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Stability of Multidimensional Scalar and Matrix
Polynomials

E. I. JURY, reLLow, 1EEE

Abstract—A comprehensive study of multidimensional stability and
related problems of scalar and matrix polynomials is presented in this
survey papet. In particular, applications of this study to stability of
multidimensional recursive digital and continuous filters, to synthesis of
network with commensurate and noncommensurate transmission lLines,
and to numerical stability of stiff differentis] equations are enumerated.

A novel approach to the multidimensional stability study is the classi-
fication of various regions of analyticity. Various computational tests
for checking these regions are presented. These include the classical
ones based on inners and symmetric matrix approach, table form, local
positivity, Lyapunogv test, the impulse response tests, the cepstral
method and the graphical ones based on Nyguist-like tests. A thorough
discussion and comparison of the computational complexities which
arise in the various tests are included.

A critical view of the progress made during the last two decades on
multidimensional stability is presented in the conclusions. The latter
also includes some research topics for future investigations. An exten-
sive list of references constitutes g major part of this survey.

I. INTRODUCTION

N A RECENT survey paper [1], this writer had discussed in
:[[ detail the stability and related problems of one-dimensional

scalar polynomials. This study was mainly based on the
inners concept. The contents of the present paper is a follow-
up of the earlier one, and is devoted to stability of multidi-
mensional scalar and matrix polynomials. It is hoped that the
contents of these two papers will clarify and update the stabil-
ity problem of linear dynamical systems first proposed by
Maxweil [2] overa century ago,

During the last two decades, interest in the stability of two-
dimensional polynomials arose in various applications. For in-
stance stability of two-dimensional continuous filters arises in
providing a test for a driving-point impedance realizability con-
dition using commensurate-delay transmission lines and
lumped reactances [3]-[5] . On the other hand, stability of two-
dimensiona! digital filters occurs in the useful design of these
filters. Such filters, in recent vears, have found widespread
applications in many fields, such as image processing, digitized
photographic data, and eeophysics for processing of seismic,
gravity, and magnetic data.
bility of two-dimensional polynomials arise in numerical sta-
bility of stiff differential equations [6] -[10] . A comprehensive
study of stability of two-dimensional polynommials related to
the above applications will be a major part of this survey.

Extension of the stability problem to multidimensional poly-
nomials is receiving wide attention in recent years in view of
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Other applications related to sta-

the emerging widespread applications and hence these will be
also discussed in this survey.

The mathematical basis of multidimensional stability and re-
lated problems lies in the theory of compiex function of sev-
eral variables. To this end a few referenices in this areg are
cited in this survey {(111-£211. Such references serve as back-
ground material for the study of the problems discussed in this
paper.

A survey of problems of two-dimensional stability of digital
filters is discussed in {22] and for two and multidimensional
stability appeared in [23]. Also collections of papers related
to two-dimensional stability of digital filters appeared in [24].

In this paper similaritics and differences between one dimen-
sional and multidimensionat stability definitions and tests will
be emphasized and discussed. A significant and important dif-
ference lies in the fact that the singularities of F(z})=0 are iso-
lated or distinct points and those of Flzy, - -,2,)=0, are
multidimensional surfaces or manifolds. This fact makes the
stability tests for multidimensional polynomials much more
difficult. Other differences between general problems of ong
and multidimensional systems are discussed in detail in the sui-
vey paper by Bose [25].

Problems of stability related to one dimensional linear systems
as surveyed in [1] were classified in terms of root-clustering in
the complex plane, These included the open-eft-half plane,
the unit disk, the negative real axis and other related regions.
The multidimensional stability and its related problems will be
classified in this paper in terms of regions of analyticity. Such
regions might encompass the hyperplane, the polydisk or sey-
eral other regions. By using such a classification the stability
conditions and the tests will be more organized and hopefully
better understood.

A common feature of one-dimensional and multidimensional
stability is their definition. [n both cases the concept of
bounded-input-bounded-output (BIBO) stability is used. This
requires for the multidimensional recursive digital filter, for
instance, that the sample response g{m, n, k, - - Vbeabsolutely
summable, ie.,

XX Y letmon k) <o,
n k !

m

(n

Other forms of stability definitions will be also discussed in
this survey. A minor difference between one<dimensional and
multidimensional stability lies in the definition of the z-
transform. For the one-dimensional case, the Z-transform is
defined by

F@= 3 fin)z"

H=-co

(2)
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while for the multidimensional z-transform, it is generally de-
fined in the literature of multidimensional digital filters as
follows:

ifamb D=5 ¥ - %
I=—o0

fl=—o0 M =—-00 f=-oa

fa,m, K, (3)

This contrast in the definition is quite unfortunate for in
some cases it causes some confusion. A remark as to conver-
sion of the stability regions related to the classical definition
of the z-transform as in (2} is commented on in [23].

The objectives of this paper are threefold. First, because of
the increasing publication in this topic during the last twenty
years, it appears that such a review is timely. This review
would aid the investigator in this field to digest and evaluate
the various definitions, tests,and the computational problems,
Second, by exposing the work done in this field, it becomes
apparent what research problems need solution in order to ad-
vance these investigations. This is of importance in view of the
many applications of the field of multidimensional systems. A
recent issue of this PROCEEDINGS [26] edited by Bose is de-
voted exclusively to the study of multidimensional systems.
Third, in reviewing and assessing the research done in this
area, it appears that there are some errors in the definitions
of the necessary and sufficient conditions for stability of
two-dimensional and multidimensional digital filters. Also
some of the proofs seem to be incomplete or not quite cor-
rect. Hence, in this survey special aitention is devoted to
these and other ctitical problems which arise in multidimen-
sional polynomials and which have no counterpart in the one-
dimensional case. Thus it is hoped that the contents of this
survey are both informative and correct so that the new re-
searcher in this field feels confident in advancing the state of
the field.

The structure of the paper is devoted to the following topics.
In Section I, a brief review of the stability of one-dimensional
polynomials (scalar case) is given. In this review which supple-
ments the earlier one [11, presents an important theorem re-
lated to the inners concept which could be of much use in the
multidimensional case. As in the earlier review this supple-
ment is devoted to the inners approach to stability. In Sec-
tion LT, a complete study of the stability problems of two-
dimensional systems (scalar case) is presented. Most of the
published material is devoted to this area, in view of the wide-
spread applications and the availability of effective computa-
tional procedures. In this section, the various stability tests
are discussed in detail. These include the classical one based
on the inner and symmetric matrix approach, table form, and
local positivity. Also included in this section is the impulse re-
sponse test, the cepstral method and the Nyquist-like test. In
Section IV, the stability discussion is extended to multidimen-
sional scalar polynomials. The regions of analyticity for the

two-dimensional case are generalized to the multidimensional’

case. It is shown in this section that the computational efforts
for these stahility tests increase tremendously as the dimension
increases. Also in this section the computational methods
such as decision algebra, and algebraic geometry, are discussed
in detail and the efforts to simplify the tests are brought forth.

Having discussed the scalar case in detail, in Section V, the
one dimensional polynomial matrix stability tests are briefly
reviewed. This review will set the stage for the discussion of
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two-dimensional matrix polynomials discussed in Section VL
The application of such a case lies in the stability of fests of
two-dimensional multi-input-multi-output (MIMO) lincar digital
filters. In addition to the Lyapunov test, the various tests de-
veloped in Section I1I are used for this case too. Extension of
the stability discussion for multidimensional MIMO lincar re-
cursive digital filters is discussed in Section VII. The major
difficulties encountered in this case as compared to the two-
dimensional case are emphasized. As in the two-dimensional
case, the methods used for testing stability for the multidimen-
sional scalar case are readily applicable.

Finally, in Section VIilII a critical view of the material pre-
sented in this paper is discussed. In particular problems for
future research are singled out for further investigations.

An extensive Jist of references is presented in Section IX.
Such a list, though not very complete, serves as a starting point
for the new researcher in this challenging and emerging field of
investigations.

II. Brier REVIEW OF ONE-DIMENSIONAL STABILITY
(ScALAR CaSE)

In a previous survey paper [1], 2 review of the one-
dimensional stabitity of a scalar polynomial is presented in de-
tail. In this review the theory of inners was presented and ap-
plied to many problems of stability and related topics: Since
this publication, many papers on the inners have appeared
{271, [28] which clarified and extended the application of this
notion. As will be explained in later sections, the theory of
inners is also applicable io problems of multidimensional sta-
bility and hence the following theorem recently obtained [29]
will shed some light on these applications. Also it would put
the inners notion into a more mathematical basis. Because of
its importance, it will be stated in the following.

Theorem 1 [29]: Let the square matrix 7 be given as

m-1 m
.Tl Toim-1
T=|0> (@)
I/Ta Ty m

where T, is upper triangular1 and T is lower skew triangular
(or Ji T3 is upper triangular, where Jy is the matrix having
ones on the second diagonal and zero elsewhere). Multiply the
above matrix by another matrix as follows:

Im-y 0| | T T, T

L In| |Ts Ts 0o R} m
m

m-1

[ 8]

(5)

with L = - T3 T7! (which always exists).

