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State-Space Realization Theory of
Two-Dimensional Filters

ETTORE FORNASINI anp GIOVANNI MARCHESINI

Abstract—The realization problem of two-dimensional linear filters is
approached from a system theoretic point of view. The input-output
behavior of such a system is defined by formal power series in two
variables, and a Nerode state space is constructed. This state space is, in
general, infinite dimensional.

Tf the power serles is rational, the dynamics of the filter is described by
updating equations on finite-dimensional local state space. The notions of
local reachability and observability are defined in a natural way and an
algerithm for obtaining a reachable and observable realization is given. In
general, local reachability and observability do not imply the minimality of
the realization.

I. INTRODUCTION

I N THE PAST few years there has been an increasing

interest in two-dimensional filters. This type of filter is
extensively used in processing two-dimensional sampled
data, such as seismic data sections, digitized photographic
data, and gravitational and magnetic maps.

Several methods are commonly used to represent the
operations involved in image processing. A great deal of
work in the processing of two-dimensional images has
focused on recursive techniques since they can be used in
on-line processing and require less computer memeory
when processing off-line.

Most papers in this area deal with analysis and synthe-
sis of external (input-output) representations like rational
transfer functions. The main results are obtained in input-
output stability analysis with algebraic methods [1]H4].

Synthesis procedures are based on least squares ap-
proximation of given impulse or frequency responses by
means of rational transfer functions in two variables [5].
Algorithms using continued fraction expansion have been
advanced for the synthesis of these transfer functions [6].

Very recently in the literature some papers have ap-
peared where an “internal structure” of spatial filters is
considered. This is essentially based on a set of difference
€quations involving a state vector [7]-{11]. All these con-
tributions are devoted to analyzing dynamical properties
of systems given by updating state equations. In some of
these works the time set is endowed with the structure of a
partially ordered set [7], [8], [11] and reachability and
observability concepts are introduced [8], [11] under re-
strictive hypothesis.

The aim of the present paper is to analyze the algebraic
realization problem of spatial filters defined by their in-
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put-output maps. This problem is attacked from a system
theoretic point of view defining the state via Nerode
equivalence classes.

If the transfer function of the filter is rational {i.e., if the
series characterizing the filter is rational), a general solu-
tion of this problem is provided by updating equations on
finite-dimensional local state spaces.

The notions of local reachability and observability are
then defined, and we clarify the connections between
these concepts and the minimality of the realizations. As
we shall see, it is possible to obtain a reachable and
observable realization starting from a generic one, and we
shall introduce an algorithm for this purpose. This algo-
rithm, which is very similar to the one in linear discrete-
time systems, is essentially based on a generalization of
the Cayley-Hamilton theorem to the two-dimensional
case, '

In general, local reachability and observability do not
imply the minimality of the realization.

II. INPUT-OUTPUT REPRESENTATION OF A
Two-DIMENSIONAL FILTER

We will consider two-dimensional digital filters with
scalar inputs and outputs taken from an arbitrary field X.
The input-output representation of such a filter is given by

S 2(T,U,9,Y,%,F) (N

where T'=Z X & (partially ordered by the product of the

orderings) is the discrete plane, U and ¥ are one-

dimensional vector spaces over the field K, 9. and % are

the space of truncated formal Laurent series in two vari-

ables over K (whose precise description will be given
below), and F: 9l —»% is the input-output map.
A typical element of QL or Y will be written

o0
r= Eku(nz{zi')z;%

for some integer k&

where (r,z{z]) denotes the coefficient of z/z{.

The input-output map F: 9 —% is assumed to satisly
the following axioms.

1) Lineariry.

2) Two-dimensional shift invariance:

F(z{z{ry=z{z{F(r), ijEL
3} Two-dimensional strict causality:
(uy.zizd)=(up.2{z§), i<t i<y
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implies

(Fuy,z{z8)=(Fup,ziz}), i1, j<ty, Yu,u, €91,
Under assumption 3) it is easy to verify that the impulse
response F(1) is a “strictly causal” power series, i.¢.,

[>=]

F()= 2, {F(1).ziz4)ziz4.
1
More formally we can say that

52 F(I)E(zlzz)K[[z,,zz]} < Kr[[zl’ZE:H

where K[ [ z;,z,]] denotes the ring of formal power series
in two variables and K_[[z,,z,]] is the ideal of “sirictly
causal” power series.

