An Algebraic Analysis Approach to the Equivalence between Fornasini-Marchesini and Roesser Models

Thomas Cluzeau

University of Limoges; CNRS; XLIM (France)

Réunion ANR MSDOS, Poitiers, 26-27 janvier 2015

Algebraic Analysis Approach to Linear Systems Theory: Methodology

1. A linear system is defined by a matrix R with coefficients in a ring D of functional operators:

$$Ry = 0.$$
 (*)

- 2. To (\star) we associate a left *D*-module *M* (finitely presented).
- 3. There exists a dictionary between the properties of (\star) and M.
- 4. Homological algebra allows to check the properties of M.
- 5. Effective algebra (non-commutative Gröbner/Janet bases) gives algorithms.
- 6. Implementation (Maple, Mathematica, Singular/Plural, Cocoa, GAP4/homalg . . .).

Roesser (R) Model (simple case)

(R):
$$\begin{cases} r(i+1,j) = a_{11} r(i,j) + a_{12} s(i,j) \\ s(i,j+1) = a_{21} r(i,j) + a_{22} s(i,j) \end{cases}$$

- \diamond To simplify the coeffs a_{ij} are assumed to be constants in K.
- $\diamond D = K \langle \sigma_i, \sigma_j \rangle$ (commutative) ring of partial shift operators with constant coefficients in K:

$$\delta \in D, \, \delta = \sum_{k,l} \underbrace{d_{kl}}_{\in K} \sigma_i^k \sigma_j^l, \quad \delta u(i,j) = \sum_{k,l} d_{kl} u(i+k,j+l).$$

 \diamond The (R) model can then be written Ry = 0 with

$$R = \begin{pmatrix} \sigma_i - a_{11} & -a_{12} \\ -a_{21} & \sigma_j - a_{22} \end{pmatrix} \in D^{2 \times 2}, \quad y = \begin{pmatrix} r(i,j) \\ s(i,j) \end{pmatrix}.$$

Fornasini-Marchesini (FM) Model (simple case)

(FM):
$$y(i+1,j+1) = \alpha y(i+1,j) + \beta y(i,j+1) + \gamma y(i,j)$$

 \diamond To simplify the coeffs α , β , γ are assumed to be constants in K:

$$\delta \in D, \ \delta = \sum_{k,l} \underbrace{d_{kl}}_{\in K} \sigma_i^k \sigma_j^l, \quad \delta y(i,j) = \sum_{k,l} d_{kl} y(i+k,j+l).$$

- $\diamond D = K \langle \sigma_i, \sigma_j \rangle$ (commutative) ring of partial shift operators with constant coefficients in K.
- \diamond The (FM) model can thus we written Fy = 0 with

$$F = (\sigma_i \sigma_j - \alpha \sigma_i - \beta \sigma_j - \gamma) \in D, \quad y = (y(x, t)).$$

The left D-module M

- \diamond *D* Ore algebra of functional operators, $R \in D^{q \times p}$ and a left *D*-module \mathcal{F} (the functional space).
- Consider the linear system (behavior)

$$\ker_{\mathcal{F}}(R.) = \{ \eta \in \mathcal{F}^p \mid R \, \eta = 0 \}.$$

 \diamond To $\ker_{\mathcal{F}}(R.)$ we associate the left *D*-module:

$$M = D^{1 \times p} / (D^{1 \times q} R)$$

given by the finite presentation

$$D^{1\times q} \xrightarrow{R} D^{1\times p} \xrightarrow{\pi} M \longrightarrow 0,$$

$$\lambda = (\lambda_1, \dots, \lambda_q) \longmapsto \lambda R.$$

Theorem [Malgrange]:

 $\ker_{\mathcal{F}}(R.) \cong \hom_D(M,\mathcal{F}) = \{f : M \to \mathcal{F}, f \text{ is left } D\text{-linear}\}.$