It follows that the inners determinants of T are identically
the leading principal minors of R where R is about a half-
size matrix. Note we can transform R to be a symmetric ma-
trix R, by premultiplying the above equation by a suitable tri-
angulat matrix. With this in mind we state the following.

Corollary 1: When T is a “Sylvester-type matrix,” then the
symmetric mairix Rg becomes the Hermite quadratic form {or
the Bézoutian) associzted with the two polynomials used to

INote that T, has unit elements on the main diagonal and T is the
identity matrix,
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generate the Sylvester matrix.
identity

Thus we have the following

{T is Positive Innerwise (P.L})} ==
Ry is Posttive Definite Symmetric (P.D.S.) (6)

Remarks: .

1) The above identity was utilized in the survey paper [1]
as well as in the inners text [23] to present the stability or
root clustering problem in terms of either P.I. or P.D.S. ma-
trices. This corollary will be also utilized in later sections for
multidimensional stability tests,

2) Knowing R, one cannot recover the unique T unless T,
and T are known. This is due to the fact that R £ Was obtained
from T using a certain algorithm [29].

3) The left triangle of zeros of T is utilized effectively to ob-
tain a recursive algorithm to calculate the inners determinants,
This is also discussed in [1] and [23]. This algorithm can be
also extended to compute the inners determinants associated
with multidimensional stability and related problems.

4) Though the inners notion in {1] was exclusively used for
testing stability of one-dimensional polynomials, there exist
several other methods which are not discussed in that paper.
However, in the present paper all the known methods for test-
ing stability of one-dimensional polynomials are applied to the
multidimensional case. This represents a basic departure from
the objectives of the earlier survey.

3) The corollary under restrictive conditions can be extended
to the case when T is the generalized Sylvester matrix [29a].
The application of this will be discussed in Section V.

III. StaBILITY OF TWO-DIMENSIONAL POLYNOMIALS
(ScALAR CASE)

Problems related to the stability of two-dimensional scalar
polynomials arise in many engineering applications. Histori-
cally, such applications were first introduced by Ansell [4] in
connection with the testing of two-variable reactance proper-
ties with application to networks of transmission lines and
lumped reactances. In recent years, considerable work has
been devoted to the area of two-~limensional digital filters.
Stability problems related to such filters are well established in
the literature and hence we will study the stability of such fil-
ters first, Finally, in this section, we will also study stability
problems related to numerical integration methods. Such

methods include tests for A-stability, A (a)-stability and stiff

stability [10]. Also, in this section, we will apply the stability
tests to the various regions of analyticity as related to the
above three major applications.

A. Stability of Two-Dimensional Digital Filters

There are various recursive schemes applied to these filters.
These include the quarter-plane, the symmetric half-plane, and
asymmetric half-plane filters. Each of these filters gives rise to
different analyticity regions and hence each will be discussed
separately.

1) Stability Property of Quarter-Plane Filters: A difference
equation which describes the input~output relationship of
such filters is presented as

K L
yon,my= 3" 3 plk,Dx{m-k,n-1)

k=0 i=0

I J
- XY aGiy(m-in-j) (7
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Fig. 1. Diagram of how the output sequence of (7) is computed with a
first quadrant filter.

In the above linear equation, {x(m, n)} and {y(m, n)} repre-
sent the input and output sequences,respectively. Fig. 1 shows
how the above computation proceeds. First quadrant filters
are often termed ‘“‘causal” or “spatially causal.”” The latter
definition is used by Strintzis,.2 A feature of such filters is re-
lated to the fact that the valueof a given point, y(m, n), of the
sequence depends only on the values of those points x (i, j) of
the input sequence for which both i <m andj <n. Recursive
equations for the second-, third-, and fourth-quadrant filters are
obtained similar to the above equatien and discussed by Huang
[30] and others [31]. Consequently, the first-, second-,
third-, and fourth-quadrant filters are said to recurse in the
++, -+, - -, and +- directions, respectively.

The two-dimensional z-transform of (7) leads to the transfer
function,

P(z,,23)
Q(zy,22)

where P(zy, z;) and Q(z,, z,) are the following two-
dimensional polynomials in z, and z,

Glzy,22)= (8)

K I &
P(zy,z2)= 3 3 plk, iz 2l

k=0 I=0

I J A
Q(zy,22)= Z Z q(,j)zizh

i=0j=o0

9)

In the first quadrant case, since ¢(0, 0)=1 is assumed,
Q(z1, 2,) #0 in some neighborhood U2 2 {(z,, 2,): |z,] <
€, |za] < e} of (0, 0). Hence in Uze the function G(z,, z,) is
analytic and has the power series expansion

Glzy,22)= 3 3 g(m,n)zP 2

mi=Q n=90

(10)

{g(m, n)} is the unit sample response of the first quadrant fil-
ter, and this filter is BIBO stable if and only if {g(sm, n)} is ab-
solutely summable, i.e.,

2 2 letm, n) <eo. (11)
L3 n

Remarks:
1) When (11) is satisfied we denote that {g(m, n)} €1,.
Also when I, Z |g(m, n)|* < oo, we denote it as {g(m, n)}

2See |44] and [64a].
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€1, and finally when {g(m, n)| <k for some k < o0 and for all
(m, n) we denote it as {g(m, n)} E1.. A discussion of these
bounded forms will be mentioned later, '

2) To apply the stability results for the other three quad-
rants, it is only necessary to note that G(z7l, 25}, G(z7t, z21),
or G(zy, z3!) can be realized as a stable first quadrant filter
[30]1, provided no essential singularities of the second kind
(discussed below) are introduced.,

Consider now the two-dimensional rational function (in the
literature these are also referred to as two variable rational
functions) of equation (9), where P(z,, z,) and Q(z,, z;) are
mutually prime (i.e., the two polynomials have no irreducible
factors in common). A 2-tuple (z,, z5) such that Q{z,,z,;)=
0 but P(z,, z, )% 0 will be called a pole or a nronessential sin-
gularity of the first kind (such a point is analogous to a pole
in the one-dimensional case). A 2-tuple (2, z») such that
@€z, 23 ) = F(z, 23 )= 0 will be called a nonessential singular-
ity of the second kind (such points have no one-dimensional
analogs). Clearly, if (z,, z,) is a pole, G(z,, z;}=o. If
(z4, z3) is a nonessential singularity of the second kind, the
value of G(z, z, ) is undefined,

a) The effect of the numerator polynomial on stability:
Perhaps, potentially the most important stability theorem for
two-dimensional filters is due to Shanks et al. [32], who stated
that G(zy, z,) is BIBO stable if and only if '

Q(zy,22) #0forall {(zy,22): 12,1 1, {zal €1}, (12}

Before applying this theorem, all irreducible factors common
to P(z,, z2) and Q(z,, z,) should first be cancelled (mutually
prime polynomials). A test for the existence of common fac-
tors is given in [33], and an algorithm for extraction of the
greatest common factor is given in [34]., A similar theorem
with some generalization for the case when P(z;, z,)=1 was
given by Farmer and Bednar [35]. Shanks’ theorem was used
and quoted by many authors as the necessary and sufficient
condition for stability. Recently in a classic paper by Goodman
[36}, however it it shown that the necessity condition does
not hold, This is due to the effect of the numerator on stabil-
ity (which has no analog in the one-dimensional case). The
reason is as follows: In some cases G (2, z; ) has a nonessential
singularity of the second kind on lz,|=1 and |z5|=1 but
{g(m, n)} €1,. The following illustrate this poini:

A(l“z_l)s (1-1z2,)° A Py (2y,22)

Gz, 2,) = 2-2, - 2 021, 22) {13)
A (-2)(0-23) p Palzy,23) ;
IS M

The above transfer functions have mutually prime numerator
and denominator, and 0(z,, z2) ¥ 0 on {(z;, zz2): Iz41 <1,
lz3! < 1} except at z; =2z, = 1. Both G, (z}, z,) and G, (24,
z3) have nonessential singularities of the second kind at z, =
z3 =1, but as shown by Goodman [36}, G, (2,4, 24) is BIBO
stable and G; (2, 2z5) is BIBO unstable. Hence, Shanks’ theo-
rem is only sufficient for BIBO stability.

Remarks:

1) For effective design of two-dimensional digital filters
such cases as presented above are to be avoided {25]. Hence,
for consideration of design which avoid such singularities, it is
suggested privately by Saeks and Anderson, that the BIBO sta-
bility should be referred to as “structural stability.”® A men-

*See also [71].