From 1) and 2) it follows that

Fu)=su, Yue 2)

that is, two-dimenstonal filters {in their input-output rep-
resentation) are in one-to-one correspondence with formal
power series KC[ [21.2,] ]

The first goal of this paper i1s to describe a state-space
representation corresponding to an input-output descrip-
tion of type (1). The first such description will be given in
terms of Nerode equivalence classes of inputs. We follow
the usual Nerode philosophy that two inputs are
equivalent if they give the same output when each one is
“followed” by the same input. The precise definition of
one input “following” another for two-dimensional sys-
terns must be given in terms of two-dimensional shifts and
concatenations. .

1) Shift: Two kinds of shift operators are considered in
@ and % :

c L —9L
o ir—zy ' reQU
0, A -9

Oyir—2zy ‘r, reql,

Analogously for . The action of o, and g, on 9l and
% is naturally extended to the ring of polynomials
K|o,,0,], Then @ and % are endowed with a K[o,,0,]-
module structure (or equivalently a K[z, !,z; 'l-module
structure). A similar set up is adopted in the algebraic
realization theory of discrete-time linear systems [12].

2) Concatenation: Let 1, > 1, and let (¢,,7,] be the subset
of T:

(tpty] = [rir>y)—{rir> 5}

Let u= Sl and let #;, o denote the restriction of u to (7,0].
Let @* denote the set of all such restrictions. Let
u,:(£,0]- U and u,:(7,,0]—= U be in * Then Q* be-
comes a monoid if we define w=wu,°u,:(t;+1,,0]=U by

w, (1 1),

(1),

tE(t+ by, 1]
1E€(1,0].

u{f)=
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Let F be as in (1) and define the map f:U*
-—>Kc[[zl,22:|] by

Then f characterizes & in the same sense as F does.
If v u, € QL *, we say “u; is Nerode equivalent to u,”
(1t ~uy) iff -

fluev)=f(u,°0),

VoEqlL*,
It is standard to prove that
u~wef(u) =), wu,sU*

and
kerf={u:u€ U* u~0} = [0].
The NWerode equivalence classes are then the cosets of
QL * in kerf; hence,

U*/~=U*/[0] = Xy

is endowed in a canonical way with a linear structure.
The situation is represented by the following commuta-
tive diagram.

a* ~Ke [iz,.2,])
1'1 /
X = %er 1

The space X, is called the Nerode state space.
Although it has a very natural description, if 550, the
dimension of the canonical state space X, is infinite. In
fact, consider the above commutative diagram and restrict
the input space AL * to K|[z,]. Since K[z,] 1s a subring of
the integral domain K{[z,.2,] ] the assumption f{u)=su
=0,550, implies u=0 for all u&€ K{z,]. Since the restric-
tion of f to K|[z,), which is an infinite-dimensional K-vec-
tor space, is one-to-one, then f(K|[z,}) is infinite dimen-
sional. Hence, dim X, =dimf (9L *) » dimf(K[z,])= 0.

This fact shows that the situation for two-dimensional
filters is mot the same as for usual discrete-time linear
systems. Actually in the latter case the dimension of the
canonical state space X, is finite if and only if the
input-output map is a rational power series. We recall that
a formal power series sEK[[zl,- x .z,]] is rational if
there exist polynomials p,g€ Kz, '.---,z 'l degg>
degp, such that gs=p. The polynomial g is called a
denominator of s. The ring of rational power series will be
denoted by K[(z,,---,2)]

Remark I: 1n the usual linear case the rationality of
the input-output map is equivalent to the existence of
nonzero inputs of compact support such that the corre-
sponding outputs are of compact support. This is also true
for two-dimensional filters. In particular if s belongs to
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the ring K[(z,,2))] of rational power series m two vari-
ables, and s=p(z "z; )/q(z; ,z;") and p and ¢ have
no common factors, the class of compact support inputs
giving outputs with compact support is the principal ideal
{(g) modulo the shift semigroup generated by o, and g,.

