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A Discrete State-Space Model
for Linear Image Processing

ROBERT P. ROESSER, MEMBER, IEEE

Abstract—The linear time-discrete state-space model is generalized
from single-dimensional time to two-dimensional space. The generalization
includes extending ceriain basic known concepts from one to two di-
menstons. These concepts include the general response formule, state-
transition matrix, Cayley—Hamilton theorem, observability, and controlla-
bilicy.

I. INTRODUCTION

MAGE processing by noncptical means has been re-

ceiving extensive attention in the last few years. Several
books, e.g., [t]{3] and many papers, e.g., [4|{6], have
been published that have established nonoptical image
processing as a viable area of research. A large portion of
this research emphasizes the linear processing of images
for two main reasons: 1) Many image processing tasks are
linear in nature. These tasks include image enhancement,
image restoration, picture coding, linear pattern recogni-
tion, and TV bandwidth reduction. 2) There are many
known linear techniques that may be brought to bear in
the treatment of linear image processing, and therefore
simplify such treatment. These techniques include trans-
form theory, matrix theory, superposition, etc.

Several ways are commonly used to represent the opera-
tions involved in image processing. These include transfer
functions, partial difference (recursive) equations, and
convolution summations. For example, VanderLugt [7],
[11] has presented an extensive development of linear
optics based on transfer functions, The transfer functions
relate the two-dimensional Fourier transform of an output
nnage to that of the input image. Complex optical systems
are easily described by combinations of transfer functions
that correspond to individual components of the optical
system,

Partial difference equations are used by Habibi [6] to
describe a model for estimating images corrupted by
noise. The model corresponds to a two-dimensional exten-
sion of Kalman filters.

Convolution summations are discussed by Fryer and
Richmond [5] in work that involves simplifying a two-
dimensional filter to a single-dimensional filter.

The time-discrete state-space model offers great utility
in the formulation and analysis of linear systems. Linear
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systems that are described by transfer functions,
difference equations, or convolution summations are easi-
ily formulated into a state-space representation. Once so
formulated, many known techniques may be applied to
systematically analyze the model. Consequently, the state-
space model is a general and powerful tool that is used to
unify the research and study of time-discrete linear SYys-
tems, '

This paper develops a discrete model for linear image
processing that closely parallels the well-known state-
space model for time-discrete systems. Because of this
parallel many of the concepts that are known for the
temporal model may be carried over to the spatial model.
This 1s done by generalizing from a single coordinate in
time to two coordinates in space. The spatial model will
hopefully have some of the same utility in unifying the
study of two-dimensional linear systems as does the tem-
poral model for one-dimensional linear systems.

Temporal systems are inherently nonanticipatory and
are often treated as such for the sake of physical realiza-
bility in real time; whereas spatial systems do not have
causality as an inherent limitation. That is, an image
processor may have right to left dependency as well as left
to right dependency. Causality is built into the temporal
state-space model if an initial state is assumed to be fully
specified. In order to establish a close parailel for the
spatial model the same built-in causality will be intention-
ally assumed despite the fact that causality is not ne-
cessary for physical realizability in real space. Such an
image processor is said to be unilateral. If the constraint
of causality is removed, then an image processor is said to
be bilateral.

Concepts that are developed in this paper include 1)
formulation of the state-space model, 2) the definition of a
state-transition matrix, 3) the derivation of a general re-
sponse formula, 4) a two-dimensional parallel to the
Cayley-Hamilton theorem, 5) observability and con-
trolability, and 6) computation of the state-transition
matrix. Some of these concepts are based upon an exten-
sion of published material on linear iterative circuits
coauthored by this writer [8], [9]. A finite field is assumed
in the case of iterative circuits, whereas a real field is
assumed for image processing. One particular concept, the
two-dimensional Cayley-Hamilton theorem, is treated in
{9]. An interesting alternative proof to the theorem is the
topic of a paper published by Vilfan [10}.



II. Tue MoODEL

An image is a generalization of a temporal signal in that
it is defined over two spatial dimensions instead of a
single temporal dimension. Consequently, two space
coordinates i and ; take the place of time . Also two-state
sets are introduced to replace the single-state set. The
following definitions are made for the model.

