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Algebraic Analysis Approach to Linear Systems Theory:
Methodology

—

. A linear system is defined by a matrix R with coefficients in a
ring D of functional operators:

Ry =0. (%)

To (%) we associate a left D-module M (finitely presented).
There exists a dictionary between the properties of (x) and M.

Homological algebra allows to check the properties of M.

AN

Effective algebra (non-commutative Grébner/Janet bases)
gives algorithms.

6. Implementation (Maple, Mathematica, Singular/Plural,
Cocoa, GAP4/homalg .. .).



Roesser (R) Model (simple case)

(i +1,)) = aur(i,j)+ a2s(i,))
(R) { S(I',j+1) = an r(l',j)+3225("7j)

¢ To simplify the coeffs a;; are assumed to be constants in K.

o D = K{oj,0j) (commutative) ring of partial shift operators with
constant coefficients in K:

§€D, 6= dyofol, du(i,j)=> duuli+kj+]).
kil ek kI

¢ The (R) model can then be written Ry = 0 with

R:<Gi—a11 —ai >€D2><2’ y:<f(':7j:)>‘
—ani oj — an s(i,J)



Fornasini-Marchesini (FM) Model (simple case)

(FM): y(i+1,j+1) =ay(i+1,j)+By(i,j+1) +vy(i,Jj)

o To simplify the coeffs «, 3, v are assumed to be constants in K:

§€D,6=Y duofal, Sy(i,j)=> duy(i+kj+1).
kil ek k.l

o D = K(oj,0/) (commutative) ring of partial shift operators with

constant coefficients in K.
o The (FM) model can thus we written F y = 0 with

F=(oiocj—aoi—pBoj—y)eD, y=(y(xt)).



The left D-module M

¢ D Ore algebra of functional operators, R € D9*P and a left
D-module F (the functional space).

o Consider the linear system (behavior)

kerr(R.) ={ne FP | Rn=0}.

o To kerz(R.) we associate the left D-module:
M = D™*P/(D'*9R)

given by the finite presentation

.R
D1x4 L ope oM — 0,

Theorem [Malgrange]:
kerr(R.) =2 homp(M,F) = {f : M — F, fis left D-linear}.



Roesser (R) Model (simple case)
D= Klojo), R= ( oj—an A > c D22,
—ax1 O —ax

pLx2 i) pLx2
(01,02) +——= (91 (oj —a11) +62(—az1) O1(—a12)+ d2(0j — ax)).
~~ Associated left D-module Mg = D'*2/D'*2 R,

D2 B Mg,
(5:(51,52) — 7TR(5).

o mR(0) residue class of § in Mg, i.e.,
7r(6) = mr(8) <= I e D% § =0 + uR.

In particular, if 6 = p R, then mx(5) = mr(0) = 0.



Roesser (R) Model (simple case)
ofip=(1 0), = (0 1)standard basis of D1*2,
o y1 =7r(f), y2 = mr(f2) are generators of Mg: indeed m € Mg,
m = 7r(0) = mr(01 A+02 K) = 1 Tr(F)+d2TR(F2) = 61 Y1102 y2.
© These generators satisfy D-linear relations:

(ci—an)yi+(—a2)y = (oi—aun)mr(f)+ (—a12) 7r(f),
= wr((oi—a11) A + (—a2) ),
= 7r((oi—ann —a12)),
= 7r((1 0)R),
= 0.

Similarly, (—321)y1 + (Uj — 822)y2 = 7TR((O 1) R) =0.

~1fy=(y1 y2)7, then it yields Ry = 0.



Equivalence of systems / Isomorphism of modules
o D Ore algebra, R € D9*P, R’ ¢ D9 *P" and F a left D-module.

o Consider kerz(R.) and kerz(R’.) and their associated D-modules
M = D¥P/D¥ 4 R and M' = D1*P' /D19 R/,

o A D-(homo)morphism f from M to M’ is a D-linear map s.t.:
Vo1, 0 € D, Vmy, my € M, f(51 my+02 m2) =0 f(m1)+52 f(mz).
o A D-morphism is an isomorphism if it is a bijective map.

o The systems ker z(R.) and kerz(R'.) are equivalent iff there
exists an isomorphism from M to M', i.e.,, M = M.