Remark 2: If the input space is restricted to
K[z 1,z; '], then the dimension of X is the rank of the
Hankel matrix H(s) associated with the series s:

(5.1} (s.2) {(5.25) (8.2 ) (5,2;2,) (s,z%)...
Wis)y=|(s.2) (s21) (2122) (5.27)
(5:23) (5,2,2)

In [14] it is proved that the rank of JC{s) is finite if and
only if s is rational and a denominator ¢ of 5 can be
factorized as g=gq,9, with g, € K{z[ ",q,=K[z; '], The
series satisfying this property are the elements of the ring
K[(z)®K[(z,] 2 K™[(z,,2,)] called the ring of “rec-
ognizable series.”

IT11. REeavLization ofF Two-DIMENSIONAL FILTERS

So far we have seen that an inpul-output map leads to a
state-space representation by Nerode equivalence classes
of inputs. This Nerode representation X, 1s usually in-
finite dimensional, and furthermore it seems to be impos-
sible to describe the dynamics of X, In terms of ap-
propriate “updating eguations.”

These difficulties can be overcome to some extent by
introducing the notion of “local state space.” We will
show that under snitable conditions there exists a finite-di-
mensional vector space X, and matrices 4,A4,,4,E
K Cce K" B& K"** such that the input-output be-
havior is described by the updating equations

x(h+1Lk+1y=Ax(hK)+ A, x(h+1,k)
+ Ayx (b k+ 1)+ Bu(h.k) (3)
y(h k)= Cx(h,k).

The form of the updating equations (3) will follow from
an axiomatic framework which we describe below. The
axioms are derived from the following intuitive picture: a
finite-dimensional local state space X is attached to each
point (i1, k) of the plane. If 2" > 4 and &' > &, then a local
state x(A’,k") depends not only on x(h,k) but also on
local states x(a+ L, k),---,x{(#, k) and x(h,k+1})---,
x(h, k") as shown,

(h k
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Since (h', k') 15 arbitrary, it 1s necessary to introduce a
global state space %X consisting of all local state spaces on
the horizontal and vertical rays. Formally, we define a
doubly indexed, linear, shift-invariant dynamical system (in
state-space form} as follows:

> E(T,U,0, Y, %, X,%,¢,r)

where 7,0, 9,Y,% are as in the definition of &, and
X = K" is the local state space. The global state space %X, is
given by
K ={x(hk) Z(hK)

=(---x(h+ LK), x(hk)x{hk+1),--+), x(iL)EX].

The map ¢:TX T X% XA -X is the state-transition
function and r: XY is the readout map.

These ingredients are assumed to satisfy the following
axioms:

1y r: XY is linear.

2) Two-dimensional determinism: Let wu,u, €9 and
%£,%,€% . Then

(upz{z8)y=(uy2{z5), K <i<h", k' <j<k”

and
x (R K'Y= xy (LK)
x, (B +LEY=x,(R+ 1,k - x
X (WD) =x, (AL K+ 1), - x

(A7 K=, (7K
l(kl,kl’f)=x2(hl1k.”)
imply

SR KN (K Ry Y= (R K (K, ).

3) Consistency: Let X=(- - x(h+ 1,k x(h k), x(h,k+
1} - - ). Then @((h, k), (A, k), X,u)=x(h,k) for any u in 9.

4} Composition: Let h< h"< h” and k< k’< k”. Then
(R kY, (B J), R )= d((h” k"), (I, k'), #%,u) where £%=
(ol + 1K), (B k), X u), (R, K), (h,k),)?,u), (I
+ 1, (A k), Roud,e ).

5) Shift invariance: Let h<<h" and k< k’. Then q.)((h’
ALK +A) (h+ ALk + Ay, R, odobuy = cp((h’ k"), (B KDY, X, 0.

6) Linearity: Let u, v, €9 and %, £, &%. Then
SN K, (RK), 3y + oty u) = 6((HK), (BK), R pu,)+
(' k7). (h, k), Xy 1)

The next lemma justifies the matrix form of the updat-
ing equations given eartlier.

Lemma 3.1: Given a doubly indexed system 3, there
exist ApAd,, 4, EK"*" Bek"™ C& K" such that ¢
and r are given by (3).