Roesser (R) Model (simple case)

$$D = K\langle \sigma_i, \sigma_j \rangle, \quad R = \begin{pmatrix} \sigma_i - a_{11} & -a_{12} \\ -a_{21} & \sigma_j - a_{22} \end{pmatrix} \in D^{2 \times 2}.$$

$$D^{1\times2} \xrightarrow{R} D^{1\times2},$$

$$(\delta_1, \delta_2) \longmapsto (\delta_1 (\sigma_i - a_{11}) + \delta_2 (-a_{21}) \quad \delta_1 (-a_{12}) + \delta_2 (\sigma_j - a_{22})).$$

 \rightarrow Associated left *D*-module $M_R = D^{1\times 2}/D^{1\times 2} R$.

$$D^{1\times 2} \xrightarrow{\pi_R} M_R,$$

$$\delta = (\delta_1, \delta_2) \longmapsto \pi_R(\delta).$$

 $\diamond \pi_R(\delta)$ residue class of δ in M_R , i.e.,

$$\pi_R(\delta) = \pi_R(\delta') \iff \exists \mu \in D^{1 \times 2}; \ \delta = \delta' + \mu R.$$

In particular, if $\delta = \mu R$, then $\pi_R(\delta) = \pi_R(0) = 0$.

Roesser (R) Model (simple case)

$$\diamond f_1 = (1 \quad 0), f_2 = (0 \quad 1)$$
 standard basis of $D^{1 \times 2}$.

$$\diamond y_1 = \pi_R(f_1), y_2 = \pi_R(f_2)$$
 are generators of M_R : indeed $m \in M_R$,

$$m = \pi_R(\delta) = \pi_R(\delta_1 f_1 + \delta_2 f_2) = \delta_1 \pi_R(f_1) + \delta_2 \pi_R(f_2) = \delta_1 y_1 + \delta_2 y_2.$$

♦ These generators satisfy *D*-linear relations:

$$(\sigma_{i} - a_{11}) y_{1} + (-a_{12}) y_{2} = (\sigma_{i} - a_{11}) \pi_{R}(f_{1}) + (-a_{12}) \pi_{R}(f_{2}),$$

$$= \pi_{R} ((\sigma_{i} - a_{11}) f_{1} + (-a_{12}) f_{2}),$$

$$= \pi_{R} ((\sigma_{i} - a_{11} - a_{12})),$$

$$= \pi_{R} ((1 0) R),$$

$$= 0.$$

Similarly,
$$(-a_{21}) y_1 + (\sigma_j - a_{22}) y_2 = \pi_R((0 \ 1) R) = 0.$$

$$\rightsquigarrow$$
 If $y = (y_1 \ y_2)^T$, then it yields $R y = 0$.

Equivalence of systems / Isomorphism of modules

- $\diamond D$ Ore algebra, $R \in D^{q \times p}$, $R' \in D^{q' \times p'}$ and \mathcal{F} a left D-module.
- \diamond Consider $\ker_{\mathcal{F}}(R)$ and $\ker_{\mathcal{F}}(R')$ and their associated D-modules $M = D^{1 \times p}/D^{1 \times q} R$ and $M' = D^{1 \times p'}/D^{1 \times q'} R'$.
- \diamond A D-(homo)morphism f from M to M' is a D-linear map s.t.:

$$\forall \, \delta_1, \, \delta_2 \in D, \, \forall \, m_1, \, m_2 \in M, \, f(\delta_1 \, m_1 + \delta_2 \, m_2) = \delta_1 \, f(m_1) + \delta_2 \, f(m_2).$$

- ♦ A *D*-morphism is an isomorphism if it is a bijective map.
- \diamond The systems $\ker_{\mathcal{F}}(R)$ and $\ker_{\mathcal{F}}(R')$ are equivalent iff there exists an isomorphism from M to M', i.e., $M \cong M'$.
- \rightsquigarrow Given two systems, a way to prove that they are equivalent is to exhibit an isomorphism between their associated D-module.

D-morphisms between f.p. D-modules

$$\diamond$$
 Let $M = D^{1 \times p}/(D^{1 \times q} R)$ and $M' = D^{1 \times p'}/(D^{1 \times q'} R')$

$$\diamond \exists f \in \hom_D(M, M') \Longleftrightarrow \exists P \in D^{p \times p'}, \ Q \in D^{q \times q'} \text{ s.t.}$$

$$RP = QR'$$
.