{ An integer-valued vertical coordinate,
J An integer-valued horizontal coordinate.
{R} A set of real n,-vectors which convey informa-

tion vertically.

(S} A set of real ny-vectors which convey informa-
tion horizontally.

{1} A set of real p-vectors that act as inputs.

{»} A set of real m-vectors that act as outputs.

A specific image processor is then defined as a 6-tuple
<{R}, {8}, {u}, {¥}, . g> where f is the next state
function;

SHRYX{S ) {u} (R} x{S)
and g is the output function;
g {RIX{S}x{u}=>{y}.

Now, since f and g are to be linear functions they may be
represented by the following matrix equations:

R(i+1j)=A,R(i.j)+ 4,8(i. /) + Bu(i )
S+ 1y =A3R{i.j)+ 4,5(i,j) + Byu(i,j)

y(’:’f)=CiR(l’J’)-"C2S(IJ)+DH(,'J)3 ‘J}O

Ay Ay Ay, Ay B\, By, C,, C,, D are matrices of
appropriate dimensions. Boundary conditions R(0,/) and
S(,0) and also the input u(i, /) are externally specified. In
the next section a computational rule is obtained that
uniquely determines the states R(i,j} and S(ij) and also
the output y(i,j) (for i, >0) from the boundary condi-
tions and inputs, Thus given values for the boundary
conditions (such as all zero) the equations produce an
output vector image from an input vector image. This
formulation is general so that any discrete linear image
process may be so represented. Notation is condensed
somewhat by introducing the following matrices and vec-
tors:

A3 A4 ‘82
S(i.g}) S(ij+1)

Then
T'(ijy=AT(i,j)+ Bu(i,j)

y ()= CT(i,)) + Du(ij).
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I11. GEnNErAL RESPONSE FORMULA

A state-transition matrix 4 is defined as follows.
Definition: For

A= 4104174 4001 500,0)

A0.0=1'

A—"J=A"‘—J'=(], forjz1,i=1.

Examination of this definition bears out that it is an
effective recursive definition for integer values of 7 and y2
such that either i >0 or j >0 or (i,/)= (0, 0). It parallels the
definition of the time-discrete state-transition matrix A*
=A4'4"71

It is now to be shown that this state-transition matrix,
A*/, may be used in an expression for the response of the
model in terms of the inputs and boundary conditions.
The term boundary conditions is used here to refer to the
States along the edges of the model. Specifically, the set of
boundary conditions consist of R(0,/) for />0 and $(i,0)
forizo,

Definition: The following partial ordering is used for
integer pairs:

(A k) <(i,),
(hk)=(1,)),
(h, k) <(i,f),

Lemma: Let the input, u(ij), for all (i/) and the
boundary conditions, R(0,7} and S(,0), for (i,/)#(0,0) be
equal to zero. Then T(i,j)= A4 "/T(0,0).

Proof: The proof is accomplished by induction.

First, T(0,0)=1IT(0,0)=A4%°T(0,0). This implies the
hypothesis is true for (/,7)=(0,0). Now assume the hy-
pothesis is true for all (h, &) such that (0,0) < (k, &) < (i,/),
and show that it is true for (i,/).

iffhA<iand k<
iff h=7 and k=
iff (A, k) <(ij) and (h, k) #(i,j).

T(ij) = R(ij) AR(i= 1,7+ A4,5(i~1,/)+ B0
S(i7) AR(Lj—D+ASGj— D+ B850
A Ao O 0 o
0 0 Ay A,
=AM YT (0,0) + 4™ 4 YIT(0,0)
= A™T(0,0).
This is an effective inductive proof because an enumera-

tion can be found such that all (/) are reached but not
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before all (h,k}<<{ij). Such an enumeration is the dia- J R(0.k i

gonal enumeration (0,0), (0,1), (1,0), (0,2), (1,1), T(ij)= 3 A+ ROK) | o fony 0

2,0y, QE.D. k=0 0 "0 5(h,0)
It is to be noted that since the matnces are not func-

tions of (i,j) the model is spatially invanant. The effect

then of T(h,k) on T(i,j) is A'~"~*T(h, k). The superposi- + 3 D

tion property of linear systems may be used to obtain a (0,0) <(h, k) <(if)

more general expression for T(i,j} in which u(i,/) and the

other boundary conditions are not assumed to be zero.