1021

TABLE 1
VARIOUS STARILITY DEFINITIONS

a) BIBO stability <= {g(m, m} el
B) Q(z4,22) #0in {(zl, za): lz1i < 1, |25l < l}ﬁ BIBO stability
©) Qzy,22) # Oin {(z1,29): ly] € 1, 1z2) < 1} except at
|211= lzz|=1 *+= BIBO stability
d) {gtm, m)} €l == BIBO stability
e) lim {gmm}=05= {gtm,m} el or {gon,m} ety

m, n -«

) 021, 22) # 0in {(z1, 2201 |24] < 1, leal < 1} =55 g om myl < M <
s forallm,n

B 1GG,, 2 <N <=in {|z4]< 1, (23] < 1} — {gm, w)} €1y

0 Q0 *0in {lzy]< 1,iz2i< 1} — ¥ tgim.n)l <=,
m=o
forallm.

tion of such type of singularities was also indicated by Humes
and Jury [37].

2) Critical cases involving nonessential singularities of the
second kind as applied to multidimensional network synthesis
were also noted in the work by Bose and Newcomb [38]. In
the work of Goodman [36] several theorems are given which
are repeated in this survey. '

3) To test for the presence or absence of nonessential sin-
gularity of the second kind on the unit bidisk, it becomes nec-
essary to ascertain whether or not at |z,4| = {22091 = 1, P(2,0,
Z30)=0(219, Z99)=10. Though it is possible to solve this
problem as implied by the results from elementary decision
algebra [39], the computational complexity is excessive, espe-
cially for dimensions higher than two,

4) When G(z,, z3}= 1/Q{(z, z3), the stability theorem of
Farmer and Bednar gives the necessary and sufficient condi-
tions for BIBO stahility,

In the following, we will present few theorems related to
stability.

Theorem 2: If G(z,, z4) represents a BIBO stable filter,
then G{z,, z7) has no poles in the analyticity region of (12),
and no nonessential singularities of the second kind in that re-
gion, except possibly on the distinguished boundary of the
unit bidisk (i.e., {(zy, 22): |21/ =122/=1}). The above is a
necessary condition for BIBO stability.

Theorem 3: If G(z,, z,) has a bounded unit sample re-
sponse, then G(z,, 23 ) is analytic in {(z,, z2): |21 < 1, |z5| =
1} or @(z,, z; } # 0 in the same region.

Theorem 4: If G(z,, 75} is bounded in {(z,, z;): |2;] <1,
{21 <1}, then {g(m, n)} is square summable or belongstol,.

Theorem 5: M Q(z,, 0)F 0 in (8) for |z,| € 1, then for any
fixed n, g(m, n} = 0 geometrically in » and

ao

> lgtm, n)l <o,

m=9

as

In summarizing the discussion of this subsection, we state
the following for G{z, 22 )in (8) in Table I,

The above results have several important implications for the
two-dimensional filter design problem. In this survey, we do
not discuss this; however, we refer the reader to references

'[40] and [41].

b) Regions of analyticity for quarter-plane filters: In the
following discussion, we will assume that both P(z,, z;) and
Q(z1, z2) in equation (8) are mutually prime. Furthermore,
we also assume that G(z,, z; } has no nonessential singularities
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of the second kind on the unit bidisk. Both of these cases are
discussed earlier. Based on these assumptions, the stability
condition is ascertained by checking for the following analytic-
ity region as obtained by Shanks [32]:

Q(z1,25)F 0, forall {(zy,24): 12,]< 1, |2,] < 1}, (16)

To apply the above test, we have to map the region of the
zy-plane, [z;/< 1 into the z;-plane by the algebraic mapping
Q{zy, zz)=0. If the image of that map lies completely out-
side the circle jz;] = 1, the filter is stable; otherwise, it is not.
This test is computationally involved and does not lead to a
finite algorithm. 1In a later work, Huang [30], based on the
eatlier work of Ansell [4] on the stability of two-dimensional
Hurwitz polynomials, had simplified the above test consider-
ably, This was done by showing that the above condition is
equivalent to the following:

1} @(z,,0)#0,
i) @(zy,2,)#0, lz2l< 1. (17

Huang’s proof of the equivalence of regions (16) and (17) is
not complete and unfortunaiely his proof was propagated in
some texts {23]. Recently, new and rigorous proofs were
supplied by Goodman [42], Davis [43] and still another by
Murray [43a]. Hence, it is established that Huang’s theorem
is correct.

|Z1|<1

|zll = 11

Remarks:

1) The analyticity region in (17) is exchangeable as far as z,
and z, are concerned. This exchange property is computation-
ally useful for certain forms of iwo-dimensional polynomials,

2) The testing of region (17) can be performed by a finite
algorithm which relies heavily on root clustering properties of
one-dimensional polynomials. Various forms of such an algo-
rithm will be presented later in this section. Furthermore, the
first condition of (17) can be also replaced by Q(z;, a) #0,
forall lgl <1 and |z;|< 1 [44]. _

In independent works by Strintzis [44] and DeCarlo ef ai
[45], it has been sliown that another criterion is equivalent
to (17). This is given as follows:

1) Qfa,2,)#0,
ii) Q(zy,b)#0,
iii) @(z,,23)#0,

forsomea, la| <1, when [z,| <1
for some b, |b[ =1, when |z,|<1
(18)

In particular, with the choice of g=p = 1, the above condi-
tions become

Iz, = |Zz| =1,

O(1,2,}F0, |z3/<1
@z, DF0,  [z1<1
Q(z,,2,)#0, lz;l=|zgi=1. (19)

Still another criterion was developed by DeCarlo er gl. [45]
and it is presented as follows:®

Q(Z.IQZ‘A)#:O’
Q(Zl,22)§"—'0,

forzy, =z; =z, when|zI< 1

for |z4] = |23l = 1. (20)

‘A simple proof of Huang’s theorem is contained in Gunning and
Rossi, Analytic Functions of Several Complex Variables, New York:
Prentice-Hall, 1963, ch, 1, section C, theorem 7. The author is grateful
to John Murray for bringing this to his attention. Similar proofs ap-
peared in Goodman [40) and Strinizis [44],

SThe first inequality follows directly from the first two conditions of

(18).
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Fig. 2. Region of support for the weighting coefficient in (21).

Remarks:

1) In contrast to the one-dimensional digital filter, the sta-
bility test for the two-dimensional case involves several parts
while the former has only one pair (i.e., root clustering outside
the unit disk).

2) The significance of these various regions lies in the com-
putational aspects for the various tests. This gives more de-
grees of freedom in ascertaining the most economical regions
(17)-(20) is finite and relies on the well known stability tests
for one-dimensional polynomials.

2} Stability Property of Asymmetrict Half-Plane Filters:
Asymmetric half-plane filters (also referred to by Strintzis
[29], [44] as nonanticipative) are an extension of the quarter-
plane filters and, in fact, quarter-plane filters may be considered
to be a special case of such filters.” As shown by Dudgeon
[46], the asymmetric half-plane filter is the most general such
filter, and, furthermore, has important theoretical advantages
over the quarter-plane filters. In this survey which is devoted
to stability problems, we will not discuss these advantages:
however, the reader is referred to Dudgeon [46] and Good-
man [40] for such discussions.

The difference equation of such filters is given by

Na
YU EY= 3" a(0,m)x(j, k- n)
n=0
My N,

+ E Z a(m, m)x(j-m, k- n)

m=1n=-L,

Np
- Z 50, n)y(i, k- n)

r=1

My Ny
T2 2 bmaw(-mk-n). (2D

m=1 HB—Lb

The weighting sequences {a(m, n)} and {b {m, n)} have sup-
port on a region whose shape is shown in Fig, 2. There are
seven other support regions whose recursion equations are sim-
ilar to (21), but the orders of computation of the output se-
quence are different. For detailed discussion of recursiveness
as well as stability of all eight classes, the reader is referred to
Ekstrom and Woods [47], [47a] and Dudgeon [46] . In Fig. 3,

¢Sometimes referred to in the literature as nonsymmetric [47].

"Levy et al. [126] and independently Dudgeon [126a] have shown
that using coordinate transformation one can obtain the properties of
half-plane filters from the Quarter-plane. Later in [ 126b], O’Connor
and Huang have shown similar results.
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Fig. 3. Diagram of how the output sequence is computed for filters
with difference (21).

it is shown how the output sequence of a filter with differ-
ence equation (21) is computed. A given point y(j, k) of the
output sequence can be computed if and only if all of the
points under the output mask have been computed previously.
Thus the possible orders of computation are more limited in
the asymmetric half-plane case than in the quarter-plane case.
This ordering is reflected on the region of analyticity for sta-
bility properties of this filter. This is explained as follows.
The transfer function of the filter described by (21) is

P(zl)z?.)
iz, = 22
e o ) 2
where
Ny Mg, Ny
P(zy,z2)= 3 a(0,n)zf+ 37 37 alm, )z 25

n=0o m=1n=-~L,
(23)
Ng Mp Np
Q(zy,27)= Y, bO,mzF+ 3 3 bim,n)2{ 25,
n=0 m=1 n=-Ly
(24)

Assuming the numerator and denominator or parynomials of
(22} are mutually prime and neither has nonessential singulari-
ties of the second kind on |z,| = |z,] = 1, the stability condi-
tion as given by Ekstrom and Woods [47] is presented in the
following region of analyticity:

Q(0,2,)F#0, forall|zy|<1
Q(zy,29)F#0, forall |z3/=1, [z4]/<1. (25)

It should be emphasized that although (25) has similar but
not the same form as (17), the roles of z; and z, are not inter-
changeable as in the gquarter-plane case. Hence we consider
(25) as a different region.