♦ Hence, we have the following commutative exact diagram

$$D^{1\times q} \xrightarrow{.R} D^{1\times p} \xrightarrow{\pi} M \longrightarrow 0$$

$$\downarrow Q \qquad \qquad \downarrow P \qquad \qquad \downarrow f$$

$$D^{1\times q'} \xrightarrow{.R'} D^{1\times p'} \xrightarrow{\pi'} M' \longrightarrow 0.$$

 $\diamond f \in \text{hom}_D(M, M')$ is defined by:

$$\forall \lambda \in D^{1 \times p}, \quad f(\pi(\lambda)) = \pi'(\lambda P).$$

Computing morphisms between f.p. D-modules

- \diamond Given R, R' as before, we must solve the equation RP = QR'
- ♦ For (R) and (FM) models, *D* is commutative
- ♦ In this case:
 - 1. $hom_D(M, M')$ inherits a *D*-module structure,
 - 2. we have algorithms for computing generators and relations,
 - 3. we have implementations in Maple (OREMORPHISMS) and Mathematica (OREALGEBRAICANALYSIS).

(based on Kronecker product and Gröbner bases computations)

 \rightsquigarrow We can thus compute (a representation of) all *D*-morphisms

Computing isomorphisms between f.p. *D*-modules

- \diamond Given a *D*-morphism f, i.e., given P and Q, we can compute:
 - 1. $S \in D^{r \times p}$ and $T \in D^{r \times q'}$ such that:

$$\ker_{D}\left(.(P^{T} R'^{T})\right) = D^{1\times r}(S - T),$$

- 2. $L \in D^{q \times r}$ such that R = LS,
- 3. $S_2 \in D^{r_2 \times r}$ such that $\ker_D(.S) = D^{1 \times r_2} S_2$.

(Gröbner bases computations \rightarrow syzygies, factorizations, ...)

- \diamond f isomorphism iff $\begin{pmatrix} L^T & S_2^T \end{pmatrix}^T$ and $\begin{pmatrix} P^T & R'^T \end{pmatrix}^T$ admit left inverses over D which can be checked effectively (Gröbner bases)
- → We have algorithms and implementations to check if a given morphism is an isomorphism

$(FM) \rightarrow (R)$ (simple case)

(FM):
$$y(i+1,j+1) = \alpha y(i+1,j) + \beta y(i,j+1) + \gamma y(i,j)$$

 \Rightarrow If we define $r(i,j) := y(i,j+1) - \alpha y(i,j)$, then we get:

$$r(i+1,j) = \beta r(i,j) + (\beta \alpha + \gamma) y(i,j).$$

$$\Rightarrow (R): \begin{cases} r(i+1,j) &= \beta r(i,j) + (\beta \alpha + \gamma) y(i,j) \\ y(i,j+1) &= r(i,j) + \alpha y(i,j) \end{cases}$$

Let us try to prove that these two models (systems) are equivalent.

$$(FM) \rightarrow (R)$$
 (simple case)

$$\diamond$$
 Let $D = K\langle \sigma_i, \sigma_j \rangle$ with $K = \mathbb{Q}(\alpha, \beta, \gamma)$

♦ The matrices corresponding to (FM) and (R) are resp. given by:

$$F = (\sigma_i \, \sigma_j - \alpha \, \sigma_i - \beta \, \sigma_j - \gamma) \in D,$$

$$R = \begin{pmatrix} \sigma_i - \beta & -(\beta \alpha + \gamma) \\ -1 & \sigma_j - \alpha \end{pmatrix} \in D^{2 \times 2}.$$

♦ The corresponding *D*-modules are resp. given by:

$$M_F = D/(DF), \quad M_R = D^{1\times 2}/(D^{1\times 2}R).$$

Let us exhibit an isomorphism from M_F to M_R .

$$(FM) \rightarrow (R)$$
 (simple case)