Effect of uth, kj: Assume u(h, k) for some (b, &) <{i,j) 15 w1l B o 0
the only nonzero input and all boundary conditions are |4 Y S S u(h, k).
zero. Then 0 B,
A0+ A, 0+ B,-u(hk B Proof: By superposition of the effects of all inputs
T(h+1,k)=[ ! 2 -k k) ]=[ ! ]“(h,k) and boundary conditions. Q.E.D.
0 An expreséion for y(i,j), called the general response for-
mula, may now be written
and )
. o k| ROk
y(ij)=[C, Cz]( E AY k[ (0 )
k=0
T(hk+1)= 0 = O {unn).
A3 0+ A0+ By-u(hk) B,
+ ¢ Ai—k‘j 0
Then h=0 §(#,0)
T(i,)=A""* DI T (4 Lk)y+ AT % DT (A k+ 1)
+ 2 (Ar'~.h—1,j-k B
(0,0) <k, k) <(i.f) 0
=(A"""_U"‘ B, + ARl 0 )u(h,k).
0 B,

+A""”“"_k_" 0 ])u(k,k))+Du(t‘,Lj).

B
Effect of R(0,k): Assume that R(0,k) is the only non- 2

zero boundary condition and that all inputs are zero.

1V. PROPERTIES OF A"/

, R{0,k N
(0, k)= 0.4) ] Some properties of 4™ are
Then
T(i.j)=A~"*T(0,k) =4 A |_| A 410 O
A; A4, 0 0 A; Ay
=A,‘J'_k R(O,k) .
0
Thus A =40+ 4%".
. 2)
Effect of Sth, 0): Similarly to R(0, k) the effect of S(4,0) ) - . )
is AI.O=A1.IJA1 I’D+AO‘IA" I=A|,OA!——I,D’
Thus A*%=(4"%. Similarly A% =(4%'y,
T(ijy=a-w O | 3)
S(h,0)
. I= i 0
We thus have the following theorem. 0 7

Theorem: For all (i,j)> 0.



where [ is the identity matrix with appropriate di-
mensions. Thus

po=f I 0l yngre-| 00
0 0 0 I
4
11,0A= i 0 Al AZ Ai A?, =A|'O
ol 4, 4, 0 0

Briefly /"4 =1"%"%=4"% Similarly 7%'4=17%'4%'
=A%L
5)

0 of| 4 4
0o I1(l o o

IU, ]A L0 _

Briefly /%'4%%=0. Similarly 7"%4%'=0.

V. CHARACTERISTIC FUNCTION OF AMATRIX

If the primary inputs and outputs are neglected in the
model equations, a representation arises for the state
behavior of the circuit, having the form

Ri+1,j)=A,R(i,))+ 4,5(i./}
S{ij+1)=AR(1,))+ A,S(i,j).

These equations are useful in the development of a form
for a two-dimensional characteristic matrix of 4. Opera-
tors are first introduced that advance a particular
coordinate of their operand.

Definition: Let E be an operator that has the effect of
advancing the vertical coordinate or the first subscript of
the function upon which it is operating. Likewise, let F be
an operator that has the effect of advancing the horizontal
coordinate or second subscript of the function upon which
it is operating,.

The effect of these operators on the state vectors is

R(i+1,j)=ER(i,})
S(i,j+1)= FS(ij).

The state equations can be rewritten using these advance
operators.

(ET—ADR(ij)—A,S(ij}=0
—AR(i,))+(FI—A,)S(i,j)=0.

These equations are equivalently represented in the over-
all matrix form.
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(EI-4,))
—A,

—A,
(FI—4,)

T(i,j)=0.

The above equation represents a system of homogeneous
equations in the elements of 7'(ij). If the system is to
have a nontriviat solution for T(i,;), then the transforma-
tion represented by the matrix must be singular,

The above matrix is said to be the two-dimensional
characteristic matrix of the partitioned matrix 4 where

AI A2
A, A,

The characteristic matrix of 4 1s denoted by cm(4) and
may be represented as

em(A)y=Er"°+ FI% - 4.

Now since cm(A4) must be singular, its determinate must
be equal to zero.

|em(A4){=0.