Remarks:

1) One can also obtain similar criteria as in {18) and (20)
for the asymmetric half-plane filters.

2) The effect of the numerator on stability follows exactly
as in the quarter-plane case.

3 If G(zq, 2,)=1/0(zy, z;), then G(z,, z,) is a stable
transfer function if and only if Q(zy,2,)# 0, forall {(z,,z; )
2] =1, |z5] < 1}-

3) Stability Property of Symmetric Half*Plane Filters: Sta-
bility of symmetric half-plane filters, also referred to by Strint-
zis [48] as spatially noncausal filiers, were first discussed by
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Shanks and Justice [32], who gave the following region of
analyticity as a stability test of G{(z,,23)=1/Q(z,,2,):

Q(ZI;ZZ)?‘:(J! (26)

Using Strintzis {44] or DeCarlo er al. [45] results, the above is
simplified to give

when |z3] =1, I—zll <1

Q(z,,b)Y¥#0, forsomelbl=1, wheniz,|=<1
and
Q(z,,2,)F0, when|z,|=]z;]=1 (27}
In (26), Q(z,, 27 ) is given by
N N
Q@y,z)=1+ 3 3 typzizy (28)

m=0 n=-N

A modification of the above symmetric filter 1/Q(z,, z4)
which is recursive is given by Murray [49] as follows:

M N
Qz1,2)=1+ 3 ¥ amu2te (29)

m=1 n=-N

The above filter omits all of the row m = 0 except for the
constant term. It differs from the asymmetric half-plane filter
in the fact that the latter omits half of this row.

The filter is stable if and only if the following region of
analyticity is satisfied:

2(z,,2z9)F 0, (30)

The above is the same as (26). The advantage of such a filter
lies in the fact that it is recursively reglizable, while that of
Shanks and Justice is not.

Another form of noncausal two-dimensional linear filter (or
processor) is presented by Chang [50]. Such processors are
said to be stable if their impulse response decreases exponen-
tially in all four directions. In this work Chang [50] proved
the following theorem: ‘

Theorem 6: Let P and Q denote polynomials in z, and z,
such that the following region of analyticity is satisfied;

|zl|=.| and |22|gl.

Q(z,,22)%#0, foralllz,|=|zy]=1. (31)
Then the rational function
A Pz, z
G2y, 2) 2 DL 22) (32)
Qzy,24)

has a unique stable expansion.
Note in paper of Chang [50] the z-transform of the two-
dimensional input is defined as

X@,)= Y Y xymzitzn.  (33)

M=—co p=-occ

Similatly the z-transform of the output and impulse sequence
is so defined. Also note that the definition of stability in this
case is different from the earlier presented form. In conclud-
ing this discussion on recursive filters, it might be mentioned
that the class of finite impulse response (FIR) filters or nonre-
cursiveness, the problem of instability does not arise, for in
such cases the filter is always stable.

B, Stability of Two-Dimensional Continuous Filters

The first work related to stability of two-dimensional con-
tinuous filters is probably due to Ansell [4]. In this work, the
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author was concerned with obtaining 2 test for the two-variable
reactance property. Such a test has an application to networks
of commensurate delay transmission lines and lumped reac-
tances. In the process of obtaining such a test, Ansell intro-
duced the following definition.

Definition: A real polynomial in s; and s,, G(sy, 52), 052
two variable Hurwitz polynomial in the narrow sense if it has
the following property:

G(Sl,Sz);éO, REJI>0, RE-'.!'2>0

Gis,52)5F0, Res; >0, Resy =0

G(s,52)F0, Resy >0, Res, =0. (34)
Remarks:

1) The definition of Hurwitz in the narrow sense is general-
ized from the one-dimensional real polynomial, in which case
it is defined as

G)#0, Res=0. (35)

The above definition is introduced to distinguish it fram
polynomials of the property:

G()F0, Res>0. (36)

2} Ansell’s definition of two-variable Hurwitz .polynomiais
in the narrow sense is unfortunate. To be consistent with the
one-dimensional case, the following definition is adopted:

G(s1,5,)50, (37)

Similar to the discrete case, it is conjectured that the above
condition guarantees that the impulse response of 1/G{s;, 52)
isin L;. Thus we have “BIBO™ stability. However, a proof
is stilt lacking. In the following discussion we will refer to
polynomials satisfying the analyticity region (37) as “Two-
Dimensional Hurwitzian.” _

Based on the maximum modulus theorem, Ansell simplified
the analyticity region of {34) to the following:

i) G5, 1)+ 0, Res, =20
ii}) G(jw,52)#0, Resp >0,

Res; =20, Resy, 20,

for all ¢
iii) G(sy,53)has no factor (s, - 559) having Re g4 = 0.
(38)
There exists a finite algorithm to test for the above region,
which will be discussed in part D of this section, )
In obtaining a finite algorithm for the stability test of first
quarter two-limensional digital filters, Huang [30] modified

the above equation (without proof) to give the stability test
for the region in (37) as follows:

i) (s, 1)F0, Res; =20

i) G(juw,s)# 0, Res: =0,
8

for all . (39)

Using the bilinear transformation® the above region is the
Huang’s stability region of (17). This justifies the definition of
“Two-Dimensional Hurwitzian™ introduced in the above re-
mark. The algorithms to be used to check for (39) will be in-
troduced later on. A proof for obtaining the equivalence of
(37) and (39) can be constructed on similar lines as for the dis-

®Such a transformation should be used with caution because the re-
gions are not always preserved. See Goodman, “Some difficuliies with
the double bilinear transformation in 2-D digital filter design,” to be
published in Proc, IEEE.

PROCEEDINGS OF THE IEEE, VOL. 66, NO. 9, SEPTEMBER 1978

crete analog. An analog continuous region, similar to (19), has
been obtained by Strintzis [44]. Also some necessary condi-
tions for the stability of G(s,, 5, ) are given by Weinberg [5].

C. Stability Properties for Numerical Integration Methods

Arithmetic tests for 4 stability, A4 (a)-stability, and stiff sta-
bility are special cases of gencral stability tests for numerical
integration methods [61-[10], [S}]. They are accepted as
appropriate properties of numerical methods suitable for solv-
ing a stiff initial value prablem, as described by a first-order
vector ordinary differential equation

x()=f {x(2), 1] (40)

with initial condition
41)

The archtypical initial value problem by which the forego-
ing stability properties are given definition is that in which
(40) is the scalar linear equation

X(t)=qx(r) (42)

subject to the constraint Re {g} < 0 and with initial condition
Xg. Our concern is with those methods, defining with (42) a
linear difference equation for x,(# =0, 1, 2, " *)—a unique
approximation of x(t) at ¢, =nh+1, (n=0, 1, 2, }—and
having a real characteristic polynomial P in two variables (di-
mensions) A(= kg) and {, such that {x,} is asymptotic to the
origin if and only if P(X, {) = 0 implies || < 1. Under the pre-
condition Re {¢} <0, the solution to the archtypical initial
value problem is also aysmptotic to the origin. The following
discussion follows the work of Bickart and Jury [10].

1) Stability Region: Let J denote a simply connected open
region of the extended complex plane C* such that 9 T—the
boundary of J—is piecewise regulat. Then, a method is said to
be stable with respect to J if

P{A§)F#0, forall A\EF and t €D

x(r0)=x0.

(43)

where / denotes the open unit disk, and D is the complement
in C*, The above equation can also be written

PR, OF0, foral A€ T and ¢ = 1. (44)

Remarks: ‘

Equation (44) differs from the regions of (16) and (37) in
the fact that { is related to the unit disc and A to the left half .
plane (as will be seen later) and hence it is of mixed form.
This represents a generalization of the regions discussed earlier
in Sections III-A and B.

