right)-\frac{\lambda c^{2}}{2 d S^{2}} \bar{q}^{2}\left(x-x_{0}\right)}
$$



Hence:

$$
\begin{equation*}
\frac{q^{2}}{p}=\frac{(\bar{q}+\Delta q)^{2}}{\bar{p}+\Delta p} \cong \frac{\bar{q}^{2}}{\bar{p}(x)}+2 \frac{\bar{q}}{\bar{p}(x)} \Delta q-\frac{\bar{q}^{2}}{\bar{p}(x)^{2}} \Delta p \tag{2}
\end{equation*}
$$

## Linear hyperbolic PDE

Substituting (2) into (1), we obtain:

$$
\left\{\begin{align*}
\frac{\partial \Delta q(t, x)}{\partial t}= & -S \frac{\partial \Delta p(t, x)}{\partial x}-S \frac{\partial \bar{p}(x)}{\partial x}-\frac{\lambda c^{2}}{2 d S}\left(\frac{\bar{q}^{2}}{\bar{p}(x)}+2 \frac{\bar{q}}{\bar{p}(x)} \Delta q(t, x)\right) \\
& +\frac{\lambda c^{2}}{2 d S} \frac{\bar{q}^{2}}{\bar{p}(x)^{2}} \Delta p(t, x)  \tag{3}\\
\frac{\partial \Delta p(t, x)}{\partial t}= & -\frac{c^{2}}{S} \frac{\partial \Delta q(t, x)}{\partial x}
\end{align*}\right.
$$

## Linear hyperbolic PDE

Substituting (2) into (1), we obtain:

$$
\begin{align*}
& \left(\frac{\partial \Delta q(t, x)}{\partial t}=-S \frac{\partial \Delta p(t, x)}{\partial x}-S \frac{\partial \bar{p}(x)}{\partial x}-\frac{\lambda c^{2}}{2 d S_{S}}\left(\frac{\bar{q}^{2} e^{2}(x)}{\partial \bar{p}(x)}+2 \frac{\bar{q}}{\bar{p}(x)} \Delta q(t, x)\right)\right. \\
& \begin{array}{l}
+\frac{\lambda c^{2}}{2 d S} \frac{\bar{q}^{2}}{\bar{p}(x)^{2}} \Delta p( \\
-\frac{c^{2}}{S} \frac{\partial \Delta q(t, x)}{\sigma^{\prime}(x)} 5
\end{array} \tag{3}
\end{align*}
$$

## Discretisation of the linear hyperbolic PDE



Assumption: constant mass flow in every segment.

## Discrete linear hyperbolic PDE

Model (3) becomes:

$$
\left\{\begin{array}{l}
\Delta \boldsymbol{q}_{k+1}(\ell)=\alpha(\ell) \Delta \boldsymbol{q}_{k}(\ell)+\beta \Delta p_{k}(\ell-1)+\gamma(\ell) \Delta p(k, \ell)-\beta \Delta p_{k}(\ell+1)+F(\ell)  \tag{4}\\
\Delta p_{k+1}(\ell)=\Delta p_{k}(\ell)+\rho \Delta \boldsymbol{q}_{k}(\ell+1)-\rho \Delta \boldsymbol{q}_{k}(\ell-1)
\end{array}\right.
$$

where $f\left(k h_{1}, \ell h_{2}\right):=f_{k}(\ell)$ and

$$
\begin{aligned}
& \beta \quad:=\quad \frac{S h_{1}}{2 h_{2}}, \quad \xi(\ell) \quad:=\quad \frac{\lambda c^{2}}{d S} \frac{h_{1} \bar{q}}{\bar{p}(\ell)}, \\
& \gamma(\ell) \quad:=\frac{\xi(\ell)}{2 \bar{p}(\ell)} \bar{q}, \quad \alpha(\ell) \quad:=\quad 1-\xi(\ell), \\
& \rho \quad:=\frac{c^{2} h_{1}}{2 S h_{2}}, \\
& F(\ell):=-\gamma(\ell) \bar{p}(\ell)-\beta(\bar{p}(\ell+1)-\bar{p}(\ell-1)) .
\end{aligned}
$$

## Discrete linear hyperbolic PDE

Model (3) becomes:

$$
\left\{\begin{align*}
\Delta \boldsymbol{q}_{k+1}(\ell) & =\alpha(\ell) \Delta \boldsymbol{q}_{k}(\ell)+\beta \Delta p_{k}(\ell-1)+\gamma(\ell) \Delta p(k, \ell)-\beta \Delta p_{k}(\ell+1)+F(\ell)  \tag{4}\\
\Delta p_{k+1}(\ell) & =\Delta p_{k}(\ell)+\rho \Delta \boldsymbol{q}_{k}(\ell+1)-\rho \Delta \boldsymbol{q}_{k}(\ell-1)
\end{align*}\right.
$$

where $f\left(k h_{1}, \ell h_{2}\right):=f_{k}(\ell)$ and

$$
\begin{aligned}
& x_{1}:=\Delta q \\
& x_{2}:=\Delta p
\end{aligned} \quad \Longrightarrow x=\binom{x_{1}}{x_{2}}
$$

## Wave gas model

that is

$$
\begin{aligned}
x_{k+1}(\ell)= & A_{-1} x_{k}(\ell-1)+A_{0} x_{k}(\ell)+A_{1} x_{k}(\ell+1)+\binom{F(\ell)}{0} \\
y_{k}(\ell)= & C x_{k}(\ell) \\
& k=0,1, \ldots, T-1 \\
& \ell=0,1, \ldots, L
\end{aligned}
$$

## Wave gas model

that is

$$
\begin{aligned}
x_{k+1}(\ell)= & A_{-1} x_{k}(\ell-1)+A_{0} x_{k}(\ell)+A_{1} x_{k}(\ell+1)+\binom{F(\ell)}{0} \\
y_{k}(\ell)= & C x_{k}(\ell) \\
& k=0,1, \ldots, T-1 \\
& \ell=-N, \ldots, N \text { and } N:=\left[\frac{L}{2}\right]
\end{aligned}
$$

## What is missing?

- Boundary conditions: the most convenient regime of operation of the controllable units (or players), i.e., gas pressure and mass flow need to be kept at some desirable levels through time.
- Initial conditions: a starting regime of operation; two possibilities to initialise the flow/pressure vector are:
(i) using the optimum solution found at the previous period of operation;
(ii) a starting value could be found in pre-computation.

$$
\begin{align*}
y_{k}(0) & =d_{k} \text { and } y_{k}(L)=g_{k}, \quad k=0,1, \ldots, T-1  \tag{5}\\
x_{0}(\ell) & =\phi(\ell), \quad \ell=0,1, \ldots, L \tag{6}
\end{align*}
$$

$d_{k}$ is the pumping regime at the inlet
$g_{k}$ is the contracted delivery level at the offtakes.