Proof: From 2) one gets that x(2+ 1,k + 1) depends
only on x(h, k), x(h+1,k), x(h,k+1), and u{h, k). Hence,
in the derivation of x{A+ 1,k+1) from x(h, k) and u it is
not restrictive to assume that

£ K) =+ 0,x(h+ Lk}, x(h,k),x(h,k+1),0, - )
w(iN=0,  (if)=(hk).

Then the existence of 4y, 4,,4,, B follows directly from 6).
The existence of C is obvious by 1).
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Doubly indexed systems can be used to realize mput-
output maps.

Definition: A doubly indexed dynamical system X is a
zero state realization of a two-dimensional filter & if for
any iz>r,j23s

(Fu,ziz]) = r(o((i.0).(r,5),0,u)),

Y(r,s}eT, VYuel with u(h k)=0 for A<rk <s.

The dimension of a realization is defined as the dimen-
sion of the local state space X. We say that a realization ¥
of the filter & is minimal when dim¥ < dim2’ for any 2’
realizing S .

Next we discuss the connection between this construc-
tion and the Nerode theory. The canonical state space X
of a filter & can be embedded in the space % which
characterizes a rtealization Z. The following proposition
shows that this embedding preserves the system theoretic
properties of X,.

Proposition 3.1: Let 2 be a zero state realization of a
given & . Then there exists a 1:1 hnear map e such that
the diagram

commutes along the dashed arrows (the maps A and p are
built up in natural way from ¢ and r 1n Z).
Proof: Consider the following diagram.

ﬂ'/kerp

Since » is onto and § is one-to-one, by Zeiger’s lemma [12]
there exists a unique linear map A:X,— X /kerp which
makes the diagram commutative, and is one-to-one.

Denote by & a complement of kerp in % and by gy the
restrictive of p to 9. Since pg: T —X /kery is an isomor-
phism, there exists a one-to-one linear map e=pg Yo p
such that #=poe. The map e depends on the choice of .

Obviously, the possibility of embedding the Nerode
state space X, in % resulting in Proposition 3.1 does not
depend on the dimension of the realization.

In Propositions 3.2 and 3.3 it will be proved that a
two-dimensional filter is realizable if and only if its input-
output representation is given by a rational power series 5.
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Proposition 3.2: Let 2 be a zero realization of a given

&. Then s = F(1)is a strictly causal rational power series.

Proof: The existence of T implies the existence of

Ag A, A, €K™ B,CTe K™™' such that (3) holds. By

associating the local state x{(A,k) with the monomial

x(hk)zz5 EK”XIH[Z],ZJH it is direct to verify that for
cach ue K[ [z,,2,]

ao oG
2k (b Kz 2] = Ao( ) h,kX(hsk)zl”zgf‘)zlzz
0

and then
(I— Aoz z,— Az — Ayzy) Eh’kx(h,k)z;"zﬁ" =(2,7,)Bu.

The polynomial {f—Agzz,—A,z,—A,z,) belonging to
K"*"[z ,z,] has an inverse in the ring of rational series
K"*"[(z,,z,)] and its inverse is

o
(I—Agz 29— A2\ = A,25) 7' = X (Agz,7y+ A2, + dy2,).
0

It results that
Zh,kx(h,k)zl”z-f=(I~Aozlzz- Az~ Ayzy) (2,29)Bu
and the output is given by
y= CEh,kX(hak)z{’Z;i‘
= C (I~ A2z~ A2y — dy2y)” '(2,2,) Bu.
The series ¢ is expressed by
(2,2,)C(I—Ayz\z,— Az, — A32,) 7 'B

where (I— Adpz2,— A2, —Ayzy) 7" Knxn
[z 29)]= K[(z 20"

This proves that s=(z,z)C(I— Ayz,z;— 4,2z, ~
A,z.)7'B belongs o K {(z,,z)]

Remark: If (454,45, B,C) is a realization of dimen-
sion # of a filter §, and T K"*" is nonsingular, then
(TA,T L, T4, T}, TA, T~ TB,CT ") is still a realiza-
tion of &. The matrix T 15 associated with a change of
basis in the local state space.

The converse of Proposition 3.2 is given by Proposition
3.3 whose proof furnishes also an effective technique for
constructing a realization {4y, 4,,4,, 8,C) of a filter with
sEK.[(z),z5)]

Proposition 3.3: Let & as in (1) with s€ K [(z},2,)].
Then 5 has a zero state realization .