To obtain a convenient test to validate (44), we transform
the polynomial P(X, {) into another polynomial @(X, 5) as
follows:

oA, )= (s - I)mPP(J\,” i) (45)

5
where m p denotes the degree of Pin t. Correspondingly, we
let my, denote the degree of ¢ in 5. Then we have the follow-
ing theorem, _

Theorem 7: The implication of (44) is valid if and only if
mq = Mmp and

(A, 5)#0, (46)

Similar to (16) and (34), the testing of (46} is very compli-
cated even for the simplest forms of the regiond . Hence, in

foral A€ T and Res = 0.
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Fig. 4. Region of w,, for A(c) stability.

order to obtain a finite algorithm for testing stability, we can
show as done earlier in Sections III-A and B that the region
of (46) is equivalent to the following region:

i) O(N,50)#0, forallNET ands, ELC
i) AedTNQNI20IIASELI=0(N,0)#0
ii) Q(-,5)%¥0, forallRes=0 (47)

where L€ is the complement of the closure set of the open left
half-plane and A means “and.”

The tests of (47} are a root-clustering tests of (possibly,
parametrized) one-dimensional polynomials and hence can be
tested by a finite algorithm. Such tests will be discussed in
Section I-D. Furthermore, this test is more complicated than
{(17) and (38) because of the complexity of the region in equa-
tion (46).

2) Special Cases:

a) A-stability: In this case T in (47) is the open left half
plane (the Hurwitz region). Hence, A € J becomes s; &€ £ and
& can be treated as the second dimension s, .

b} Alal-stability: In this case for a & (0, 7/2], set §=
B, ={A: larg {-A}<a}. The region B, is presented in
Fig. 4.

c) Stiff stability: In this case the region T is such that it
contains the open half-plane {A: Re{A} <-8&J for some § >
0 and has the origin as a boundary point. This'is shown in
Fig. 5.

D. Stability Tests for Various Analyticity Regions

Having delineated the various stability regions in Sections
III-A-C, in this subsection we will be mainly concerned with
the varicus implementations which have been developed
for the stability tests of two-dimensional scalar polynomials.
Also, in this part we will indicate how to apply the various
tests to the most important stability regions discussed eatlier.
The importance of the various finite tests lHes in the computa-
tional properties of the operations involved.

1) Symmetric Matrix Forms {32]: It is known that stabil-
ity tests for one-dimensional continuous and discrete scalar
polynomials are checked by requiring a certain Hermitian
matrix (Hermitian matnx for the continuous case and Schur-
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Cohn matrix for the discrete case) to be positive definite. This
matrix is formed under a certain rule from the coefficients of
the polynomials under study. Such tests are well known and
in [23] a complete study of these matrices is given.

To apply this form of matrix to the region of (17) we pro-
ceed following the work of Anderson-Jury [52] as follows:

1) From the first inequality of (17) we form the reciprocal
polynomial of Q(z,, 0) to obtain @, (z;, 0)=z"Q(z7', 0)
where “n™ is the degree of the one-dimensional pelynomiat in
z;. By so doing, the region becomes |z,| > 1, and hence we
can use the symmetric matrix of the reduced Schur-Cohn as
developed by Anderson-Jury [23], in this case.

To verify the first inequality of (17), the reduced Schur-
Cohn matrix applied to the real polynomial @, (z,, 0) cught
to be positive definite (P.D.) plus the positivity of about n/2
of its coefficients when the bilinear transformation z, =
(wy - 1)f(w; +1) is applied to it [1]. We may note that if
@(zy, 0) is used, then the reduced Schur-Cohn matrix is nega-
tive definite,

2) To check. the second inequality of (17), we replace the
polynomial @{z,, z; ), considered as a polynomial in z,, by its
reciprocal (i.e., Q; (21, 22}) in a way similar to @(z,, 0). By
doing so, ((z;, z2) is considered as a polynomial in z,,
whose coefficients are functions of a parameter z;. For sta-
bility we require that the Schur-Cohn matrix for complex co-
efficients be P.D. In this case the entries of the Schur-Cohn
mairix are polynomials in z, and/or Z; (conjugate), The mi-
nors of this matrix are again polynomials in z; and Z,, and are
real because the Schur-Cohn matrix is Hermitign. This fact
will be utilized for the checking of positive definiteness.

3) In a discussion by Siljak [53] , it is pointed out that for
the Schur~-Cohn Hermitian matrix to be P.D., it is required
that only the determinant of the matrix be positive plus the
auxiliary condition in which the Schur matrix for a point on
the unit circle be positive., Usually, the point can be taken as
- 1,

4) To check the positiveness of the Schur-Cohn determi-
nant for |z,/=1 and bearing in mind that on |z,|= le®| =1
we have 7, =2/% =z]!, we obtain a polynomial of the follow-
ing form: )

- &, i i
i f(zlszll)\z Z__Cj(zl"'z?)-

i=0

(48)

The above equation has to be positive (or of constant sign) on
{z4]=1). To ascertain the above condition, we form the fol-
lowing polynomials:

gz =2{f(z),z1"}>0, forlz|=1. (50)
To satisfy (50), we require that
g(ly>0 (51)

and g(z, } of degree 2V has no roots on the unit circle or equiv-
alently should have & roots inside the unit circle; since g(z, )
s a reciprocal polynomial, the other NV are outside the unit cir-
cle. Tests for such conditions are well known in [23], [53].

Another method for testing (48) for positivity is to make the
substitution (see [63] for this substitution):

z, +z7!
Xy = : 221 L@ vzt )=4xf- 2,0 (52)
in (48), which implies that
-1<x; <1, whenl|zi|=1. (53)
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Hence to check the positivity of (48), we require that fy (x,)
be positive for all -1 <x; < 1, or alternatively f, (x,) be de-
void of real zeros in this interval, Again, various tesis [54] are
available for checking this. The implication of this substitu-
tion will be considered when the Bose method [55] of testing
local possitivity is discussed.

In order to discuss the testing of the other regions mentioned
in Section III-A, we will make the following observation on
the auvxiliary condition mentioned earlier. If we denote the
determinant of the Schur-Cohn Hermitian matrix as |A|, then
the auxiliary constraint can be written as:

ALy 7, =1 >0. (54)

The implication of (54) is that all the leading principal mi-
nors which are now determinants of matrices having constant
coefficients are positive. This means that the polynomial
@1(z1, 22)]7, = has all its roots inside the unit disk in the z,-
plane or alternatively the polynomial

Q(],Zg):?‘:o, |22|<1-

The above is evident because the checking of (55) requires the
positivity of the symmetric Schur-Cohn matrix related toQ(1,
z,) which is exactly the |Al at z; = 1 in (54).
As pointed out in remark 2) of Section III-Alb, the first
condition of (17} can be also replaced (without affecting the
_stability region of (16)} with

@z, 1)#0, (56)

Comparing (55) and (56) with the first two equations of re-
gion (19) we arrive at the conclusion that the testing of the
third condition of (19) is equivalent to testing the positivity of
the determinant of the Schur-Cohn Hermitian matrix. Hence,
from a compultational point of view the testing of regions {17)
and (19) is equivalent.

Similarly the testing of region (20) is now straightforward.
The first condition is a one-dimensional real polynomial to be
tested for stability, The second condition is similar to the
third condition of (19).

The testing of the region of (25) is similar to (17), except in
this case the roles of z, and z; are not interchangeable. The
testing of the region (26} is again similar to testing the third
incquality of (17). Finally, the testing of the region (31) is
similar to testing of the last inequality in (19).° Hence, in con-
clusion we have shown that the checking of all the analyticity
regions in Section I1I-A is performed by using the symmetric
matrix form,

The application of the symmetric matrix approach to test-
ing the regions in Section [1I-B namely regions (38} and (39)
can be performed in a similar fashion as for the regions in Sec-
tion IIT-A.

Considering the region (39) first, we readily ascertain that
the checking of (39) is readily performed using the symmet-
ric form of the Lignard-Chipart method [23] of the one-
dimensional real polynomial. To check (39) we use the
Hermitian matrix for the complex polynomial which requires
[53] that its determinant be positive for all w and the matrix
at w = 0 be positive. The requirement that the determinant be

(55)

HES!

®We may note that the determinant of the Schur-Cohn Hermitian
matrix is, except for a sign change, the same as the resultant of Q(z,
z,) written as a polynomial in z, and its reciprocal (inverse) polynomial.
A suificient condition for satisfying the region (31) is that the resultant
have no roots on the unit circle in the z, -plane for all iz, = 1.
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positive is equivalent to the following even polynomial:

F(w?)>0, forallw>=0. (&1

The checking of (57) requires that the even polynomial
F(w?*)=F(x) be devoid of positive real zeros. Such tests are
available in the lterature [23], [53]. It may be remarked that
(using bilinear transformation) Huang [30] applied this modi-
fied form of Ansell’s results [4] to check the stability of (17).

The checking of the region (38) is more complicated. In this
case the testing of the second condition requires that all the
principal minors of the Hermitian matrix be nonnegative (i.e.,

A (w)|>0, forallwandi=1,2," -,n  (58)

where n is the degree of G(jw, s3) as 2 polynomial in 5,. The
testing of (58) requires that » sets of the even polynomials
corresponding to the » minors of the Hermitian matrix be de-
void of odd numbers of positive real zeros. Again various tests
are available [23], [53] for checking this requirement.