## Presentation outline

(1) Motivation: Gas dynamics in the pipeline
(2) Gas Wave RP model
(3) Formulation of the differential game with boundary control

4 Open-Loop Nash equilibrium
(5) Necessary and Sufficient conditions for the existence of Nash equilibrium
(6) Controllability and observability
(7) Conclusions and future work

## Wave model of length $N$

$$
\begin{align*}
& x_{k+1}(\ell)=\sum_{i=-N}^{N} A_{i} x_{k}(\ell+i)+\sum_{j=1}^{p-2} B_{j} u_{j, k}(\ell),  \tag{7}\\
&|\ell+i| \leq N \\
& y_{k}(\ell)=C x_{k}(\ell) \quad k \in \mathbb{K}, \quad \ell \in \mathbb{L}
\end{align*}
$$

## Wave model of length $N$

$$
\begin{align*}
x_{k+1}(\ell) \quad & =\sum^{N} \quad A_{i} x_{k}(\ell+i)+\sum_{j=1}^{p-2} B_{j} u_{j, k}(\ell),  \tag{7}\\
& i=-N \\
& |\ell+i| \leq N
\end{aligned} \quad \begin{aligned}
& y_{k}(\ell)=C x_{k}(\ell) \quad k \in \mathbb{K}, \quad \ell \in \mathbb{L} \\
& \mathbb{L} \quad:= {[-N, N] \cap \mathbb{Z} \quad \text { with } N=\left[\frac{L}{2}\right] }  \tag{8}\\
& \mathbb{K}:=\quad\left\{k \mid x_{k}(\ell)=0, k=T+1, \ldots \text { and } k=\ldots,-2,-1\right\} \\
& \mathbb{K} \times \mathbb{L} \quad \text { is the compact support of } x_{k}(\ell), u_{j, k}(\ell), y_{k}(\ell)
\end{align*}
$$

## Wave model of length $N$

$$
\begin{align*}
x_{k+1}(\ell) & =\sum_{i=-N}^{N} \quad A_{i} x_{k}(\ell+i)+\sum_{j=1}^{p-2} B_{j} u_{j, k}(\ell)  \tag{7}\\
\mid \ell & +i \mid \leq N \\
y_{k}(\ell) & =C x_{k}(\ell) \quad k \in \mathbb{K}, \quad \ell \in \mathbb{L}
\end{align*}
$$

$$
\begin{equation*}
\mathbb{L}:=[-N, N] \cap \mathbb{Z} \quad \text { with } N=\left[\frac{L}{2}\right] \tag{8}
\end{equation*}
$$

$$
\mathbb{K}:=\quad\left\{k \mid x_{k}(\ell)=0, k=T+1, \ldots \text { and } k=\ldots,-2,-1\right\}
$$

$$
\mathbb{K} \times \mathbb{L} \quad \text { is the compact support of } x_{k}(\ell), u_{j, k}(\ell), y_{k}(\ell)
$$

$$
\begin{aligned}
x_{k}(\ell) \in \mathbb{R}^{n} & \text { state vector along pass- } k \\
u_{j, k}(\ell) \in \mathbb{R}^{r_{j}} & \text { control vectors along pass- } k, j=\overline{1, p-2} \\
y_{k}(\ell) \in \mathbb{R}^{m} & \text { pass profile vectors along pass- } k
\end{aligned}
$$

$$
A_{i} \in \mathbb{R}^{n \times n}
$$

$$
B_{j} \in \mathbb{R}^{n \times r_{j}}
$$

$$
C \in \mathbb{R}^{m \times n}, D_{j} \in \mathbb{R}^{m \times r_{j}}
$$

## Autonomous wave model of length $N$

$$
\begin{aligned}
x_{k+1}(\ell) & =\sum_{i=-N}^{N} \quad A_{i} x_{k}(\ell+i)+\sum_{j=1}^{p-2} B_{j} u_{j, k}(\ell) \\
\mid \ell & +i \mid \leq N \\
y_{k}(\ell) & =C x_{k}(\ell) \quad k \in \mathbb{K}, \quad \ell \in \mathbb{L}
\end{aligned}
$$

$$
\mathbb{L}:=\quad[-N, N] \cap \mathbb{Z} \quad \text { with } N=\left[\frac{L}{2}\right]
$$

$$
\mathbb{K}:=\left\{k \mid x_{k}(\ell)=0, k=T+1, \ldots \text { and } k=\ldots,-2,-1\right\}
$$

$\mathbb{K} \times \mathbb{L} \quad$ is the compact support of $x_{k}(\ell), u_{j, k}(\ell), y_{k}(\ell)$

$$
\begin{array}{cll}
x_{k}(\ell) \in \mathbb{R}^{n} & \text { state vector along pass- } k & A_{i} \in \mathbb{R}^{n \times n} \\
u_{j, k}(\ell) \in \mathbb{R}^{r_{j}} & \text { control vectors along pass- } k, j=\overline{1, p-2} & B_{j} \in \mathbb{R}^{n \times r_{j}} \\
y_{k}(\ell) \in \mathbb{R}^{m} & \text { pass profile vectors along pass-k } & C \in \mathbb{R}^{m \times n}, D_{j} \in \mathbb{R}^{m \times r_{j}}
\end{array}
$$