 \rightsquigarrow A *D*-morphism $f \in \text{hom}_D(M_F, M_R)$ is given by

$$\forall \lambda \in D, \quad f(\pi_F(\lambda)) = \pi_R(\lambda P),$$

where $P \in D^{1 \times 2}$ is such that $\exists Q \in D^{1 \times 2}$ with FP = QR.

$$0 \longrightarrow D \xrightarrow{.F} D \xrightarrow{\pi_F} M_F \longrightarrow 0$$

$$\downarrow .Q \qquad \qquad \downarrow .P \qquad \qquad \downarrow f$$

$$0 \longrightarrow D^{1\times 2} \xrightarrow{.R} D^{1\times 2} \xrightarrow{\pi_R} M_R \longrightarrow 0.$$

 \diamond Using OREMORPHISMS, we find that $\hom_D(M_F, M_R)$ is generated by f_1 and f_2 resp. defined by:

$$f_1(\pi_F(\lambda)) = \pi_R(\lambda \underbrace{(1 \quad 0)}_{P_1}), \quad f_2(\pi_F(\lambda)) = \pi_R(\lambda \underbrace{(0 \quad 1)}_{P_2}).$$

$$(FM) \rightarrow (R)$$
 (simple case)

- ♦ Consider the second generator f_2 defined by $P_2 = (0 \quad 1) \in D^{1 \times 2}$.
- \diamond We have $FP_2 = Q_2R$ with $Q_2 = (1 \quad \sigma_1 \beta)$.
- ♦ We find:

$$\ker_{D}\left(\underbrace{\begin{pmatrix} 0 & 1 \\ \sigma_{1} - \beta & -\beta \alpha - \gamma \\ -1 & \sigma_{2} - \alpha \end{pmatrix}}_{(P_{2}^{T} - R^{T})^{T}}\right) = D\left(\underbrace{-\alpha \sigma_{1} - \beta \sigma_{2} + \sigma_{1} \sigma_{2} - \gamma}_{S} \underbrace{-1 & -\sigma_{1} + \beta }_{-T}\right)$$

$$\diamond F = \underbrace{1}_{L} S, \text{ ker}_{D}(.S) = 0, 1.L = 1 \Rightarrow f_{2} \text{ is injective.}$$

$$\diamond \begin{pmatrix} \sigma_{2} - \alpha & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \sigma_{1} - \beta & -\beta \alpha - \gamma \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow f_{2} \text{ is surjective.}$$

 $\rightsquigarrow f_2$ isomorphism from M_F to M_R so that $M_F \cong M_R$, i.e., the systems (FM) and (R) are equivalent

$$(R) \rightarrow (FM)$$
 (simple case)

(R):
$$\begin{cases} r(i+1,j) = a_{11} r(i,j) + a_{12} s(i,j) \\ s(i,j+1) = a_{21} r(i,j) + a_{22} s(i,j) \end{cases}$$

 \diamond Assuming that a_{21} admits a left inverse a_{21}^{-1} , we have:

$$r(i,j) = a_{21}^{-1} (s(i,j+1) - a_{22} s(i,j)),$$

so that

$$s(i+1,j+1) = a_{21} r(i+1,j) + a_{22} s(i+1,j),$$

= $a_{21} (a_{11} r(i,j) + a_{12} s(i,j)) + a_{22} s(i+1,j),$

$$\rightsquigarrow (\text{FM}): \begin{cases} s(i+1,j+1) = a_{22} \, s(i+1,j) + a_{21} \, a_{11} \, a_{21}^{-1} \, s(i,j+1) \\ + \left(a_{21} \, a_{12} - a_{21} \, a_{11} \, a_{21}^{-1} \, a_{22}\right) s(i,j) \end{cases}$$

Let us try to prove that these two models (systems) are equivalent.

$$(R) \rightarrow (FM)$$
 (simple case)

 \diamond To simplify, we suppose that the a_{ij} 's are scalars with $a_{21} \neq 0$.