If £ and F are placed in the above by general inde-
terminates x and y, respectively, the result is an expression
called the two-dimensional characteristic equation for A.
The determinate of cm(A4) with x and y replacing £ and F
is called the two-dimensional characteristic function of the
matrix X, and is denoted by f(x,y).

lem(A)|=f(x.y)=0.

f{x,») will be a monic multinomial in x and y with degree
n, in x and degree n, in y; where #, is the dimension of R
and n, is the dimension of §. f(x,y) has the form

f()f,)’)= 2 2

(0.0) <{£,f) <(ny,na)

where a, , =1

a, xy’,

Comparing these concepts to the one-dimensional case,
it is observed that they are correspondingly analogous to
the one-dimensional characteristic matrix, equation and
function of a matrix. xJ— A is the one-dimensional
characteristic matrix of 4 and f(x)=|x/—A|=0 is the
one-dimensional charactenstic equation,.

The Cayley-Hamilton theorem in the one-dimensional
case states that a matrix A satisfies its own characteristic
equation, i.e., f(4)=0. The following theorem extends this
to the two-dimensional case.

Definition: E'F/IA=F/E'A=A" for any 2X2 partition
of 4.

Two-Dimensional Caylev—Hamilton Theorem.: BEvery
partitioned matrix
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satisfies its own characteristic equation. That is f{E, F)4
=0.

Proof: Let B=(xI"®+yI%' — 4), so that f(x,y)=
det B. Cramer’s rule for computing the inverse of a
matrix, in this case matrix B, states

adj B-(xI"P+ 3% — Ay=det B-I=f(xy)I (1)

where adj B is the transpose of the cofactor matrix of B.
The elements of adj B transpose are computed by taking
the determinate of the matrix formed by deleting the row
and column coniaining the corresponding element in B.
The elements of adj B will consequently be multinomials
in x and y having degrees in x and y not greater than »,
and n,, respectively, where n; is the rank of 7% and n, is
the rank of /%! Therefore, adj B may be written in the
form of a matrix multinomial.

adj B= 3, X B, ;x%’. (2)

i=0j=0
Represent the characteristic multinomial f(x,y) as
7

fxy)= 2 2 b yxy,

i=0j=0

(3)

where b, , = 1.

Substitwting (2) and (3) into (1), we have,

A M oz

>3 Bi‘jvaf(xfl'o+ylo’1—A)= >y b, x I
i=0/=0 i=0,=0

Expand the left side and adjust ¢ and ;.

m+1 ny n onmptl

2 2 Bi—lJIl'Oxf)'j+ > 2 B;‘J—lfo']xf)’j

i=] j=0 i=0 j=1

LI L ]

- 2 E Bf‘;'Axlj’j= 2 2 b,-in)v’fI.

i=0=0 i=0,;=0

The coefficients of each term x%’ on both sides of the
equation must be equal. Equating these coefficients yields
the following:

B, I%°=0, for0<j<n, (4)

B,,1%'=0, for0<i<n, (5)

B\ JY+B, J%—B, A=b I fori=0j>0 (6)
By, %' B, ,A=b, 1, forj#0 (7

B,_ g =B A=b,l, foris0 (8)

— By oA = bool. (9)

Multiply each of the equations (6)—(8) on the right by 4%/
and sum equations (6)«9) over all i ;.

7, M
_2] ‘21 (Bs—l.j‘“'o"' Bwazfo'l ~ B, A)AY
i=1j=

2
+ (BOJ._J“" - Bo.jA)ADJ
F=l

"y
+ Z] (Bi_ o "= B, oA)A""~ By A
’n; ny

=3 X b, 14,

i=0=0
Collect coefficients of B, , on the left side of the equation.

BI-J(I]'DA i+l,_,i+10, lA f,j+l_AA :‘,J')’

for1<i<n 1<j<n, (10)

B, (I1%A™ " —a4™),  forj#0j#n, (11)

B, (VAT — 445", fori#0i=n, (12)

By (1AW 4 1974%* — 44%),  forj#0j%#n, (13)
BI_‘G(ID.IAf.l_}_II,DAl'-#l,D_AAi,U), fm‘isaéOi?‘:nl (14)
B, (44" (15)

By o7 A% 4+ 110410 1), (16)

Expressions (10){16} exhaust all /,; combinations. We
will now evaluate each in turn.