$k$ indexes the pass number
$\ell \quad$ indexes the steps per pass

## Autonomous wave model of length $N$

$$
\begin{align*}
x_{k+1}(\ell) & =\sum_{\substack{i \\
|\ell\\
| \ell \\
\\
\\
y_{k} \mid \leq N}} A_{i} x_{k}(\ell+i)+\sum_{j=1}^{p-2} B_{j} u_{j, k}(\ell),  \tag{9}\\
& =C x_{k}(\ell), \quad k \in \mathbb{K}, \quad \ell \in \mathbb{L}
\end{align*}
$$

$$
\begin{equation*}
x_{0}(\ell)=\phi(\ell), \quad \ell=-N, \ldots, N \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
y_{k}(-N)=d_{k} \text { and } y_{k}(N)=g_{k}, \tag{12}
\end{equation*}
$$

$$
k=0,1, \ldots, T-1
$$



## Autonomous wave model of length $N$

$$
\begin{align*}
& x_{k+1}(\ell)=\sum_{i=-N}^{N} A_{i} x_{k}(\ell+i)+\sum_{j=1}^{p-2} B_{j} u_{j, k}(\ell),  \tag{9}\\
&|\ell+i| \leq N \\
& y_{k}(\ell)=C x_{k}(\ell), \quad k \in \mathbb{K}, \quad \ell \in \mathbb{L}
\end{align*}
$$

$$
\begin{equation*}
x_{0}(\ell)=\phi(\ell), \quad \ell=-N, \ldots, N \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
y_{k}(-N)=d_{k} \text { and } y_{k}(N)=g_{k}, \tag{12}
\end{equation*}
$$


$\mathcal{I}:=\mathbb{K} \times \mathbb{L}$

$$
x .(.) \in \ell^{2, n}(\mathcal{I})=: \mathcal{X}
$$

$u_{j, .(.)} \in \ell^{2, r_{j}}(\mathcal{I})=: \mathcal{U}_{j} \quad$ the controls are admissible y.(.) $\in \ell^{2, m}(\mathcal{I})$

[^0]
## Operational objectives

There is a quadratic cost functional associated to each player:

$$
\begin{align*}
J_{j}\left(u_{1}, \ldots, u_{p}, \Phi\right)= & \sum_{\ell=-N+1}^{N-1} x_{T}^{*}(\ell) M_{j} x_{T}(\ell)+\sum_{k=0}^{T-1} \sum_{\ell=-N+1}^{N-1} x_{k}^{*}(\ell) Q_{j} x_{k}(\ell)+  \tag{13}\\
& +\sum_{i=1}^{p-2} \sum_{k=0}^{T-1} \sum_{\ell=-N+1}^{N-1} u_{i, k}^{*}(\ell) R_{j i} u_{i, k}(\ell),
\end{align*}
$$

where - ${ }^{*}$ is the hermitian transpose
$M_{j}, Q_{j} \in R^{n \times n}, R_{j i} \in R^{r_{j} \times r_{i}} ; j, i=1, \ldots, p-2, k=0, \ldots, T-1$.

## Compacting the notation

$$
\begin{aligned}
& X_{k}:=\left(x_{k}(-N+1) \quad \cdots \quad x_{k}(N-1)\right)^{*}, \\
& \Phi:=\left(\begin{array}{lll}
\phi(-N+1) & \cdots & \phi(N-1)
\end{array}\right)^{*}, \quad X_{k}, \Phi \in \mathcal{X}^{(2 N-1)} \\
& U_{j, k}:=\left(\begin{array}{lll}
u_{j, k}(-N+1) & \cdots & u_{j, k}(N-1)
\end{array}\right)^{*} \in \mathcal{U}_{j}^{(2 N-1)}, j=1, \ldots, p \\
& \mathbb{A}:=\left(\begin{array}{cccccccc}
A_{0} & A_{1} & \cdots & A_{N} & 0 & \ldots & 0 & 0 \\
A_{-1} & A_{0} & \cdots & \ldots & A_{N} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
A_{-N} & \vdots & \vdots & & \vdots & & \vdots & A_{N} \\
0 & A_{-N} & \vdots & \vdots & & & \vdots & A_{N-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 0 & A_{-N} & \ldots & A_{-1} & A_{0}
\end{array}\right)
\end{aligned}
$$

## Compacting the notation

$$
\begin{aligned}
& u_{p-1, k}:=d_{k} \text { and } u_{p, k}:=g_{k} \\
& \mathbb{B}_{p-1}:=\left(\begin{array}{llllllll}
A_{-1} & A_{-2} & \cdots & A_{-N} & 0 & \cdots & 0
\end{array}\right)^{*} \\
& \mathbb{B}_{p}:=\left(\begin{array}{lllllll}
0 & \cdots & 0 & A_{N} & A_{N-1} & \cdots & A_{0}
\end{array}\right)^{*}
\end{aligned}
$$

$$
R(m, p):=\quad R^{(2 N-1) m \times(2 N-1) p}
$$

$$
\mathbb{B}_{j}:=I_{2 N-1} \otimes B_{j}(t) \in R\left(n, r_{j}\right)
$$

$$
\mathbb{R}_{j i}:=I_{2 N-1} \otimes R_{j i} \in R\left(r_{j}, r_{i}\right)
$$

$$
\mathbb{S}_{j}:=\mathbb{B}_{j} R_{j j}^{-1} \mathbb{B}_{j}^{T} \in R(n, n)
$$

$$
\mathbb{Q}_{j}:=I_{2 N-1} \otimes Q_{j} \in R(n, n)
$$

$$
\mathbb{M}_{j}:=\quad I_{2 N-1} \otimes K_{j} \in R(n, n), j=1, \ldots, p
$$

$\otimes$ is the Kronecker product and $I_{i}$ is the $i$-dim unit matrix

## Differential game with boundary control

$$
\begin{array}{ll}
\text { Opt } & J_{j}\left(u_{1}, \ldots, u_{p}, \Phi\right)=X_{T}^{*} \mathbb{M} X_{T}+\sum_{k=0}^{T-1} X_{k}^{*} \mathbb{Q} X_{k}+\sum_{i=1}^{p} \sum_{k=0}^{T-1} U_{j, k}^{*} \mathbb{R}_{j i} U_{i, k}^{*}, \\
\text { s.t. } & X_{k+1}=\mathbb{A} X_{k}+\sum_{j=1}^{p} \mathbb{B}_{j} u_{j, k} \\
& X_{0}=\Phi \tag{16}
\end{array}
$$