$$\diamond$$
 Let $D = K\langle \sigma_i, \sigma_j \rangle$ with $K = \mathbb{Q}(a_{11}, a_{12}, a_{21}, a_{22})$

♦ The matrices corresponding to (R) and (FM) are resp. given by:

$$R = \begin{pmatrix} \sigma_i - a_{11} & -a_{12} \\ -a_{21} & \sigma_j - a_{22} \end{pmatrix} \in D^{2 \times 2}.$$

$$F = (\sigma_i \, \sigma_j - \mathsf{a}_{22} \, \sigma_i - \mathsf{a}_{11} \, \sigma_j - (\mathsf{a}_{21} \, \mathsf{a}_{12} - \mathsf{a}_{11} \, \mathsf{a}_{22})) \in D,$$

♦ The corresponding *D*-modules are resp. given by:

$$M_R = D^{1\times 2}/(D^{1\times 2}R), \quad M_F = D/(DF).$$

Let us exhibit an isomorphism from M_R and M_F .

$$(R) \rightarrow (FM)$$
 (simple case)

 \rightsquigarrow A *D*-morphism $f \in \text{hom}_D(M_R, M_F)$ is given by

$$\forall \lambda \in D^{1 \times 2}, \quad f(\pi_R(\lambda)) = \pi_F(\lambda P),$$

where $P \in D^2$ is such that $\exists Q \in D^2$ with RP = QF.

$$0 \longrightarrow D^{1\times 2} \xrightarrow{.R} D^{1\times 2} \xrightarrow{\pi_R} M_R \longrightarrow 0$$

$$\downarrow .Q \qquad \qquad \downarrow .P \qquad \qquad \downarrow f$$

$$0 \longrightarrow D \xrightarrow{.F} D \xrightarrow{\pi_F} M_F \longrightarrow 0.$$

 \diamond Using OREMORPHISMS, we find that $\hom_D(M_F, M_R)$ is generated by f_1 and f_2 resp. defined by: $\forall \lambda = (\lambda_1 \quad \lambda_2) \in D^{1 \times 2}$:

$$f_1(\pi_R(\lambda)) = \pi_F(\lambda \underbrace{(\sigma_2 - a_{22} \quad a_{21})^T}_{P_1}) = \pi_F(\lambda_1 (\sigma_2 - a_{22}) + \lambda_2 a_{21}),$$

$$f_2(\pi_R(\lambda)) = \pi_F(\lambda \underbrace{\left(a_{12} \quad \sigma_1 - a_{11}\right)^T}) = \pi_F(\lambda_1 \left(a_{12}\right) + \lambda_2 \left(\sigma_1 - a_{11}\right)).$$

$$(R) \rightarrow (FM)$$
 (simple case)

 \diamond Consider the 1st gen. f_1 given by $P_1 = (\sigma_2 - a_{22} \quad a_{21})^T \in D^2$.

$$\ker_{D}\left(\underbrace{\begin{pmatrix} \sigma_{2} - a_{22} \\ a_{21} \\ a_{22} a_{11} - a_{11} \sigma_{2} - a_{12} a_{21} - a_{22} \sigma_{1} + \sigma_{1} \sigma_{2} \end{pmatrix}}_{(p_{1}^{T} - R^{T})^{T}}\right) = D\left(\underbrace{\begin{pmatrix} -a_{21} & \sigma_{2} - a_{22} & 0 \\ \sigma_{1} - a_{11} & -a_{12} & -1 \\ S & -T \end{pmatrix}}_{S}\right)$$

$$\diamond R = \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{S, \text{ ker}_{D}(.S)} = 0, L.L = I_{2} \Rightarrow f_{1} \text{ is injective.}$$

$$\left(\begin{array}{ccc} \sigma_2 - a_{22} & & & \\ 0 & a_{21}^{-1} & 0 \end{array} \right) \left(\begin{array}{ccc} \sigma_2 - a_{22} & & & \\ & a_{21} & & \\ & & & \\ a_{22} \ a11 - a_{11} \ \sigma_2 - a_{12} \ a_{21} - a_{22} \ \sigma_1 + \sigma_1 \ \sigma_2 \end{array} \right) = 1 \Rightarrow f_1 \text{ is surjective}$$