Proof: Let

belongs to

n—1

n

= » e S =i, —J —

§= 2 Uan—l',n—j‘i Zy /Eybn—z‘,n—_.tzl 22 ’bU{] 1.
4] 0
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The matrices AO,AI,AZEK"Z""J, Be]("’xl! Ceglxe
defined by

—'—-“'T-l
|
J
|
—s ]
Rt S e I n bt - 4,
| |
| 1 |
{ |
it LJ_1___ __
: - !
| 1
I — e ——t —
I
i ~byabyy by -bigbyy by, bayby by, |
- 1T
1
11
|
| 1
LI
%
SRS (U PR S-S SN S I
1 .
1 = A
" 1
1
i
H 1
__!..___a.__t____
' I
! —
]
t L—-—-—l—l—
1 - i
B “byg ! bag | by _bﬂ].l
—-T=rT-1
1]
4
1
Li
1
' 1
T
L -
— — —r-— ey | iy e
T 7 =4
I 11 2
I T
1 LK
T
—_;L_ _J-_l——--l_...-——
i & 1
: i
! | IR N B,
L ba i “byg by by
[0 00 1]=3T

[' Trdyy iy Azz Ay 3y Qg Ay Oy 011]=C

satisfy the relation
5=(2,2,)C (I = Ayz,2,— A2, — A,2,) T 'B.

Consequently, the doubly indexed dynamical systern 3 =
(Agp, A, A, B,C) is a (not neccessarily minimal) zero-state
realization of &.

An alternative proof of Proposition 3.3 appealing to
K{z[',z; ']-morphism properties can be found in [13].
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IV. REACHABILITY AND OBSERVABILITY

Henceforth we shall assume that the formal power
series s characterizing the input-output map of the filter &
is rational. Hence there exists a realization given by a
doubly indexed dynamical system X ={(4,,4,.4,8,C):

x(h+ Lk+1)=Agx(hk)+ A x{(h+1,k)
+ Ayx (hk+ 1)+ Bu(h,k)
y{(h,k)= Cx(h,k)
and
s=(2,2,)C (I = Agz,2,~ Az, — A,2,) " 'B.

We shall now extend the notions of reachability and
observability for discrete-time systems to provide notions

, of local reachability and observability for two-

dimensional filters. If a two-dimensional filter is in a
global state £ € % in (k. k), and we apply an input u € 9L,
the local state x(i,j), iz h, j» k is given by
&((1.7), (h, k), %, u). In particular if i=;=0, and the system
2 starts off in a zero global state, Athe local state reached
at (0,0) is given by ¢{((0,0),(h,k),0,u). Using these nota-
tions and recalling that the state-transition function is
shift invariant, we now introduce the following defini-
tions.

Definition 1: A state xE X is reachable (from zero
global state) if there exist (A, A)ET, A<D, k<0 and uc QU
such that x=¢{(0,0),(4,k),0, u).

In other words, a state x& X is reachable iff x
=((2,29) 2 o (Agz12,+ A2+ A,2,0Bu, 1) for some u€E

0

%... Hence we also have Definition 2.
Definition 2: The reachable local state space is

XR= [x:x=((z|zz)2k(‘402122
0

+A,z,+A4,2,) By, 1), = %]

and the realization X =(A4,.4,,4,,B,C) is L-reachable if
X=X~

The reachable local state space X® is spanned by the
columns of the matrix

Ro=[MyB MB MyB --- ]

where

[zl
M, = ( % {Agz 23+ 4,2, +A232)’°,zl’z{).

Since dimX#® =rankR_, the realization 3 = (A,
AypAy B,C) is L-reachable if and only if R is full
rank,

The notion of indistinguishable states is also extended
in a very natural way.

Definition 3: A state x€ X is indistinguishable from
the state 0 in X if

o0
X C(Agz 25+ Az, + Ayzy) x =0,
0
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Notice that the left-hand term in the above relation repre-
sents the zero-input response of ¥ determined by x(0,0)
=x.

Definirion 4: The indistinguishable local state space is

X2 {xix€X, T ,C(Ap2,5+ 4,2+ 4y7,)x =0},
Since the space X’ is the null space of the infinite matrix

[ CMy, |
CMy
CMy,

L i

the realization T ={(A4yA .4, B,C) is L-observable if X'
= {0}, that is if O is full rank.