The two last players are boundary controls

## Differential game with boundary control

$$
\begin{array}{ll}
\text { Opt } & J_{j}\left(u_{1}, u_{2}, \Phi\right)=X_{T}^{*} \mathbb{M} X_{T}+\sum_{k=0}^{T-1} X_{k}^{*} \mathbb{Q} X_{k}+\underbrace{\sum_{i=1}^{2} \sum_{k=0}^{T-1} u_{j, k}^{*} \mathbb{R}_{j i} u_{i, k}^{*}}_{\mathbb{R}_{j j}=0, j=1, \ldots, p-2}, \\
\text { s.t. } & X_{k+1}=\mathbb{A} X_{k}+\sum_{j=1}^{2} \mathbb{B}_{j} u_{j, k} \\
& X_{0}=\Phi \tag{19}
\end{array}
$$

## Differential game with boundary control

$$
\begin{array}{ll}
\text { Opt } & J_{j}\left(u_{1}, u_{2}, \Phi\right)=X_{T}^{*} \mathbb{M} X_{T}+\sum_{k=0}^{T-1} X_{k}^{*} \mathbb{Q} X_{k}+\underbrace{\sum_{i=1}^{2} \sum_{k=0}^{T-1} u_{j, k}^{*} \mathbb{R}_{j i} u_{i, k}^{*}}_{\mathbb{R}_{j j}=0, j=1, \ldots, p-2},  \tag{17}\\
\text { s.t. } & X_{k+1}=\mathbb{A} X_{k}+\sum_{j=1}^{2} \mathbb{B}_{j} u_{j, k} \\
& X_{0}=\Phi
\end{array}
$$

Assumptions: Single pipe: 2 player game Finite time horizon
OL information structure: the only information is at the initial pass

## OL Nash equilibrium: Assumptions

- p-player game


## OL Nash equilibrium: Assumptions

- p-player game
- finite time horizon


## OL Nash equilibrium: Assumptions

- p-player game
- finite time horizon
- OL information structure


## OL Nash equilibrium: Assumptions

- p-player game
- finite time horizon
players choose their strategies $u_{1}, u_{2}$ prior to beginning of the game
- OL information structure $\longrightarrow+$

Their only information is the initial state of the game

## OL Nash equilibrium: Assumptions

- p-player game
- finite time horizon
players choose their strategies $u_{1}, u_{2}$ prior to beginning of the game
- OL information structure $\longrightarrow+$

Their only information is the initial state of the game

## OL Nash equilibrium: Assumptions

- p-player game
- finite time horizon
players choose their strategies $u_{1}, u_{2}$ prior to beginning of the game
- OL information structure $\longrightarrow+$

Their only information is the initial state of the game
initial pass: $x_{0}(\ell)=\phi(\ell), \ell \in \mathbb{L}$

## Open-loop Nash equilibrium

Consider a p-player game, $\Gamma_{p=2}$, on a finite time horizon, $T<\infty$, with OL information structure:
$\left(\hat{u}_{1}, \hat{u}_{2}\right)$ is called a (2-player) OL Nash equilibrium strategy on the system (9)-(5) if

$$
\begin{align*}
J_{1}\left(\hat{u}_{1}, \hat{u}_{2}, \Phi\right) & \leq J_{1}\left(u_{1}, \hat{u}_{2}, \Phi\right) \\
J_{2}\left(\hat{u}_{1}, \hat{u}_{2}, \Phi\right) & \leq J_{2}\left(\hat{u}_{1}, u_{2}, \Phi\right) \tag{20}
\end{align*}
$$

for all initial states $\Phi \in \mathcal{X}^{(2 N-1)}$ and all admissible strategies $u_{1}, u_{2} \in \mathcal{U}_{1}^{(2 N-1)} \times \mathcal{U}_{2}^{(2 N-1)}$.

## Best reply

An admissible control $\hat{u}_{j}, j=1,2$, is called the best reply of player- $j$, to any set of admissible controls $u_{\mathrm{J}}=\left\{u_{i} \mid i \in\{1,2\} \backslash\{j\}\right\}$ on system (18)-(19) if

$$
J_{j}\left(\hat{u}_{j}, u_{\mathfrak{J}}, \Phi\right) \leq J_{j}\left(u_{j}, u_{\mathfrak{J}}, \Phi\right)
$$

and $J_{j}, j=1,2$, is given in (17).
(1) $\hat{u}_{1}, \hat{u}_{2}$ is an OL Nash equilibrium in a 2-player game for system (18)-(19) if both players simultaneously achieve their best replies.
(2) In a one player game, i.e., $p=1$, the Nash equilibrium coincides with the best reply and is the solution of a standard optimisation problem.

## Value function approach

Value functions for the cost functionals of (17)?