In extending the application of the symmetric matrix form
to the regions in Section I11-C, one may note that if s, is taken
as teal and equals unity in of (47i), we obtain a similar form of
the first inequality of (38) or (39). Furthermore, ascertaining
(38ii} and (38ili) for the special cases discussed in Subsection
C2 requires in part the checking of nonnegativity of the fol-
lowing even polynomials in certain regions (i.e.,

|&;)| =0, forallp€dandi=1,2,:--,n (59)

is required) where 4" represents a certain region and # is the
number of the various polynomials. For a complete discussion
of checking the stability regions of 4, 4 [a] and stiff stability
the reader is referred to Bickart and Jury [10].

2) Innerwise Matrix Form [1], {23]: In Section II, we es-
tablished in (6) that for each positive definite symmetric ma-
trix there corresponds a positive inntewise matrix of double di-
mension. Hence, for the symmetric matrix form discussed in
Corollary 1, there corresponds an innerwise matrix with about
double dimension, but with left triangle of zeros. The pattern
of the innerwise matrix makes it computationally attractive,
for there exisls a recursive algotithm for computing the inners
determinanis consecutively.

To ¢xplain briefly the inners approach to the stability of
two-dimensional digital filters, we concentrate first on region
(17) which can be rewritten as:

1) Q(z,,0)F0, lz,]> 1
ii} @1(zy,220%F0, iz,=1, (60)

where O, is the reciprocal polynomial of Q{z,, 0Yin (17). To
check condition (60i), we require that (n - 1) X (n - 1) inner-
wise matrix be P.I. plus about n/2 bilinearly transformed coef-
ficients of (} to be positive. Such a test was discussed in an
earlier survey paper [1] and in the text [23].

To check (60ii) we require that the 2n X 2n Schur-Cohn
matrix be written in an innerwise form [23], to be P.I. The
entries of this matrix are no longer constants as in real or com-
plex polynomials but are functions of z; such that |z,]|=1.
The condition of stability requires that this matrix be P,
which is equivalent to the Schur-Cohn Hermitian matrix dis-
cussed in Section III-D, being P.D. Hence, we call the Schur-
Cohn innerwise matrix “innerwise Hermitian’’ because all the
inners determinants (which are equivalent to the leading prin-
ciple minor of the Schur-Cohn Hermitian matrix) are real.
The checking of (60ii) requires that the reciprocal polynomial

lzz1 =1
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obtained from the innerwise matrix determinant be positive
for z; = 1. The last condition is equivalent {(based on earlier
discussions) to

@21(1,22)#0,

The condition that the innerwise determinant be positive fol-
lows the same lines as in Section III-D, namely the recursive
polynomial should be devoid of zeros on the unit circle and be
positive for one point on the unit circle. The checking of this
special root distribution is discussed in detail in [1], [23].
Similarly, we can check for all the regions discussed in Sec-
tion II1-D.

In a similar fashion we can check (39) for stability for two-
dimensional continuous filters as follows:

For condition (39i), we use the Liénard-Chipart approach in
an innerwise form. In this case the (n - 1) X (r - 1} innerwise
matrix is positive innerwise plus about n/2 of the coefficients
be positive.

In the checking of (3%ii) we form the n X n innerwise matrix
(1], [23] whose entries are functions of ¢. This matrix is
also “innerwise Hermitian’ and hence we apply the same pro-
cedure as done in case Section I1I-D, for the symmetric matrix
form. In a similar fashion we can check for all the regions of
Sections HI-A, B, and C. Furthermore, the polynomials in
(59) are obtained from the inners determinants [10] rather
than from the principal minors of the Hermltlan matrices.

Remarks:

1) The use of the computational algorithm based on the
double triangularization of the innerwise matrix can be also
extended for the stability of the two-dimensional polynomials.

2) In recent years, Bose and his coworkers [54]1-[58] have
extensively used the inners approach for checking the stability
of two-dimensional and multidimensional digital and contin-
unous systems. They have developed a computer program for
computing exactly the inners determinants.

3} Table Form for Stability Check: It is well known that
the Routh table which was developed a century ago can be
adopted for checking the root-clustering and root-distributions
of a one-dimensional polynomial with respect to the imaginary
axis in the s-plane. Extension of the use of the Routh table to
determining stability of two-dimensional continuous filters has
been performed by Siljak {53].

In his studies, SI]Jak twice applied the Routh table to check
stability: once for the real polynomial related to the first con-
dition of (39) and the other time to the even polynomial
which arises from testing the second condition of region (39).
The connection between the table form and the innerwise ma-
trix approach is discussed by Jury {59] in the Routh Centen-
nial Lecture,

A gimilar table form exists for the stability or for the root-
distribution of real or complex polynomials with respect to
its unit circle. Such a table form was discussed by Cohn [60],
Marden [61], Jury [62] and others. The first authors to ap-
ply this table form to check the region of (17) were Maria and
Fahmy [63];in their work, they did not utilize the simplifica-
tion due to checking the positivity of the Schur-Cohn Hermi-
tian matrix. Siljak [53] in a later work has carried out this
simplification, whichis similar to the continuous case.

Remarks:

1} In the work of Siljak, the Routh table or its discrete
analog was applied twice for checking regions (17) and (39).

forall |z, = 1. (61)

However, he computed both the Schur-Cohn Hermitian ma-

trix and this matrix at a certain point, i.e., at z; = 1 using the
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formulas for the symmetric matrix. It is evident that both of
these can be separately computed using the table form.'®
Hence, the complete use of the table of checking the stability
of two-dimensional digital filters requires its use four times.
Similar conclusions can be reached for testing (19).

2) If we use region (20} for checking stability, we require
only three uses of the table. Thus it appears that region (20)
offers certain computational advantages in certain cases.

3) Though the table form has been discussed for the typical
regions (17) and (39), it can be readily adopted to test for all
other regions of analyticity discussed in Sections III-A, B,
and C,

4} Local Positivity Method: This method which was intro-
duced by Bose [55] is based on some properties of network
theory in one-dimensional continuous and discrete systems.
The basic test for checking the second condition of region (17)
using this method is based on the following theorem, whose
terms will be defined later.

Theorem 8: @1(z,22)# 0for |z, =1, Izzl 22 1 if and oniy
if:

1) the zeros of D, (0, z3) and D, {0, z5)'! are located on
the unit circle |z5] = 1;

2} the zeros of Dy (0, z5) and D, (0, z;) are simple and al-
ternate on the unit circle |z;]=1;

3) The resultant R(x) of D, (x, z5) and D, (x, z;) has no
real roots in the interval ~1 <<x < 1. (The polynomials
R(x) or R(-x) have to be tested for positivity for the
local region -1<<x <1. Hence, the method is called
“local positivity.”)

We may note that

011, 22) =23 Q(z1,27%) (62)
where n, is the degree of z, in Q(z, 22 ).
Let
n,
Q1 (z1,22)= 3 be(z))z¥ (63)
k=0
ny -
0%z1,22)= Y, belzzf (64)
k=0
and!?

Do(zlszz)llz,l=1

2n, . .
=0,07= 2. (Z Cj(zf+zf")2’z°)

k=0 i
(65)
where the ¢;’s are constant, Substituting z, = e’ in (65) to
obtain,
2n,
Do(z"22)||=1|=1 = Z (Z (2¢ cosjﬂ)z"f)).
k=0 I

(66)

10 Algo, together they can be computed using one table.

111t can be shown that for stability D, (x, z,) and D, (x, z,) cannot
have a reduction in degree for any x in 41 = x <1, Therefere if a re-
duction of degree occurs in D, (0, z,), D, (0, z,) it is not necessary to
proceed further with the test.

¥ Note that D® has all its 2r, roots inside the unit circle iff @, has
all its 7, roots inside the unit circie.
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Using the trigonometric identity,

n
cos nft = Z

(" ) (- )% cos(®~28) g 42k 67
& \2k

where # =n/2 for n even and {n - 1)/2 for n odd. Equation
(66) can now be written as

2n,
Dx,22)=D1,2)j2 )0y = T dpx)z¥ (68)
k=0
where d (x) are polynomials in x = cos 8. Let
Di(x,22)= 3 [D(x,2,) +25°Dx, 239]  (69)
2 -
Dalx,2:)= 3 DG, 22) - 23" D(x, 231, (70)

Remarks:

1} The checking of the first inequality in region (17) can be
performed for the one-dimensional case following Schiissler
[63a]. Itis given in the following assertion:

Assertion: Let D(z) be a polynomial of degree n having teal
coefficients, and let

DE)=D,(z)+D,(z) (71)

where
Dy (2} = 1 [D@)+2"D(z )] (72)
Dy (z}= 5 [D(z)- z"D(z71)]. (73)

Then D(z)# 0 in |z| = 1 if and only if all the zeros of Di(z)
and I3 (z) are simple, are located on the unit circle |z| = 1, and
also separate each other on the unit circle !3

2) Satisfying conditions (1) and (2) of Theorem 8 is equiv-
alent to the polynomial D°(z,, z,) # 0 for 2y =j, lzal 2 1.
This is translated in the notation of (18) to the following:

(b, 2;)%#0, forall z,{ <1, Bl =1j1=1. (74)

In observing region (18), we arrive at the conclusion that the
checking of (3) in Theorem 8 is equivalent to the checking of
the last condition of (19). Thus we have reconciled the stabil-
ity test of this method to that of regions {17) or (19).