 \rightsquigarrow f_1 isomorphism from M_R to M_F so that $M_R \cong M_F$, i.e., the systems (R) and (FM) are equivalent

$(R) \rightarrow (FM)$ (simple case) : some remarks

- \diamond The morphism f_2 also defines an isomorphism.
- \diamond If $a_{21}=0$, but $a_{12}\neq 0$, then a similar process can be applied.
- \diamond If a_{21} and a_{12} both do not admit a left inverse, then we can always consider the following (FM) model associated with (R):

$$u(i+1,j+1) = \begin{pmatrix} a_{11} & a_{12} \\ 0 & 0 \end{pmatrix} u(i,j+1) + \begin{pmatrix} 0 & 0 \\ a_{21} & a_{22} \end{pmatrix} u(i+1,j),$$

with $u = (r \ s)^T$.

However, the two models do not seem to be equivalent: intuitively, we would have to use the inverses of the σ_i 's that are not in D.

General case (with control)

 \diamond We add control terms u:

(FM):
$$\begin{cases} y(i+1,j+1) = \alpha \ y(i+1,j) + \beta \ y(i,j+1) + a \ y(i,j) \\ + \gamma \ u(i+1,j) + \delta \ u(i,j+1) + b \ u(i,j) \end{cases}$$

(R):
$$\begin{cases} r(i+1,j) = a_{11} r(i,j) + a_{12} s(i,j) + b_1 u(i,j) \\ s(i,j+1) = a_{21} r(i,j) + a_{22} s(i,j) + b_2 u(i,j) \end{cases}$$

$(FM) \rightarrow (R)$ (general case)

(FM):
$$\begin{cases} y(i+1,j+1) = \alpha y(i+1,j) + \beta y(i,j+1) + a y(i,j) \\ + \gamma u(i+1,j) + \delta u(i,j+1) + b u(i,j) \end{cases}$$

If we define

$$r(i,j) := y(i,j+1) - \alpha y(i,j) - \gamma u(i,j), \quad v(i,j) = u(i,j+1) - \gamma u(i,j),$$

then we get:

$$r(i+1,j) = \beta r(i,j) + (\beta \alpha + a) y(i,j) + (\delta \gamma + \beta \gamma + b) u(i,j) + \delta v(i,j).$$

$$\begin{cases} r(i+1,j) = \beta r(i,j) + (\beta \alpha + a) y(i,j) + (\delta \gamma + \beta \gamma + b) u(i,j) + \delta v(i,j) \\ y(i,j+1) = r(i,j) + \alpha y(i,j) + \gamma u(i,j) \\ u(i,j+1) = \gamma u(i,j) + v(i,j) \end{cases}$$

Let us try to prove that these two models (systems) are equivalent.

$$(FM) \rightarrow (R)$$
 (general case)

- \diamond Let $D = K\langle \sigma_i, \sigma_j \rangle$ with $K = \mathbb{Q}(\alpha, \beta, \gamma, \delta, a, b)$
- ♦ The matrices corresponding to (FM) and (R) are resp. given by:

$$F = (\sigma_1 \, \sigma_2 - \alpha \, \sigma_1 - \beta \, \sigma_2 - a \quad -\gamma \, \sigma_1 - \delta \, \sigma_2 - b) \in D^{1 \times 2}.$$

$$R = \begin{pmatrix} \sigma_1 - \beta & -(\beta \alpha + a) & -(\delta \gamma + \beta \gamma + b) & -\delta \\ -1 & \sigma_2 - \alpha & -\gamma & 0 \\ 0 & 0 & \sigma_2 - \gamma & -1 \end{pmatrix} \in D^{3 \times 4},$$

♦ The corresponding *D*-modules are resp. given by:

$$M_F = D^{1\times 2}/(DF), \quad M_R = D^{1\times 4}/(D^{1\times 3}R).$$

Let us exhibit an isomorphism from M_F and M_R .

$$(FM) \rightarrow (R)$$
 (general case)

Proceeding as before, we find that the morphism given by

$$P = \left(\begin{array}{ccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right) \in D^{2 \times 4},$$

defines an isomorphism from M_F to M_R .