II,OA!'+I,_;'=1I,DAI,DA:'J'_i_Il,DAD,IAi'+l,_,r'—]
IG’]A i,j-l—lzlﬂ,lAl,UAr'—-l,;'+1+}r0,lAU,1Ar',j

but 71%4%'=0 and r*'4“°=0.

Thus,
JARVEAS NN LY PENES NES SPER VRN A YN RPN,
=44 — 44V =0,
FOLgmd+l o O g L0 m —Ej+ Ly rO1 40,1 48,
=A0’1A n,,ui_

(10)

(11)
Thus,

B, (I%AmIt — 44m)
=5 -(AO'IA""J'—AO'IA"‘J—AI'OA"IJ)
it
= — Bn..jA Lo = _Bnl,j’(},OA]’GA mui =)

since B, ,1"9=0 from (4).

Similarly =0 as in (11). {12)
AAO.J':A|,0A0J+AD,1ADJ=A1,0A04'+A0,j+|
!l,OAIJ=11.DA1,DAUJ+1LUAO.1AIJ—1=A],0A0J. (|3)

Thus,
II,UAIJ_'_ IO.|A0J+1_AADJ
=A]’DA0J+AOJ+1_AI'0AOJ_ADJ+1=0.
(14)
Bo1.n2 (15)
A=A+ 4% thus, %A% + 11040~ 4 =0, (16)

Similarly =0 as in (13}.

=0, since adj B can have no term in x"Y "2,

Briefly, the left side of the equation being considered is
zero, giving

noAy

0= 3 3 b,4Y=f(E F)4
i=0 =0

which completes the proof.



VI. OBSERVABILITY AND CONTROLLABILITY

The notions of observability and controllability for
time-discrete systems carry over to parallel notions for
discrete-space image processors.

Definition: A state T, is observable iff whenever it
appears as the initial state and all other boundary condi-
tions are zero, there exists a pattern of inputs and a pair
(i.,j) > (0,0) such that y(i,j} is not the same as when the
initial state is zero, and the same pattern of inputs is
applied.

Definition: A state T, is controllable iff when all
boundary conditions are zero there exists some pair (/,f)
2 0 and some input pattern such that 7(i,j) = T,

An image processing model is said to be observable
{controllable) iff all states are observable (controllable).

It is often desirable to reduce a model to an equivalent
mode] that is observable and controtlable, Here equiva-
lence between models will be taken to mean no pattern of
inputs exist so that the output from one mode! is different
at some pair (i,/) > (0,0) than the output from the other
model at (i,/) when the boundary conditions of both
models are zero.

To test for observability the output y(i,j) for each
possible initial state is compared with the output y(i,;)
with zero initial state, for all (i,j)> (0,0) and all input
patterns. If y{i./)=y(i.j) for all (i,/)>0 and all input
conditions, then the model is not observable. Using the
general response formula this condition reduces to

CAYT(0,0)=0, forall (7. /) > 0.

The two-dimensional Cayley-Hamilton theorem implies
that any two-tuple power of 4 is linearly dependent upon
those 4*/ for which (0,0) < (i,/) < (n,,n,) so that the con-
dition for nonobservability can be limited to those (i.j)
such that (0,0) <(i,j}< (n,,n,). The condition may then be
put into matrix form KT=0, where X is the diagnostic
matrix defined as follows:

-

C
CA(], |
CA 0,2
C/-{O"‘z
CAM®
cav!
camo
car!

CA !;.,ﬂz— 1
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If KT=0 then the model is not observable, but may be
reduced to an observable model. Let K, be a matrix
consisting of the first n; columns of X and let K, be a
matrix consisting of the last n, columns of X. The condi-
tions KT=0 may then be split into the two conditions
K\R=0 and K,5=0. A reduced model may then be
formed by using the equivalence classes of { R} modulo
the null space of K, as the new vertical state set, and the
equivalence classes of {S} modulo the null space of K, as
the new horizontal state set. As a result only the new zero
vector will satisfy K, R=0 and K,5=0, implying that the
new model is observable. It remains to find the
characterizing matrices for the reduced model. First vec-
tor representation for the equivalence classes of vertical
and hornizontal states is found, then the original
characterizing matrices are modified so that the behavior
of the model remains the same. K, and K, may be
reduced so that their new dimension agrees with their
rank. This is done by forming matrices G, and G, from
the first complete set of linearly independent rows of K,
and K, respectively. G, and K, have the same null
space. Furthermore each equivalence class of {R} and
{S} will correspond to a single vector G,R and G, S,
respectively. The equivalence classes of { 7} may then be
represented as

T=GT, where G= G, 0
0 2
Now let
H= H, 0
0 H,

be a right inverse to G, i.e., GH =1 The reduced model
will then have the following characterizing matrices:
A=GAH B=GB C=CH D-=D.