3) One can simplify this test by considering the region of
(20).

A similar theorem was also obtained by Rose [55] for the
continuous case as in region (39). It is based on the following
theorem:

Theorem 9: It is known from before that

Q@(s1,5)#0, inReys, =0, Resy; 20 (75)

if and only if
QG1,1)#0, Res; =0 (76)
Q(s1,5)#0, Res, =0, Res, =0, (77

Hence, the theorem states that Q(51,5,)# 0 in Re 51 =0,Re
$2 2 0 if and only if

1} the zeros' of ¥, (1, 55) and N3 (1, 53) are located on the
line Re 5, = @;

3 An aigorithm for testing this condition is given by Szezupak-Mitra~
lury in IEEE Trans. Audio Speech Signal Proc., vol, ASSP-25, pp. 101 -
102, Feb. 1977,

" Again for stability, N, (w, 5,) and N, (w, 5,) cannot have a reduc-
tion in degree for any win —= < @ < oo, Therefore, if a reduction in
degree ig noticed in N, (1, 5,) and M, (1, #;) it is not necessary to pro-
ceed further in the test,
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2) the zeros of N, (1,52) and ¥, (1, 5,) are simple and alter
nate on the line Re 5, = 0; and

3) the resultant R (w,) of Ny(wy, $2) and N, (w4, 54 } has
no real roots where

2n
N(sy,s9)= Q0s1,52)0%(s;, 55) = kz” n{w)st  (78)

=0

and

N(wlas2)=N0(5'1;‘5'2)l,91=jw1 (79)
NMi(w1,9)= 3 N1, 50) + N(wy, -52)] (80)
N2 (w1,8)= 3 [Ny, 5) - Mew;,-5;)1. (81)
Note that (76) can be tested using a standard one-dimensional

technique by carrying out the continued fraction expansion of
Ev Q(s,, 1)/0d O(s;, 1) or Og QGsy, 1/Ev Q(sy, 1).  If al)
the coefficients of the continged fraction expansion are posi-
tive then Q(sy, 1) is a Hurwitz polynomial, or alternatively the
fraction is a reactance function.

5) Impulse Response Test: In the following discussion we
will indicate how the impulse response &m,n Can be used to
check the stability of two-dimensional digital filters. These
discussions will Tollow the works of Strintzis [48], [64] .
Goodman [40] and Vidyasagar and Bose {65]. First, we dis-
cuss the stability of the causal or spatially causal filter of the
quarter-plane type. Following Strintzis [64], we present the
following theorem:

Thearem 10. Let H be the
quence {lg,, ,|/m*n};

H=

upper limit of the double se-

m,n| PR, (82)

lim le
m andfor n— oo
If G(z,, z,)%
tions exist:

is rational in z, and z,, the following condi-

i} # <1, the above is necessary and sufficient for conver-
gence of

szl,zz)= Z Z ﬂg'rﬂ,nz’]'nzat (83)

Z,=0 z,=0 .

in {|z,1<1, |z;)< 1} and for “BIBO” stability of the filter.
If # > 1, the filter is unstable. Furthermore, as a consequence
of i}, we also have for H < 1

) lgm,nl <ku™*+n,

The case where H = 1, is discussed in the following lemma.
Lemma 1: If G(z,, Z, ) is rational and if H = 1, then the un-
stable singularities may only occur in one of the following
regions:
1) lzyl=1, 2z, arbitrary
2) z; arbitrary, |z4| = 1
3) along the perimeter (but not the
{lz:1<1, 251 <1}, i.e., when

G(Zl,22)=°°,
G(Zl,zz)¢°°,

Based on this Iemma, we have the following theorem.

O<k<+oo, |y <1. (84)

(85)
(86)
interior) of the set

for some |z,| = |z, = 1 {87a)

if either |z,] <1 or |z4| < 1. {(87b)

"$In the following development, we assume that the numerator and
denominator of G(z,,z,) are mutually prime and that no nonessential
singularities of the second kind in Iz,1= |2, = 1 exist.

te

11
tc

fri
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Theorem 11 {40], [64]: If G(z,, z;) is rational and not in
the class of functions described in (87), the following condi-
tions are all equivalent and each is necessary and sufficient for
BIBO stabiiity of the filter:

i) 1€l —> 0,

W) 3 3 1gmalf <=,

m=0 n=0

whenm —> o, orn——=>0o (88)

p=1 (89)
Other relationships related to stability of the impulse re-
sponse are described by Goodman [40] and a relationship sim-
ilar to iv) by Vidyasagar and Bose [65].
The conditions i-iv developed earlier may be used directly as
stability criteria in the design of two-dimensional filters in the
time domain. If the design is based on a frequency-domain

characterization
' P(zq,z
Gley, 29) = A2 22, (90)
O(zq,23)
where @ is 2 polynomial function,
{21}

I L
0(z1,25) = ;‘, IR
1:0 2-0

and P is a polynomial bounded in the intersection |z;]< 1,
i=1, 2, then the filter G{z,, z;) is BIBO stable if and only if
the following filter is stable:

1
Q(zl 3 22 )

oo )
=2 2 gk[,klzflzl;z-

k=0 k=0

Gizy, 22) =

(92)

On multiplying both sides of (92) by (z,, z,) as given in
(91) and equating coefficients, we obtain

1

£o0 = (93)
29,0
I, I,
> 2 8n,-iy,n,-i, 80,4, =0 (94)
=0i,=0
foralln,20,r=1, 2 where
g4, =0, ifanyk, <O, r=1,2, (95)

We thus obtain the following theorem due to Strintzis [64].

Theorem 12: Let {gkl,k,} be the sequence obtained by the
recursive relations (93)-(93). Either of the following condi-
tions is necessary and sufficient for BIBO stability of (90).

1) lgg, x, M®*%) <1, fork, andjor k>

2) The polynomlal Q(zl , 23} is nonzero for |zy|=|z;]=1,
and Zx, k, 2pProgches zero as one or both indices &k, , ap-
proach mtimlty

Remarks:

1) The recursive relationships in (93)-(95) can be used to
test for stability as indicated in 1) of Theorem 12. The storage
required for application of 1) is minimal. This is an advantage
in some cases as compared with stability in tests of Section
I-Di-D4. Criterion 2) of the above theorem is comparable
to the checking of (19).

2) Conditions i-iv of Theorems 10 and 11 are different
from the one-dimensional case. In particular iii and iv are not
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equal to i and ii because of Lemma 1.1 However, the corre-
sponding ones for the one-dimensional case are all equal.

3} Further stability conditions in terms of the impulse
response are given in Table I.

4) Application of the stability test based on the impulse
response for one-dimensional polynomials was proposed long
ago by Krishnamurthy [66].

To complete the above discussions, we will present a
theorem due to Strintzis [48] analogous to (83), (84) and (88),
(89) for asymmetric half-plane filters discussed in Section 1Ii-
A2,

To generate an “impulse response” sequence of the filter
in (22), we need a Taylor’s series expansion of G{(z,, z,) (we
assume that both the numerator and denominator are mutually
prime and no nonessential singularities of the second kind on
lzy = lz2| = 1 exist),

o0

Glzy,22)= ) 2V hyizs) (96)
followed by Laurent series expansion of each A, (2, ),
n=o0
ftm(22)= Z 8mni2 97)
n=-«
where one property of ki, (2, ) is given by
f(22) 1 > G( )] (98)
Z9)=—" Iy, 2
el m.! a m 1 2 ZI=0

Other properties of h,,(z,) also exist, but these are not rele-
vant to the following theorem [48].

Theorem 13: M G(z,, z,) is rational and untess (101) given
below are true, then the following conditions are all equivalent
and each is necessary and sufficient for the stability of asym-
metric half-plane (nonanticipative) filters:

limn &n.nl=0 (99)
mandjorn —+ 1o !
for some p, 1 € p < +oo, Z Z (Em.nlf < oo,
m=0 p=-=
{100)
If there exists
Um |hpy (29)]1 =1 (101a)
m
for at least one z,, {z,| = 1 but for all other z,, |z5f=1
Tim Ay, (22)1™ <1 {101b)
m

then conditions (101a) always imply BIBO instability of the

filters, even though hm 1&m.nt=0.