## Value function approach

Value functions for the cost functionals of (17)?

$$
\begin{equation*}
V_{j}(k):=\frac{1}{2} X_{k}^{*} E_{j}(k) X_{k}+e_{j}^{*}(k) X_{k}+d_{j}(k), \quad k=0, \ldots, T, \quad j=1,2 \tag{21}
\end{equation*}
$$

## Value function approach

Value functions for the cost functionals of (17)?

$$
\begin{equation*}
V_{j}(k):=\frac{1}{2} X_{k}^{*} E_{j}(k) X_{k}+e_{j}^{*}(k) X_{k}+d_{j}(k), \quad k=0, \ldots, T, \quad j=1,2 \tag{21}
\end{equation*}
$$

where

## Value function approach

Value functions for the cost functionals of (17)?

$$
\begin{equation*}
V_{j}(k):=\frac{1}{2} X_{k}^{*} E_{j}(k) X_{k}+e_{j}^{*}(k) X_{k}+d_{j}(k), \quad k=0, \ldots, T, \quad j=1,2 \tag{21}
\end{equation*}
$$

where

- $E_{j}(k) \in R(n, n)$


## Value function approach

Value functions for the cost functionals of (17)?

$$
\begin{equation*}
V_{j}(k):=\frac{1}{2} X_{k}^{*} E_{j}(k) X_{k}+e_{j}^{*}(k) X_{k}+d_{j}(k), \quad k=0, \ldots, T, \quad j=1,2 \tag{21}
\end{equation*}
$$

where

- $E_{j}(k) \in R(n, n)$
- $X_{k}, e_{j}(k) \in R(n, 1)$


## Value function approach

Value functions for the cost functionals of (17)?

$$
\begin{equation*}
V_{j}(k):=\frac{1}{2} X_{k}^{*} E_{j}(k) X_{k}+e_{j}^{*}(k) X_{k}+d_{j}(k), \quad k=0, \ldots, T, \quad j=1,2 \tag{21}
\end{equation*}
$$

where

- $E_{j}(k) \in R(n, n)$
- $X_{k}, e_{j}(k) \in R(n, 1)$
- $d_{j}(k) \in R$


## To make functions $V_{j}$ value functions for $J_{j}$

Let solutions $E_{j}(k)$ of the symmetric standard discrete time matrix Riccati equations (SSRDE)

$$
\begin{align*}
0= & \mathbb{A}^{*} E_{j}(k+1) \mathbb{A}-E_{j}(k)+\mathbb{Q}_{j}- \\
& -\mathbb{A}^{*} E_{j}(k+1) \mathbb{B}_{j} \times\left(R_{j j}+\mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{B}_{j}\right)^{-1} \mathbb{B}_{j}^{*}(t) E_{j}(k+1) \mathbb{A} \tag{22}
\end{align*}
$$

$$
E_{j}(T)=\mathbb{M}_{j}, \quad j=1,2 .
$$

exist for $k=0, \ldots, T$

## To make functions $V_{j}$ value functions for $J_{j}$

Let solutions $E_{j}(k)$ of the symmetric standard discrete time matrix Riccati equations (SSRDE)

$$
\begin{align*}
0= & \mathbb{A}^{*} E_{j}(k+1) \mathbb{A}-E_{j}(k)+\mathbb{Q}_{j}- \\
& -\mathbb{A}^{*} E_{j}(k+1) \mathbb{B}_{j} \times\left(R_{j j}+\mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{B}_{j}\right)^{-1} \mathbb{B}_{j}^{*}(t) E_{j}(k+1) \mathbb{A} \tag{22}
\end{align*}
$$

$$
E_{j}(T)=\mathbb{M}_{j}, \quad j=1,2 .
$$

exist for $k=0, \ldots, T$ (hence necessarily $S_{j}(k):=R_{j j}+\mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{B}_{j}$ is invertible).

## To make functions $V_{j}$ value functions for $J_{j}$

Let solutions $E_{j}(k)$ of the symmetric standard discrete time matrix Riccati equations (SSRDE)

$$
\begin{align*}
0= & \mathbb{A}^{*} E_{j}(k+1) \mathbb{A}-E_{j}(k)+\mathbb{Q}_{j}- \\
& -\mathbb{A}^{*} E_{j}(k+1) \mathbb{B}_{j} \times\left(R_{j j}+\mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{B}_{j}\right)^{-1} \mathbb{B}_{j}^{*}(t) E_{j}(k+1) \mathbb{A} \tag{22}
\end{align*}
$$

$$
E_{j}(T)=\mathbb{M}_{j}, \quad j=1,2 .
$$

exist for $k=0, \ldots, T$ (hence necessarily $S_{j}(k):=R_{j j}+\mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{B}_{j}$ is invertible).
Then, for admissible controls $u_{1}, u_{2}$ the difference equations:

$$
\begin{aligned}
0 & =\mathbb{B}_{j}^{*} e_{j}(k+1)-S_{j}(k) b_{j}(k)+\mathbb{B}_{j}^{*} E_{j}(k+1) \gamma_{j}(k) \\
0 & =-\mathbb{A}^{*} E_{j}(k+1) \mathbb{B}_{j} b_{j}(k)+\mathbb{A}^{*}(t) E_{j}(k+1) \gamma_{j}(k)+\mathbb{A}^{*} e_{j}(k+1)-e_{j}(k) \\
0 & =e_{j}(T)=b_{j}(T), \quad j=1,2,
\end{aligned}
$$

are solvable backwards, where $\gamma_{j}(k)=\sum_{s \neq j} \mathbb{B}_{s} u_{s, k}$.

## To make functions $V_{j}$ value functions for $J_{j}$

Furthermore, with $d_{j}(k)$ a solution of the simple difference equation:

$$
\begin{align*}
d_{j}(k+1)-d_{j}(k)-\frac{1}{2} b_{j}^{*}(k) S_{j}(k) b_{j}(k)+\frac{1}{2} \sum_{s \neq j} u_{s, k}^{*} R_{j s} u_{s, k}+ & \\
+\frac{1}{2} \gamma_{j}(k)^{*} E_{j}(k) \gamma_{j}(k)+e_{j}^{*}(k+1) \gamma_{j}(k) & =0  \tag{24}\\
d_{j}(T) & =0, \quad j=1,2,
\end{align*}
$$

we obtain for $j=1,2$

$$
\begin{equation*}
J_{j}=\frac{1}{2}\left(X_{0}^{*} E_{j}(0) X_{0}+e_{j}^{*}(0) X_{0}+d_{j}(0)+\sum_{k=0}^{T-1}\left\|u_{j, k}+c_{j}(k)\right\|_{S_{j}}^{2}\right), \tag{25}
\end{equation*}
$$

where we used $c_{j}(k)=S_{j}^{-1}(k) \mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{A} X_{k}+b_{j}(k)$ and $X_{k}$ is the solution of (17)-(19).