The matrices R, and 0_, contain an infinite number of
elements. Nevertheless the evaluation of their ranks,
which is essential to reachability and observability analy-
sis, can be confined to check the rank of two submatrices
R e K™ and 0€ K**" given by

R=[M0,JB MB - Mnﬁl,nle]
and
. M, _
CM,
0= :
CMn—l,nfl

This statement will be proved in Lemma 4.1 and Proposi-
tion 4.1. Operating in a different context Roesser pre-
sented in [11] an analogous result.

Lemma 4.1: Let Ay, A4, A4, belong to K"*" and let

oo

M= ( D Aziz+ A2, +A2z2}",z;‘z{) jef
0

be the coefficients of z/z{ in the series ({ — Agz2,— A2, —

A;2;)7 " Then there exist b, €KX, i,j=0,1,2,---,n, b, #0
such that

% iMin—iby=0

for all
(hkye ((L1),(1,2),- -~ {nn)}.

The scalars b[.j can be assumed as the coefficients in the
polynomial

det(fz[ 'z, = Ay~ A2 ' — Ay ')
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Proof: Since

A
wlAdgzizy+ Az, +A,2;)

opls

(z02) " 'adi{Jz) 'gy - Ag— Az = Az
det(]z}_ lzz_i—AO—A]zl_]-'“Azz]'i)

n
1 i
= 2 r,.S‘Nrle 22 s brmz ]“

m 17VNEK”X"
e Y |

zﬁb{f

0

2y I3

it follows that

n

H
L TS e h, k —, )
ZmNmzs Iy = z;.thkzlzz Eijby‘zl Z3
1 n

M
= 2 hk( Z yM:—k.J—Rby)zl—hZI!_k‘
0 /

Equating the coefficients of the same powers in both sides
one gets the proof.
Proposition 4.1: Let M, as in Lemma 4.1. Then

span(My,i,jEZ)=5pan(My.,i,j=0, 1. .n—1) =
Proof: It is sufficient to prove that if r,s5 are nonnega-
tive integers and either r 2 n or 5 > n, then

M, eI, isrjss, (i,))#{(r.s

implies

M e,

5

In fact, by Lemma 4.1,
zg'Mi—-n+r‘jfn+sbr}'=D
[}
so that
M =-

1 H
rs b_ Ei,j Ms—n+r,j~n+:bxj'
nn 0

(5. /)5(n,n)

Remark ! The above result can be defined when r > n
and s < n. In fact,

1,j=0, .5}

Remark 2: The Cayley-Hamilton theorem is a particu-
lar case of Proposition 4.1 when 4,=4,=0.

Applying Proposition 4.1 we can write rankR =
rank R, rank 0_ =rank0, which proves the following.

Proposition 4.2: A realization ¥ is L-reachable (L-
observable) if and only if R(0) is full rank,

The matrices R and 0 are called reachability matrix and
observability matrix associated with the realization Z
=(ApA,, A, B,C).

M, Espan (M, i=0,- ,n—
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V. COMPUTATION OF A REACHABLE AND
ORSERVABLE REALIZATION

So far we have seen that reachability and observability
of a realization are strictly connected with the ranks of the
reachability matrix R and observability matrix 0. We are
now concerned with the following problem: suppose that
we obtained by some algorithm (see Section III) a realiza-
tion X=(A4,4,,4,,8,C) of dimension » and we would
like to construct a L-reachable and an L-observable real-
Ization, starting from X. To solve this problem we in-
troduce two algorithms which act independently to give
an L-reachable and an L-observable realization, respecti-
vely, Of course the alternate application of these provides
realizations which are eventually both f-reachable and
L-observable.

Let us assume that 2 ={(A4,,A4,,4,,B,C) is a realization
of dimension » of a given filter &, and let R be the
reachability matrix of 3. Assume rank R = r < n. The algo-
rithm for constructing a L-reachable realization of dimen-
sion r is based on the following two steps.