~ Given two systems, a way to prove that they are equivalent is to
exhibit an isomorphism between their associated D-module.



D-morphisms between f.p. D-modules
o Let M = D¥P/(DY*9 R) and M’ = D**F' /(D*9" R)
o 3f € homp(M, M') <= 3P € DP*P'| Q € DI*Y st.

RP=QR.
¢ Hence, we have the following commutative exact diagram

pixa R pixp Ty 0

|0 | lf

/ ’
ptxd K plxr’ T 0

o f € homp(M, M’) is defined by:

YAxe DY™P f(x(N\) =7 (AP).



Computing morphisms between f.p. D-modules

¢ Given R, R’ as before, we must solve the equation RP = Q R’
o For (R) and (FM) models, D is commutative

¢ In this case:
1. homp(M, M) inherits a D-module structure,
2. we have algorithms for computing generators and relations,

3. we have implementations in Maple (OREMORPHISMS) and
Mathematica (OREALGEBRAICANALYSIS).

(based on Kronecker product and Grébner bases computations)

~» We can thus compute (a representation of) all D-morphisms



Computing isomorphisms between f.p. D-modules

o Given a D-morphism f, i.e., given P and @, we can compute:
1. Se D™Pand T € D™9 such that:

kerp <.(PT R’T)> = DY (S —T),

2. L€ D9 such that R= LS,

3. S, € D%’ such that kerp (.S) = D> S,.
(Grobner bases computations — syzygies, factorizations, .. .)
o f isomorphism iff (LT SZT)T and (PT R’T)T admit left
inverses over D which can be checked effectively (Grobner bases)

~» We have algorithms and implementations to check if a given
morphism is an isomorphism



(FM) — (R) (simple case)

(FM): y(i+1,j+1) = ay(i+ 1))+ By(i,j+ 1) +vy(i.J)
o If we define r(i,)) == y(i,j + 1) — ay(i,j), then we get:

r(i+1,5) = Br(i,j) + (Ba+7)y(i.)).

— . r(i+17j) - ﬂr(l,_j)“r(ﬂ()é—l—’}/))/(l,_j)
(R): { yij+1) = r(if)+ay(if)

Let us try to prove that these two models (systems) are equivalent.



(FM) — (R) (simple case)
o Let D = K(oj,0j) with K = Q(a, 5,7)
© The matrices corresponding to (FM) and (R) are resp. given by:

F=(ciocj—aoci—Boj—v) €D,

R — < oi —p *(BO‘JV’Y) ) ED2X2.

-1 O'J'—Oé

¢ The corresponding D-modules are resp. given by:

Mg =D/(DF), Mgr=DY?/(D?R).

Let us exhibit an isomorphism from Mg to Mg.



(FM) — (R) (simple case)
~» A D-morphism f € homp(Mg, Mg) is given by

VAeD, f(re(N\)=nmr(AP),

where P € D'*2 is such that 3Q € D*2 with FP = QR.

TF

0 p—F .p Mr 0

lo |

0— > D1x2i>D1><2 _"R_ Mg ——0.

o Using OREMORPHISMS, we find that homp (Mg, MRg) is
generated by f; and £, resp. defined by:

A(rr(N) = mr(A (1 0)), R(7r(A) = 7r(A (0 1)).
—— ——

Py P>



(FM) — (R) (simple case)
o Consider the second generator £, defined by P, = (0 1) € D**2.
o We have F P, = Q> R with @ = (1 o1 —B)

o We find:

0 1
kerp | . oy — B —Ba—~ D(—a01—502+6102—7 -1 —0'1+/3)
-1 oy — s -T

(r] RTT

oF=_1 S, kerp(.S) =0, 1.L =1 = £ is injective.