## Convexity conditions

In case of convexity assumptions, i.e. if $\mathbb{Q}_{j} \geq 0, \mathbb{M} \geq 0$ and $R_{j j}>0, j=1,2$, the SSRDE (22) is always solvable ( see [Kandil, Freiling, lonescu, Jank, 2003]), hence we always can obtain the representation (25) of the cost functionals.

## Convexity conditions

In case of convexity assumptions, i.e. if $\mathbb{Q}_{j} \geq 0, \mathbb{M} \geq 0$ and $R_{j j}>0, j=1,2$, the SSRDE (22) is always solvable ( see [Kandil, Freiling, lonescu, Jank, 2003]), hence we always can obtain the representation (25) of the cost functionals.

However, such convexity assumptions appear to be too restrictive in real application problems, since they are violated, for example, in zero-sum games or in general rather conflicting game situations.

## Unique best reply representation

Player $j$ obtains a unique best reply to any action of the other players if $S_{j}(k)>0$ and

$$
\hat{u}_{j, k}=-c_{j}(k)=-S_{j}^{-1}(k) \mathbb{B}_{j}^{*} E_{j}(t+1) \mathbb{A} X_{k}-b_{j}(k) .
$$

The existence of a minimum of $J_{j}$ in (25) necessarily implies $S_{j}(k) \geq 0$.

## Sufficient conditions for existence of Nash eq.

Let $E_{j}(k)$ be a solution of $\operatorname{SSRDE}$ such that $S_{j}(k)=R_{j j}+\mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{B}_{j}>0$, for $k=0, \ldots, T-1, j=1,2$. Then controls

$$
\begin{equation*}
u_{j, k}=-S_{j}^{-1}(k) \mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{A} X_{k}-b_{j}(k), \quad j=1,2 \tag{26}
\end{equation*}
$$

determine a Nash equilibrium for any solution of the following BVP

$$
\begin{align*}
0= & \mathbb{B}_{j}^{*} e_{j}(k+1)-S_{j}(k) b_{j}(k)+ \\
& -\mathbb{B}_{j}^{*} E_{j}(k+1) \sum_{s \neq j} \mathbb{B}_{s}\left(S_{s}^{-1}(k) \mathbb{B}_{s}^{*} E_{s}(k+1) \mathbb{A} X_{k}+b_{s}\right) \\
0= & +\mathbb{A}^{*} E_{j}(k+1) \mathbb{B}_{j} b_{j}(k)+ \\
& +\mathbb{A}^{*} E_{j}(k+1) \gamma_{j}(k)+\mathbb{A}^{*} e_{j}(k+1)-e_{j}(k)  \tag{27}\\
0= & e_{j}(T)=b_{j}(T), \quad j=1,2, \\
X_{k+1}= & \mathbb{A} X_{k}-\sum_{j=1}^{p} \mathbb{B}_{j}\left(S_{j}^{-1}(k) \mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{A} X_{k}+b_{j}\right) \\
X_{0}= & \Psi .
\end{align*}
$$

## Sufficient conditions for existence

Consider that solutions $E_{j}(k)$ of $\operatorname{SSRDE}(22)$ exist for $k=0, \ldots, T ; j=1,2$. If the BVP

$$
\begin{align*}
\psi_{j}(k) & =\mathbb{Q}_{j} X_{k}+\mathbb{A}^{*} \psi_{j}(k+1) \\
\psi_{j}(T) & =\mathbb{M}_{j} X_{T}, \quad\left(\psi_{j}(T+1)=0\right) \\
X_{k+1} & =\mathbb{A} X_{k}-\sum_{s=1}^{p} \mathbb{B}_{s} R_{s s}^{-1} \mathbb{B}_{s}^{*} \psi_{s}(k+1)  \tag{28}\\
X_{0} & =\Psi
\end{align*}
$$

admits a solution then $e_{j}(k), b_{j}(k), X_{k}$ are a solution of the BVP (27) if we set

$$
\begin{align*}
e_{j}(k) & =\psi_{j}(k)-E_{j}(k) X_{k} \\
b_{j}(k) & =S_{j}^{-1}(k) \mathbb{B}_{j}^{*}(k)\left[E_{j}(k+1) \sum_{s \neq j} \mathbb{B}_{s} \hat{u}_{s, k}+e_{j}(k+1)\right] \tag{29}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{u}_{j, k}=-R_{j j}^{-1} \mathbb{B}_{j}^{*} \psi_{j}(k+1), \quad t=0, \ldots, T-1 . \tag{30}
\end{equation*}
$$

On the other hand, if $e_{j}(k), b_{j}(k), X_{k}$ are a solution of the BVP (27) then, with the settings (29),(30), we obtain a solution of the BVP (28).

## Sufficient conditions for existence/uniqueness

Let SSRDE (22) admit solutions $E_{j}(k)$ such that

$$
S_{j}(k)=R_{j j}+\mathbb{B}_{j}^{*} E_{j}(k+1) \mathbb{B}_{j}>0
$$

for all $k=0, \ldots, T-1$ and $j=1,2$.
(1) The functions $u_{j, k}$ in (30) are a Nash equilibrium if and only if the BVP (28) is solvable. This is an explicit condition for playability as it was obtained in the operator based approach [Same authors, Controlo'08].
(2) Nash equilibrium is unique iff BVP (28) is uniquely solvable.
(3) Nash costs for each player can be calculated from (25):

$$
\frac{1}{2}\left[X_{0}^{*} E_{j}(0) X_{0}+e_{j}^{*}(0) X_{0}+d_{j}(0)\right]
$$

where $e_{j}(0)$ was defined in (29) and $d_{j}(0)$ is obtained by solving (24).