Step I: Construct a nonsingular matrix 7 & K7%#
having the last # — r rows orthogonal to the space spanned
by the columns of R. Consider then the realization (AO,

Al,Az, B ¢ ) characterized by

A=TA, 77", i=0,1,2
B=TB
C=cr,

The matrix 7 induces a change of basis in X. The first r
elements of this new basis are a basis for X

Step 2: Write A, 4,4, in partitioned form
Al f N

Il Alz ], AH(]EKJ'Xr’k=O,l’2
A |

and partition Band ¢ conformably,

0

Then (Ay, Ay, Ay, B,C) and (AQ, AN AP B, C,) realize
the same filter, and (AP AL, AP, B,,C)) is L-reachable.
In fact, let x(h, k) be the state reached by the effect of an
nput w91, and assume as a basis in X the basis corre-
sponding to (AD,AI,Az,B C) With respect to such a basis
the last n—r components of x(h, k) are zero and the
system

é=[31} E=[C, & B.Crek™

AQ A‘ﬂ x(hk) | AR AP =, (h+1,k)
A A(O}J 0 A AW 0
N AP ARV x (hk+1)
A AP 0
B R+ 1k +
i u(h,k)z[xl( k+1)

(6, &[]
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realizes the same input-output map as

APx (h )+ AP, (h+ k) + ADx (hk+ 1)
+B;u(h,k)=x,(h+l,k+1)
y(h.ky=C x,(h.k).

Assume now rank 0=+ < n. The algorithm for obtain-
ing a L-observable realization is also based on two sieps
and is substantially the same as the above reachability
algorithm, although the proof of the second step is based
on somewhat different reasonings,

Srep I: Construct a nonsingular matrix ¢ ' K7*”
having the last »—# columns orthogonal to_the space
spantned by the rows of 0. The realization (AO,A l,Az, B C)
defined by

=04,07, i=0,1,2
B=0QBR
C=cQ!
satisfies
C(I—Agzyz,— Ayz,— 4,2,) " 'B

=C(I~Ayzzy— Az~ Ayzy) 'B=3 ,CM, Bzl

In the associated observability matrix

r o

CM

n—1,n—1

the elements in the last n—r columns are zeros.
Step 11: Write AD,Al,AZ,Bl, C in partmoned form as in

Step 2 above, and notice_that C=[C, 0.C,eK'™". To
show that (AP, AV A2 B .C)isa reahzauon we have to
prove that

- - - - o
EgCMQBZ{ziﬂC(I_Aozlzz_Alzl_Az-’z) B
"C(f Alizlzl Allzl ﬁ)zz) B

I s i
= 2 gCIM;BlZIZ£=
namely that
CMyB=C MrB, ij=01, -
Observe that for i, >0
Eit =i,
élM;= CF:IM'*— l,jAll

A+ CM A+ CM_ 4,
+CME_ AR+ C oM A

and assume by induction that the first elements of

CM b CMJ_,, CM —1,;—1 coincide with C ME
c M, , CyME ;-\, respectively. Then

i = * jH) f;g;] = T
(’Mrﬁlj‘A [Cl“wif],j 0] ‘4"-5-{) H_-E.;_) =[CIM1*~1JA“ *]
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and similarly,
CM; ; Ay= [ CMY 4 E:i) *]
C‘Mi—l,j—lA(}= [ C-'E‘Mitl,jf (A4 ﬁ') *]

from which it is clear that the first 7 elements mn éﬂy are
the same as in C,M}. Of course the last n—r’ elements
are zero because of the structure of 0.

Evidently, the result that we have proved can also be
stated in the following form.

Proposition 5.1: Let T=(Ay,4,,4,,B,C) be any realiza-
tion of &. Then a L-reachable and L-observable realiza-
tion can be constructed in a finite number of steps from X
following the procedure introduced above.

Corollary : Every minimal realization is completely L-
reachable and L-observable.

VI. REMARKS ON MmNIMAL REALIZATIONS

As it was pointed at the end of the previous section, the
minimality of a realization implies that this is L-reachable
and L-observable.

In this section we will show by means of a counterex-
ample that the converse of this fact does not hold. In the
example we deal with filters characterized by recognizable
series. The properties of these filters have been already
presented and we refer to [3] for the details. We
summarize in Proposition 6.1 below some relevant aspects
connected with the realization problem.

Proposition 6.1; Let s € K*[(z,,2,)]. Then the following
statements are equivalent.

1) Rank K((z,z,)" s)=n< .