To test for controllability the state 7°(/,j) is examined
with all boundary conditions equal to zero for all input
patterns. If T'(i,j) doesn’t equal T, for some T, for any
(i.,/»(0,0) and any input pattern, then the model is
uncontrollable. Using the general formula for T'(i,/) this
condition becomes

2 X

(A i1k By
(0,0) <k k)< (4.}

0

0

AR )u(k,k);e T,

2
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for all (ij) and all u(h,k). As for observability, the
two-dimension Cayley-Hamilton theorem allows us to
limit the condition for noncontrollability to those ({,f)
such that (0,0) <{i,/)<(#,,n,}. The condition may then be
put into matrix form.

QU#T, for all U and some T, where U and @ are

defined as follows:
u(0,0)
u(0,1)

u({i,nz)
u(l1,0)

1*’(1"‘1""12‘“ 1)

Q%UﬂQmJﬂQDW”Mwmﬁ

M{1,0),...,M{ny,ny—1)]

0

Mijy=ai=| Br| g qim
0 B,

The maximum rank of @ is equal to #,+ », (the number
of rows), which is equal to the dimension of { T"}. If  has
n, + n, as its rank, then its range space must equal {T'} so
that there would be no T, such that QU+ T for all U.
The model would then be controllable. If however the
rank of Q is less than n,+n,, then the model may be
reduced to a controllable model. Let ¢, be formed from
the farst #, rows of @ and @, be formed from the last n,
rows of Q.

0, and Q, may be reduced so that their column dimen-
sion agrees with their rank. This is done by forming
matrices &, and &, from the first complete set of linearly
independent columns of Q, and ,, respectively.

The controllable states T will be those formed from the
direct sum of the vectors in the range spaces of ¢ and G,.
A state set for the reduced model may now be specified as
a set of vectors

which are mapped into the controllable states under the
direct sum of G, and G,. That is {T'} is the domain of the
linear mapping

7T ]
‘-——_’---4

7T
il
o
~

Let

H 0
0 H,

be a left inverse of G, i.e., HG=1I. Then,
T=HGT=HT.

Note that the states in the range space of G are control-
lable and that the dimension of {7} is equal to the rank
of G. This implies that each T is mapped by & uniquely
into a controflable T. Therefore, each T of the reduced
model will be controllable. The characterizing matrices of
the reduced model can now be found by noting the effect
of the mappings G and A on the original characterizing
matrices

A=HAG B=HB
C=CG D=0D.

COMPUTATION OF THE TRANSITION
MATRIX

VII.

Computing the transition matrix 4™ using the recursive
definition becomes quite tedious as i and j become large.
It is therefore desirable to extend the techniques that are
known for computing a single power of a matnx, such as
the Cayley-Hamilton technique or Sylvester’s theorem, to
parallel techniques for 4%/, The Cayley-Hamilton
technique will be treated in what follows. Other methods
may be extended in a similar fashion,

From the two-dimensional Cayley—Hamilton theorem
we have

f(E,F)A=0.

Letting a, , be the coefficient of E*F* in f(E,F) the last
equation becomes

z 2

0,0y <(h, kY <(n),m)

ah’kA Ak =O

If both sides of this equation are operated upon by EF” it
becomes

DD

{0,0) <{&,k) <(ny,n3)

ik _
a;, A =0,

Consider this equation for the set of pairs {(i, )|(—~n, <
<0andj=1)or (—n,< j<0and i=1)}. These pairs have
the property that whenever one exponent of A**"**/ jg
negative the other will be positive for (0,0)< (A, k)
<(n,,n,). From the definition of 4" each such A4**-¢*/
will be equal to zero. The following set of equations is
produced, each corresponding to a pair {i,j) in the set



above:
DD aAtT=0, 0<i<n
(L) <k k) <(ny,nz)
and
> ¥ gAY, 0<ji<n,

Oy (R i)y <(m, n3}

Each of these equations can be written in terms of a
function of F and F obtammed by modifying the two-
dimensional characteristic function f( E, F). The modifica-
tion in the first case consists of multiplying f(E,F) by
E ~‘F and then deleting all terms involving negative ex-
ponents of E. The modification for the second case con-
sists of multiplying f(E,F) by £F ~/ and then deleting all
terms involving negative exponents of F. Let