## Sufficient condition for existence/uniqueness

Let $\operatorname{SSRDE}(22)$ admit solutions $E_{j}(k)$ such that $S_{j}(k)>0$ for $k=0, \ldots, T-1, j=1,2$. Furthermore, if the discrete time OL Nash Riccati difference equation (OLNRDE)

$$
\begin{align*}
K_{j}(k) & =\mathbb{Q}_{j}+\mathbb{A}^{*} K_{j}(k+1) \Omega^{-1} \mathbb{A} \\
K_{j}(T) & =\mathbb{K}_{j}, \quad j=1,2, \quad k=0, \ldots, T-1 \tag{31}
\end{align*}
$$

admits a solution, where $\Omega:=\left(I+\sum_{s=1}^{p} \mathbb{B}_{s} R_{s s}^{-1} \mathbb{B}_{s}^{*} K_{s}(k+1)\right)$, then there exists a unique $O L$ Nash equilibrium defined in quasi-feedback form by

$$
\hat{u}_{j, k}=-R_{j j}^{-1} \mathbb{B}_{j}^{*}\left(K_{j}(k+1) X_{k+1}+D_{j}(k+1)\right), k=0, \ldots, T-1,
$$

whence $D_{j}(k), G_{j}(k)$ are defined as:

$$
\begin{align*}
D_{j}(k) & =\mathbb{A}^{*} D_{j}(k+1)+G_{j}(k), \quad D_{j}(T)=0  \tag{32}\\
G_{j}(k) & =-\mathbb{A}^{*} K_{j}(k+1) \Omega^{-1} \sum_{s=1}^{p} \mathbb{B}_{s} R_{s s}^{-1} \mathbb{B}_{s}^{*} D_{j}(k+1) \tag{33}
\end{align*}
$$

## Team controllability

Let $\Gamma_{2}$ be a 2-player game. We say that the game is team controllable if for any initial and terminal states $X_{0}, X_{1} \in X$ and initial time $k_{0} \in \mathbb{K}$ there exist a terminal time $k_{1}>k_{0}$ and a set of control functions $u_{j, k} \in \mathcal{U}_{j}, j=1,2$, such that for the solution of the difference equation

$$
X_{k+1}=f\left(k, X_{k}, u_{j, k}, \hat{u}_{\mathrm{J}, k}\right)=\mathbb{A} X_{k}+\mathbb{B}_{j} u_{j, k}+\mathbb{B}_{\mathrm{j}} \hat{u}_{\mathrm{J}, k}, \quad X_{0}=\Phi
$$

$X\left(k_{1}\right)=X_{1}$ holds.

See (Kun, 2000) and (T. Perdicoulis, nDS2013)

## Individual controllability

Let $\Gamma_{2}$ be a 2-player game. Suppose that strategies are chosen such that ( $\hat{u}_{1}, \hat{u}_{2}$ ) is an equilibrium for $\Gamma_{2}$. Then, we say that the game is controllable at this equilibrium point, from the point of view of the $j$ th player, if the control system

$$
X_{k+1}=f\left(k, X_{k}, u_{j, k}, \hat{u}_{\mathrm{J}, k}\right)=\mathbb{A} X_{k}+\mathbb{B}_{j} u_{j, k}+\mathbb{B}_{\mathrm{J}} \hat{u}_{\mathrm{J}, k}
$$

is controllable in the admissible set of $u_{j, k}, j=1,2$.

## Characterisation of individual controllability

Let $\Gamma_{2}$ be a linear OL quadratic differential game. Suppose ( $\hat{u}_{1}, \hat{u}_{2}$ ) (and $\hat{X}$ its respective trajectory) to be a Nash eq. for $\Gamma_{2}$, based on the solutions $K_{j}(k), j=1,2$, of the correspondent OLNRDE, then $\Gamma_{2}$ is individually controllable for the $j$ th player iff any triple $\left(k_{0}, \Phi, \Phi\right) \in \mathbb{K} \times \mathcal{X}^{(2 N-1)} \times \mathcal{X}^{(2 N-1)}$ of the following linear control system

$$
\binom{X_{k+1}}{\hat{X}_{k+1}}=\left(\begin{array}{cc}
\Omega_{\bar{J}}^{-1} A & 0  \tag{34}\\
0 & \Omega^{-1} A
\end{array}\right)\binom{X_{k}}{\hat{X}_{k}}+\binom{\Omega_{\bar{J}}^{-1} \mathbb{B}_{j}}{0} u_{j, k},
$$

with

$$
\Omega_{\bar{J}}:=I+\sum_{\substack{s=1 \\ s \neq j}}^{2} \mathbb{B}_{s} R_{s s}^{-1} \mathbb{B}_{s}^{*} K_{s}(k+1) \quad \text { and } \quad \Omega:=I+\sum_{s=1}^{2} \mathbb{B}_{s} R_{s s}^{-1} \mathbb{B}_{s}^{*} K_{s}(k+1)
$$

can be controlled to a pass $X_{f} \times \mathcal{X}^{(2 N-1)}$ for all $X_{f} \in \mathcal{X}^{(2 N-1)}$.

Proof: See (Kun, 2000).

## Individual pass controllability

System (9) is (completely) pass boundary controllable for player $j$ in $k_{0}, k_{0}+1, \ldots, k_{1}$ with $k_{0}, k_{1} \in \mathbb{K}$ if for any initial conditions $\phi(-N+1), \ldots, \phi(0), \ldots, \phi(N-1)$ in (6) and any vector pass $x_{f}(\ell), \ell \in \mathbb{L}$, if there exists sequences of boundary data $d_{k}$ (or $\left.g_{k}\right), k=k_{0}, \ldots, k_{1}$ such that $x_{k_{1}}(\ell)=x_{f}(\ell), \ell \in \mathbb{L}$.