0 1
opg—a 0 -1 1 0
o o1 — B —Ba—7xy = ( 0 1 > = f is surjective.
1 0 0

—1 oy —

~> f» isomorphism from Mg to Mg so that Mg = Mg, i.e., the
systems (FM) and (R) are equivalent



(R) — (FM) (simple case)
R): I’(I+17_/) - allf(i,_j)+3125(i,j)
(R): 1) = e U
s(i,j+1) = apnr(i,j)+ axs(i,))
© Assuming that ap; admits a left inverse 32_11, we have:
r(i,j) = a5 (s(ij+1) — a2 s(i,J))
so that
S(I + 13./ + 1) = a1 I’(I + 17./) + an2 S(I + 1aj)a

= a1 (a11 r(i,j) + a12s(i,j)) + ax s(i + 1,),

s(i+1,j+1) = app s(i + 1,j) + ap1 a11 a5, (i, j + 1)

+ (@21 @12 — az1 a11 3511 a)s(i,J)

~ (FM): {

Let us try to prove that these two models (systems) are equivalent.



(R) — (FM) (simple case)
¢ To simplify, we suppose that the aj;'s are scalars with a>; # 0.

o Let D = K<U,‘,Uj> with K = @(311,312,321,322)

© The matrices corresponding to (R) and (FM) are resp. given by:

g;j— a —a
R— i 11 12 c D22,
—ap1  Oj—ax

F=(0ioj—axnoj—ai1oj— (ax a2 — a11 ax)) € D,

¢ The corresponding D-modules are resp. given by:

Mg = D**2/(DY*2R), Mg = D/(DF).

Let us exhibit an isomorphism from Mg and ME.



(R) — (FM) (simple case)
~» A D-morphism f € homp(Mg, Mg) is given by
VAe D2 f(rr(\) = nr(AP),
where P € D? is such that 3Q € D? with RP = QF.

0*>D1X2;R>D1X2LMR*>O

L.Q l.P |

0 D—F . p_" M 0.

o Using OREMORPHISMS, we find that homp(Mg, Mg) is

generated by f; and £ resp. defined by: VA = (A1 \p) € DY*2:

fi(mr(N) = TE(\ (02 — a2 a1)") = mr(A1 (02 — a20) + A2 a21),
Py

H(mr(N) = () (212 o1 —a11)") = (1 (a12)+ A2 (01—a11)).
P>




(R) — (FM) (simple case)

o Consider the 1st gen. f; given by P; = (02 — a2 321)T e D?.

02 —ax
—az o —an 0
kerp | . asy =D
o1 —ajg —ar2 -1

app all — aj; 0p — agpag; — azp 01 + 0102 — —— e~
S -7

(rf RTHT

01
o R = ( o ) S, kerp(.S) =0, L.L = I, = f; is injective.

—_——
L

o2 —az
( 0 32171 0 ) azg =1 = fiis surjective

agp all —aj; 09 —ajpap; —axp o1+ 0102

~> f1 isomorphism from Mg to Mg so that Mg = Mg, i.e., the
systems (R) and (FM) are equivalent



(R) — (FM) (simple case) : some remarks

¢ The morphism f, also defines an isomorphism.
o If ap;1 = 0, but aj» # 0, then a similar process can be applied.

o If a1 and ajp both do not admit a left inverse, then we can
always consider the following (FM) model associated with (R):

. . o a1l di1? .. 0 0 . .
1) = (5% a2 ) ) i)
with v = (r s)".

However, the two models do not seem to be equivalent: intuitively,
we would have to use the inverses of the o;'s that are not in D.