L AEFy=E"'"Ff(E,F)

{with deletion of terms having negative exponents). Matrix
A then must satisfy the following set of equations:

fi_((E,F)A=0, 0<i<n -1

fo (E F)A=0, 0<j<n,— L
That is, not only must A satisfy the two-dimension
characteristic equation, but it must also satisfy the above
set of n, + n, equations as well. It wili be shown that these
equations raay be used to reduce A"/ to a linear combina-
tion of those 4% where (0,0) < (4,&) <(n,,n,). This leads
to the definition of two-dimensional eigenvalues.
Definition: The two-dimensional eigenvalues of a par.
titioned matrix

A
Ay

Ay
Aq

A=

are the pairs (x,y) that simultaneously solve the following
set of equations;

fi _{xp)=0, 0<i<n —1
fo(xy)=0,  0<j<n,—1
J(x,y)=0.

The equations in the above definition may be used to
reduce a multinomial in x,y to one of degree (h,k)
< (n,n,). The next theorem establishes this result.

Theorem: Two-dimensional division algorithm. Any
multinomial g(x,y) of degree > (0,0) may be expressed as
follows:

S 6, ()

glx,y)= El () Axy)+
=0 i={

+m(x.y)f(x.y)+r(x,y)
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where the degree (A, k) of r{x,y) is less than (n, n,).
Progf: Each term in g(x,y) of degree (i,j)> (n, 1)
having the coefficient b, ;, may be reduced to a sum of
terms of degree less than (k,7) by subtracting
b, ;x'~"y/~"f(x,y) from it. This is repeated until there are
no terms of degree greater than (n,,n,). The remainder

will have the form

g{x.y)—m(x,y}f(x.y)

Each term of this remainder of degree ({,n,— 1) > (n,,n,—
1) having the coefficient ¢;;, may then be reduced to a
sum of terms of degree less than (i,#,— 1) by subtracting
¢ if —1.n, - 1(x,¥) from it. This s repeated until there are no
terms (h,n, — 1} (n;,n,— 1}, A similar process is used for
the other functions f_,, and f _,. The result will be a
remainder of the form

1.4

)= 5= S 11, 000)

+ 3 GV )+ m{xp ) ()

ie=0

where the degree of r(x,y) is less than (a1, n,). Q.ED.

If the equation f, \(E,F) A =0 1s operated upon by F
no additional terms are generated so that the result will be
a valid equation. Likewise, Ef| (E,F)A=0 is a valid
equation. Consequently, the two-dimensional division
algorithm may be applied to matrix multinomials and in
particular to 4™, Thus,

A= S p () (EF)IA+ ;'Oq,-(r)f:-,_ (E,F)A

j=0
+ M(E,F)f(E,F)A+ r(E,F)A4

where the degree of r(E, F)A is less than (n,,n,). The first
three terms are zero because A satisfies the previously-
mentioned equations. Then 4% =r(E, F)A. Likewise, if
{x,y) is an eigenvalue of A4, then from the division
algorithm g(x,y)=r(x.y).

Since the operations are the same for obtaining r{x,y)
and r(E,F)A they will have the same coefficients. 4"/
may then be computed by determining r(x,y) from x’’.
r(x,») has (n,+1)(n,+1)—1 coefficients. These are de-
termined by solving the set of simultaneous equations
resulting from x%/=r(x,y), using different eigenvalues
(x,y). The same number of eigenvalues as coefficienis are
necessary.

The determination of two-dimensional eigenvalues. of a
matrix A is not, in general, obvious. However, if the
characteristic function f{x,y)} is factorable into hnear fac-
tors then the two-dimensional eigenvalues are easily
wdentified.