2) There exist L-reachable and L-observable realiza-
tions £ =(4,,A4,,4, B,C) of dimension n satisfying

Ag= —Ady= = A A,
Example: Assume s € QRrecl(z,,z,)] is given by

l+z,+2,
s=(z,z )
(#172) 42,4+ 2,4+ 2,2,

Therefore, the formal power series expansion of (z,z;) s
is expressed hy

(1+zl+22)2k(;l)k(zl+zz+2122)k
0

=1— 2.2 ..
=1—zzy+z25+ 2725,

By Proposition 6.1 there exist L-reachable and L-ob-
servable realizations whose dimension is rank
H((z,z,)"%). Tt is easy to check that rank
((z,2,)"'s)» 3. On the other hand, the doubly indexed
dynamical system X =(Ay4,,4,, B,C) with

-1 0
R R P

=[é], c=[11]

[
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is a realization with dimension two. This proves the ex-
istence of L-reachable and L-observable realizations
which are not minimal,

From the above remarks it appears that the Hankel
matrix K (s) is not relevant for evaluating the dimension
of minimal realizations of 5. In fact when s is rational, but
not recognizable, rank 30 (s) is infinite and for 5 recogniz-
able, rank I (s) furnishes solely the minimal dimension of
realizations satisfying

Ag=—AAy=— A4,

VII. CONCLUSIONS

In this paper the algebraic realization problem of two-
dimensional linear filters has been approached from a
system theoretic point of view, The input-output behavior
of such systems is defined by formal power series in two
variables and the state is introduced by means of Nerode
equivalence classes. The Nerode state space is in general
infinite-dimensional; nevertheless if the formal power
series which characterizes the nput-output map is ra-
tional, a finite-dimensional local state space is defined and
the dynamics of the filter is then described by updating
equations on the local spaces. An explicit algorithm for
construciing the matrices of a realization is given,

The notions of local reachability and local observability
have been introduced and an algorithm 1s presented which
allows us 1o obtain a reachable and observable realization
starting from a generic one.

In general, the reachability and observability properties
do not guarantee that we are dealing with a minimal
realization, as we have proved by means of an example.
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Stationary Cost Densities for Optimally
Controlled Stochastic Systems

DAVID D. SWORDER, MEMBER, 1IEEE, AND LIN L. CHOI, MEMBER, IEEE

Abstract—Exclusive concern with mean utility has often masked the
intrinsically probabilisitic nature of the performance of an optimally con-
trolled stochastic system. For a class of linear jump parameter systems, an
algorithm is presented for evalualing the stationary probasbility distribution
of the utility function for the optimal closed-loop system.

I. INTRODUCTION

STOCHASTIC plant models provide a means of intro-

ducing a quantitative measure of an analyst’s uncer-
tainty with respect to the dynamic behavior of the system
to be controlled. By selecting the random dynamical equa-
tions approprately, the sample functions of the plant will
approximate the behavior expected in actual system oper-
ation.

One difficulty that presents itself in a stochastic prob-
lem is that of utility or cost. A business model may use
profit as a utility function while a tracking medel may use
miss distance as a cost functional. If the dynamics of the
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controlled object are random, the utility or cost associated
with any decision policy will be random as well. 1n
contrast with deterministic problems, the customary utility
functions do not serve to totally order the decision rules.

To pose an optimal control problem, a scalar valued
criterion functional is needed. The most commonly used
index in stochastic problems is the mean of the distribu-
tion function for the utility function. Use of mean utility
as a performance measure results in an analytically tract-
able problem for a large class of linear systems. However,
the inherently stochastic nature of the problem is often
masked in the solution procedures used for finding an
optimal controlier. Kramer and Athans make this point
explicitly in their study of linear stochastic systems when
they say that in their solution procedure, “the stochastic
nature of the problem is suppressed. bul for two expecta-
tion operators, the optimization being deterministic” [1].
The plethora of papers on the certainty equivalence prin-
ciple further illustrates the use of deterministic procedures
for finding optimal controllers for stochastic plants.

In many applications, the expected utility is not a
sufficiently complete performance measure to allow a
judgment to be made on the acceptability of the con-
troller. For example, expected profit may be used as an
ordering principle in testing various planning strategies,