→ The two systems (FM) and (R) are equivalent

$(R) \rightarrow (FM)$ (general case)

(R):
$$\begin{cases} r(i+1,j) = a_{11} r(i,j) + a_{12} s(i,j) + b_1 u(i,j) \\ s(i,j+1) = a_{21} r(i,j) + a_{22} s(i,j) + b_2 u(i,j) \end{cases}$$

 \diamond Assuming the coefficient a_{21} admits a left inverse a_{21}^{-1} , we get:

$$\text{FM}): \begin{cases} s(i+1,j+1) = a_{22} \, s(i+1,j) \\ + \, a_{21} \, a_{11} \, a_{21}^{-1} \, s(i,j+1) \\ + \, (a_{21} \, a_{12} - a_{21} \, a_{11} \, a_{21}^{-1} \, a_{22}) \, s(i,j) \\ + \, b_2 \, u(i+1,j) \\ + \, (a_{21} \, b_1 - a_{21} \, a_{11} \, a_{21}^{-1} \, b_2) \, u(i,j) \end{cases}$$

Let us try to prove that these two models (systems) are equivalent.

$$(R) \rightarrow (FM)$$
 (general case)

 \diamond To simplify, we suppose that the a_{ij} 's are scalars with $a_{21} \neq 0$.

$$\diamond$$
 Let $D = K\langle \sigma_i, \sigma_j \rangle$ with $K = \mathbb{Q}(a_{11}, a_{12}, a_{21}, a_{22}, b_1, b_2)$

♦ The matrices corresponding to (R) and (FM) are resp. given by:

$$R = \begin{pmatrix} \sigma_1 - a_{11} & -a_{12} & -b_1 \\ -a_{21} & \sigma_2 - a_{22} & -b_2 \end{pmatrix} \in D^{2 \times 3},$$

$$F = \begin{pmatrix} \sigma_1 \, \sigma_2 - a_{22} \, \sigma_1 - a_{11} \, \sigma_2 - (a_{21} \, a_{12} - a_{11} \, a_{22}) \\ -b_2 \, \sigma_1 - (a_{21} \, b_1 - a_{11} \, b_2) \end{pmatrix}^T \in D^{1 \times 2}.$$

♦ The corresponding *D*-modules are resp. given by:

$$M_R = D^{1\times3}/(D^{1\times2} R), \quad M_F = D^{1\times2}/(D F).$$

Let us exhibit an isomorphism from M_R and M_F .

$$(R) \rightarrow (FM)$$
 (general case)

Proceeding as before, we find that the morphism given by

$$P = \begin{pmatrix} \sigma_2 - a_{22} & -b_2 \\ a_{21} & 0 \\ 0 & a_{21} \end{pmatrix} \in D^{3 \times 2},$$

defines an isomorphism from M_R to M_F .

- → The two systems (R) and (FM) are equivalent
- \diamond If $a_{21}=0$, but $a_{12}\neq 0$, then a similar process can be applied.

Conclusions

- ♦ We illustrate the use of the algebraic analysis approach to linear systems theory to prove the equivalence of (FM) and (R) models.
- \diamond Computations performed without dividing by the coeffs a_{ij} 's, . . .
- ⇒ This can be generalized to matrix coefficients.
- ♦ We prove:
 - (FM) can always be studied by means of an equivalent (R),
 - (R) can be studied by means of an equivalent (FM) if we assume that one coeff. $(A_{12} \text{ or } A_{21})$ admits a left inverse.
- \diamond Can we find a (FM) model equivalent to a (R) model where A_{12} and A_{21} both do not admit a left-inverse?

(R):
$$\begin{cases} r(i+1,j) = A_{11} r(i,j) + A_{12} s(i,j) \\ s(i,j+1) = A_{21} r(i,j) + A_{22} s(i,j) \end{cases}$$