## Individual pass controllability

The wave model (9) is completely pass controllable on $0,1, \ldots, T$, if and only if the grammian matrix

$$
\begin{equation*}
G_{T}=\sum_{s=0}^{T-1} M(s) M(s)^{*} \tag{35}
\end{equation*}
$$

is positive definite, and where

$$
M(s):=\left(\begin{array}{cc}
\Omega_{\bar{J}}^{-1} A & 0 \\
0 & \Omega^{-1} A
\end{array}\right)^{s}\binom{\Omega_{\bar{J}}^{-1} \mathbb{B}_{j}}{0} .
$$

## Individual pass controllability

Consider the linear control system (34) written in terms of the initial pass and recall that the boundary conditions are written as controls in (18). Hence:

$$
\binom{X_{k}}{\hat{X}_{k}}=\left(\begin{array}{cc}
\Omega_{\bar{j}}^{-1} A & 0 \\
0 & \Omega^{-1} A
\end{array}\right)^{k}\binom{\Phi}{\Phi}+\sum_{s=1}^{k}\left(\begin{array}{cc}
\Omega_{\bar{J}}^{-1} A & 0 \\
0 & \Omega^{-1} A
\end{array}\right)^{k-1}\binom{\Omega_{\bar{j}}^{-1} \mathbb{B}_{j}}{0} u_{j, s-1}
$$

Then the grammian $G_{T}$ is defined in terms of the transition matrix $\left(\begin{array}{cc}\Omega_{J}^{-1} A & 0 \\ 0 & \Omega^{-1} A\end{array}\right)$ and the output matrix $\binom{\Omega_{J}^{-1} \mathbb{B}_{j}}{0}$.
Then the proof is the same as in classical systems and therefore omitted here.

See (T-P Azevedo Perdicoúlis \& G. Jank, 2008) and (Knobloch \& Kwakernaak, 1985).

## Individual initial pass controllability

System (9) is completely pass controllable by initial pass control if for any boundary conditions $d_{0}, d_{1}, \ldots, d_{T}$ and $g_{0}, g_{1}, \ldots, g_{T}$ in (5) and any vector pass $x_{f}(\ell), \ell \in \mathbb{L}$, there exists a sequence of initial data $\phi(-N+1), \ldots, \phi(0), \ldots, \phi(N-1)$, subsumed in $\Phi$, such that $X_{T}=X_{f}$.

System (9) is completely pass controllable by initial pass control if $\left(\begin{array}{cc}\Omega_{\bar{J}}^{-1} A & 0 \\ 0 & \Omega^{-1} A\end{array}\right) \in R(2 n, 2 n)$ has full rank.

Proof: See (T-P Azevedo Perdicoúlis \& G. Jank, 2010).

## Observability

$\square$
System (9)-(10) is pass-boundary observable in $\{0,1, \ldots, T\}$, if for all $t_{1} \in \mathbb{N}, 0<t_{1} \leq T$ and boundary data $\Phi$ for any two trajectories $X_{k}, \tilde{X}_{k}, 0<k \leq t_{1}$, corresponding to the same input $u_{j, k}, j=1,2,0<k \leq t_{1}$, from

$$
\mathbb{C} X_{k}=\mathbb{C} \tilde{X}_{k}, 0<k \leq t_{1},
$$

it follows necessarily that $X_{k}=\tilde{X}_{k}, 0<k \leq t_{1}$.

System (9) and (10) is pass-boundary observable in $\{0,1, \ldots, T\}$, if $\operatorname{rank}\left(\mathbb{C A}^{k-1} \mathbb{B}_{s}\right)=n$.

## Observability

Using the compact notation, we define $\mathbb{C}=\operatorname{diag}\{C, \ldots, C\}$.
If we set $\hat{X}_{k}=X_{k}-\tilde{X}_{k}, k=1, \ldots, T$, i.e., $\hat{X}_{k}$ is the solution of the homogeneous equation, then pass boundary observable is equivalent to the condition:

$$
\mathbb{C} \hat{X}_{k}=0 \Longrightarrow \hat{X}_{k}=0,0<k \leq t_{1},
$$

considering $\Phi=0$. Hence:

$$
\begin{aligned}
\hat{Y}_{k} & =Y_{k}-\tilde{Y}_{k}=\mathbb{C} X_{k}-\mathbb{C} \tilde{X}_{k} \\
& =\mathbb{C} \sum_{s=1}^{2} \sum_{i=0}^{k-1} \mathbb{A}^{k-1} \mathbb{B}_{s}\left(u_{s, i}-\tilde{u}_{s, i}\right)
\end{aligned}
$$

Considering $\hat{Y}_{k}=0, k=1,2, \ldots, t_{1}$, we obtain:

$$
\begin{gathered}
\hat{Y}_{1}=\mathbb{C} \sum_{s=1}^{2} \mathbb{B}_{s}\left(u_{s, 0}-\tilde{u}_{s, 0}\right)=0 \Longrightarrow u_{s, 0}=\tilde{u}_{s, 0} \\
\hat{Y}_{2}=\mathbb{C} \sum_{s=1}^{2} \mathbb{B}_{s}\left(u_{s, 0}-\tilde{u}_{s, 0}\right)+\mathbb{A B}_{s}\left(u_{s, 1}-\tilde{u}_{s, 1}\right)=0 \\
\Longrightarrow u_{s, 1}=\tilde{u}_{s, 1}
\end{gathered}
$$

Then we have that the boundary controls are uniquely defined by a measured output.

## Conclusions

- Formulation of a wave RP as an OL Nash game where the strategies are the boundary settings.
- We state sufficient conditions for the existence/uniqueness of the equilibrium strategies.
- These sufficient conditions are suitable for numerical calculations.
- We study structural properties of the equilibrium strategies.


## Future Work

- Consider the same problem for the infinite time horizon/moving horizon.
- Then, questions such as individual stabilisation of the solution by the different players become relevant as well as uniqueness of the equilibrium strategies.
- Consider other type of information structures and equilibria for the same problem.
- Consider a system whose parameters are not constant but depend on $k, \ell$, instead.
- Extend the wave model/differential game to a complex network


## Thank you!


[^0]:    $\ell^{2, \nu}(\mathcal{I})$ Hilbert space of $\nu$-dim sequences defined on $\mathcal{I}$ with the standard scalar product.