General case (with control)

o We add control terms u:

(FM): y(i+1,j+1)=ay(i+1,j)+By(i,j+1)+ay(i))
' +yu(i+1,) + 6 u(i,j+ 1)+ bu(i,))

(R) { F(I+1,j) = 311f(i,j)+3]_25(i,j)+b]_U(i,j)
U s(ij+ 1) = anr(i,j) + axs(i,j) + bou(i,))



(FM) — (R) (general case)

engy, { YU LI = 0+ 1))+ (i + 1) + 236
' +yu(i+1,7)+6u(i,j+1)+ bu(i,j)
o If we define
r(l-v.j) = y(I,J—Fl)—ay(I,J)—"}/ U(I-,_j), V(Ia./) - u(la./—"_]')_ﬁy U(i,_j),
then we get:
r(i+1,j) = Br(i,j)+(B a+a) y(i,))+(0v+By+b) u(i,j)+d v(i,j).
~ (R):
r(l+1/./) :ﬁl’(l',_]')+([)’(1+a)y(i,j)+(5’7+/))7+b) u(i,j)+5v(i,j)
y(i,j+1)=r(i,j)+ay(i,j)+~yu(ij)
u(ij+1)=~yu(i,j)+v(i,j)

Let us try to prove that these two models (systems) are equivalent.



(FM) — (R) (general case)
o Let D = K(oj,0j) with K = Q(«, 3,7,6,a, b)
¢ The matrices corresponding to (FM) and (R) are resp. given by:
F:(0102—(101—502—a —701—(502—b)€D1X2.
o1—f8 —(Ba+a) —(6y+By+b) —6

R = -1 0y — — 0 e D34,
0 0 oy — 7y -1

¢ The corresponding D-modules are resp. given by:

Mg = DV?/(DF), Mg=D"*/(DVR).

Let us exhibit an isomorphism from Mg and Mg.



(FM) — (R) (general case)

¢ Proceeding as before, we find that the morphism given by

. 0100 o gt
0010 ’

defines an isomorphism from Mg to Mg.

~> The two systems (FM) and (R) are equivalent



(R) — (FM) (general case)

(R) { r(l+17./) - 3]_1r(i,j)+3125(i,_j)+b]_u(l../_j')
. 5(’7J+1) - 321f(i,j)+322S(i,j)+b2U(i,j)

¢ Assuming the coefficient a1 admits a left inverse a;ll, we get:

s(i+1,j+1)=axns(i+1,j))

+ as1 a1l a;ll s(i,j+1)
~ (FM): + (a1 a12 — a21 a11 a5y a22) s(7, f)
+ byu(i +1,j)

+ (a1 b1 — a1 a11 32_11 ba) u(i, )

Let us try to prove that these two models (systems) are equivalent.



(R) — (FM) (general case)

¢ To simplify, we suppose that the aj;'s are scalars with a>; # 0.

o Let D = K<U,‘,Uj> with K = @(311,312,321,322, b1, bg)

© The matrices corresponding to (R) and (FM) are resp. given by:

o1 — a —ai2 —b1
R_ 1— a1 € D3,
—ax1  O2—axp —b

-
F_ 0102 — ax o1 — ai1 02 — (@21 a2 — a1 ax) c pix2
—bo o1 — (az1 b1 — a11 b2)

¢ The corresponding D-modules are resp. given by:

Mg = D¥3/(D™*R), Mg = D" ?/(DF).

Let us exhibit an isomorphism from Mg and ME.



(R) — (FM) (general case)

¢ Proceeding as before, we find that the morphism given by

o2 —ax —bo
P = ari 0 c D3><27

0 aoi

defines an isomorphism from Mg to ME.
~» The two systems (R) and (FM) are equivalent

o If ap1 = 0, but aj» # 0, then a similar process can be applied.



Conclusions

© We illustrate the use of the algebraic analysis approach to linear
systems theory to prove the equivalence of (FM) and (R) models.

¢ Computations performed without dividing by the coeffs aj's, ...
= This can be generalized to matrix coefficients.

o We prove:
e (FM) can always be studied by means of an equivalent (R),

¢ (R) can be studied by means of an equivalent (FM) if we
assume that one coeff. (A2 or Az1) admits a left inverse.

o Can we find a (FM) model equivalent to a (R) model where A;»
and Ap; both do not admit a left-inverse?

. r(,_l'_l’j) = Allr(l',j)+A125(i7j)
(R): { s(i,j+1) = Axr(i,j)+ Axs(i,j)