Theorem: Suppose the two-dimensional characteristic
function of a maitrix A 1s factorable into linear factors as
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follows:
flxy)=(x—adx—ay) - {x—a, {y— b}y b))
e {y—b,,).
Let ay=b,=0. The set of two-dimensional eigenvalues is
{(a,b)1(0,0) < (i) <(ny,n)}.

Proof: From the hypothesis f(x,y) may be expressed
as the product p(x)q(y). Consequently, f, _ (x,y) may be
expressed as p{x)yq(y), where p,(x}=x"p(x) (with
negative powers of x deleted). Thus, f _,(x,y) contains
each (y — b)) as a factor, which implies that £ —1(x,5)=0.
Likewise f_, {a,y)=0. Thus, for (x,y}=(a,d) all func-
tions, including f, will be zero. Q.E.D.

If the factors of f(x,y) in the previcus theorem are
distinet then there will be a total of (n,+1)}n,+1)—1
eigenvalues, which is the same as the number of
coefficients m r(x,p). There is, therefore, just enough
equations a,/b{=r(a,,b,) to solve for the coefficients of

r(x.y).

Example: Let
A, 1 a b
A=l L 2 = |
A, 1 A, 0 d
then
em(4)= x—a -b
0 y—d

flxy) = |em(4)j=(x —a)(y —d).

The two-dimensional eigenvalues are (0,d), {«,0), and
(a,d).

AW =r(E ,F)A where deg r(E, F)<(1,1)
=ayol+a, oA "+ ay,4%",
To find the coefficients substitute the eigenvalues into
xy=r(xy)=a, xp+a oxt+ag,y
Od/=ay o+ a, 0+a,,d
a'lV=ay,+a, qga+d, 0
a'd' = ag o+ a, g+ ag 4.
The solution to these eguations is

I v 1 N 1) _ i gi=1
ayg=—ad a g=a' " da, =ad

Note that
CII'O"' o b
¢ 0
a0 = 0
d
Then
a=—a'd 1 0 +a | 2 b
0 1 0 ¢
vaw| 00
0
- 0 al'—]d_jb
0 0
To check:
ALl= L0400 401410
_| a b 0 0 " 0O 0 a b
o 0 0 4 0 4 0 ¢
7 1
= bd + 0 0 - 0 bd
0 0 g 0 0 0

This checks with the previous result.

VIII. CoNCLUSION

This paper is an attempt to establish a parallel of the
linear discrete-time state-space model for linéar discrete-
space image processing. However, it can only be assumed
to be an initial attempt. Only the more basic and well-
known concepts have been extended. Thus, there is much
room for future research to be done along this line.
Specifically this research should include:

1) Generalization to bilateral models.

2) Methods for programming a spatial transfer function
into a state-space model.

3) Discovery of a general method for factoring
multinomials and a method for finding two-dimensional
eigenvalues,

4) Finding methods for obtaining canonical forms.
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5) Establishing criteria for stability.
6) Application of estimation theory.

Finally, of a more general nature, the techniques and
concepts of optimal control could be extended to the
spatial model.
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Abstract—A class of bilinear estimation problems involving single-
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a secondl paper. Ervor criteria, probability densities, and optimal estimates
on the circle are studied. An effective synthesis procedure for continuous-
time estimation is provided, and a generalization to estimation on arbitrary
Abelian Lie groups is incheded. Applications of these results to a number
of practical problems including frequency demodulation will be considered
in a third paper.
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I. INTRODUCTION

‘N THE past, most optimal estimation problems have

! been studied in a vector space setting. While these
results lend themselves 1o simple solutions in linear sys-
tems {1], [2] and in nonlinear systems with finite dimen-
sional sensor orbits [3], no effective synthesis procedures
for optimal estimation have been determined for large
classes of nonlinear systems.

It is the purpose of this paper to introduce an alterna-
tive to the vector space approach in analyzing the proper-
ties of monlinear stochastic processes. We will study ran-
dom processes on a different type of space, namely, a
differentiable manifold, which is the naturai domain for
certain nonlinear problems of practical importance. This
approach will be shown to be useful both in analyzing the
properties of certain stochastic processes and in deriving
recursive optimal estimation equations that are easily 1m-
plemented.

More specifically, we will concern ourselves with the