6) Cepstral Smbzhty Test [t is known that the two-
dimensional complex cepstrum can be used for the stabiliza-
tion of recursive filters. Such studies were conducted by
Pistor [31], Dudgeon [46], and Eksirom and Woods [47],
[47a]. Furthermore, ceptral analysis has been used in speech
processing by Oppenheim et 2! [67] and more recently it is

6 An example for (87a and b) is given by Goodman [40]. It is as

follows:
G(zy,2,)=2/(2 -z, -z;).

The above filter is BIBO un; table but has a unit sample response {gm n}
such that I1m gim, ny =
n,n—
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applied in image processing, especially image deblurring, by
Rom [68].

As in the one-dimensional case, the two-dimensional com-
plex cepstrum is deflined as the inverse Fourier transform of
the complex logarithm of the two-dimensional Fourier trans-
form of a sequence. Thus, if two sequences are convolved,
their cepstra add. For the following discussions we define the
two-dimensional z-transform cepstrum @{zl, Z,} as the
logarithm of the two-dimensional z-transform of &n array
glm, n)El: )

Glz1,22)= 1,12 {glm, }) = 1,1G(z,, 2,)].  (102)

In the works of Pistor [31] and Ekstrom and Woods [47]
on two-dimensional spectral [actorization, they have shown
how such a factorization can be used for obtaining a stability
theorem for two-dimensional recursive filters. Pistor [31]
gave such a critcrion mentioned below and Ekstrom and
Woods [47], and later Ekstrom and Twogood [69], gave
algorithms for the stability test. In the following discussions
we will principally follow the algorithm of Ekstrom and
Twogood [69].

Theorem 14 f31]: The sequence {1g0m, M} ys 0 n=o is re-
cursively stable if and only if there exists a power series

3

=0 n

oo

lém.nzﬁ”z? (103)
=0
that is absolutely convergent and equal to [, 0, (z,, z,) for all
(z1, z3) such that |z,[< 1, 122 | <1 where 'g(m, n) is a First
quadrant sequence and {Ez\m‘n} is the inverse z-transform of

Qlzy,22), e,
{é\m,n e é(zl 1 22) =10z, 29).

In the above Q(z,,z,) represents the denominator of the
causal filter F(z,,z,)= 1/Q0(z,, z5).

Corollary 2 [31]: The [th quadrant function lqm in which
=2, 3, 4 is recursively stable if and only if In[C) (2}, 1/25)1,
In[@2(Y/zy, 1/23)] 014,1Q5(1/z2y, 2,)], respectively, are equal
to a power series of the form (103) that is absolutely con-
vergent for all (zy, z, ) in |z,] < 1, [z,1 < 1.

Though the above theorem and corollary of Pistor [31] are
of interest, he did not present an algorithm for testing sta-
bility. Such a test was Iater obtained by Ekstrom and Woods
[47] as an application of the two-dimensional spectral factor-
ization. It is based on 2 two-dimensional factorization opetr-
ation involving the autocorrelation function of the filter which
-covers both the quarter- and half-planes. By using the auto-
correlation of the filter, this test involved caleulating the
logarithm of a real array. While this introduced substantial
complexity into the computation, it did avoid the problems
associated with defining the complex logarithm. Recently
Dudgeon [70] has shown the existence of a two-dimensional
complex cepstrum. Based on such existence, Ekstrom and
Twogood [69]) have obtained an altcinate test which removes
the earlier complexity and is computationaﬂy attractive. In
the following, we will present in detail this test.

Cepstral Test [69]: For stability considerations, the im-
portant property of -the cepstral transformation is thatl the
nonessential singularitics and zeros of G(zy, z;) map into
the essential singularities and zeros of @(zl, z,). Because of
this, the regions of analyticity of G(z,, z,) and @(z], z, ) are
identical. Now if G(z,, z;) is a stable filter, it can be written

(104)
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Gqlm,n}

qlm,n) 5577 Qp (u,v) Qo uv)
————— ————a

0FT la o

IDFT

Fig. 6. Block diagram of the cepstral stability test.

in a power series for m, n € JR (where IR is the region of
support of the filter, whether a guarter-plane or asymmetric
half-plane) and hence G(z,, z, ) can be similarly expanded;

Glzy,22)=20 B(m,n) 2720 (105}
IR

The above leads to the following theorem which gives the
stability test.

Theorem 15 [§9]: The asymmetric half-plane recursive filter
G(z,22)=1/0(z,, 25} is stable if and only if its cepstrum
£(m, n) has support on IR,

Because Glzy,z3) is analyticon {lz,|= 1, |z, | < 1}, £(m, n)
takes support on the entire hali-plane (in this case the half-
piane defined by {m 20,20}V {m <0, n>>0}). The ad-
ditional region of analyticity for G(z, 0) on {lz, 1< 1} ensures
that §(m, n) =0 for n < 0. The above theorem can be gener-
alized to other classes of half-plane and quarter-plane filters.

The implementation of this theorem into stability test
proceeds as follows: 1) Farm Q(zy,25) frg\m q{m, n) of the
filter to be tested for stability. 2) Calculate ((z,, 2z, ) and then
its inverse z-transform to obtain the cepstrum glm, n).  If
§(m,n) =0, for m, n € R, then the filter is stable. If g(m, n) #
0 for m, n & R, then the filter is unstable. In the numerical
realization of the test, one can replace the z-transform with
the discrete Fourier transform (DFT) as shown in Fig. 6. In
this figure §,(m, n) is the aliased version of g(m, n). The
difference can be calculated from the size of DFT.

In order to ensure the analyticity of é(u, U) which is equal
to

O, 0) = 1,00, v) = 1y |QMu, W)l +/ are O, v) (106)

the phase term, arg ((u, v), must be periodic and continuous
as shown by Dudgeon [70]. To ensure continuity one can use
a method called phase unwrgpping [69], and to ensure per-
iodicity (with period 27), one uses the method of linear phase
removal [70]. A method for accomplishing this is reported by
Ekstrom and Twogood [69] with numerical examples for
performing the stability test,

Remarks:

1) A drawback of this methad is the assumption needed to
avoid problems in carrying out the logarithm which requires
that

Kz, 2)F0, (106a)

Hence, the implementation of the cepstral test as it stands
now, merely replaces (in most cases) the one-dimensional
portion of the test. Recent works by O’Connor and Huang
[126b] and Shaw [126¢] shed more light on this problem.
They showed how the stability test using phase unwrapping
can be more readily implemented.

2) The cepstral method is mainly applicable for numerical
testing for stability. As such, it is not amenable to obtain
stability inequality conditions as can be done (for low-order
polynomials)'” using the tests presented in Section II1-D1-D4.

forlz{l=1, |z3]=1.

""See (120) and (121).
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3) This method is an approximate method and thus it might
be less reliable than the methods of Section III-D-D4. The
latter methods can also be approximate when the zeros of the
polynomials are near the boundaries of the regions of analy-
ticity. However, several effect numerical methods are known
to give in this case precise resuits.

4) A computational comparison between a former compli-
cated test of Ekstrom and Woods [47] with the table form of
Maria and Fahmy [63] showed the cepstral method to be
more efficient. However, this comparison is made with the
complicated procedure of Maria and Fahmy (i.e., without
taking computational advantages of the positive Hermitian
matrix) and thus a new comparison of the present method and
Siljak’s table form is indeed warranted.

In spite of some minor drawbiacks of the cepstral method,
it is very useful and indeed it has potential for applications
in problems other than stability.

7) Nyquist-Like Test: It is well known that the Nygquist
criterion gives information on the stability of one-dimensional
discrete and continuous systems by graphically plotting the
Nyquist locus in the z or s-planes. In a series of articles,
DeCarlo, Murray, and Sacks [45], [71], {72] have clearly
extended the Nyquist mapping to determine the stability of
two-dimensional as well as multidimensional scalar poly-
nomials. The key to their formulation of the Nyquist-like
theory is the observation that from an abstract analytical
functional. point of view the classical one-variable Nyquist
plot is simply a method for determining whether or not an
analytic function in one variable has zeros in an appropriate
region by plotting the image of the function on the boundary
of the region. To obtain a Nyquist theory in two dimensions,
one can decompose the region of Cz, in which Q(zq, z2) of
(17) is forbidden to have zeros as a union of a family of one-
variable regions to which the classical Nyquist theorem applies.
Hete, we define the disk Dy in €2, for real o, 0 < ¢ < 271, by

Do = {(e’*, z2), lz2 1< 1 } (107)
and we define the disk D by
D= {(z,0), |z, <1} {108)

corresponding to the region of analyticity in equation (17).
Based on the above observation, we have '

Theorem 16 {71]: A digital filter characterized by the two-
dimensional transfer function G(z,, z2) =P(zy, 22 O(zy, 23)
(with the assumptions indicated in a.2) is structurally stable,
if and only if the Nyquist plots for the family of one-dimen-
sional functions

0@, z,), 0<a<2n (109)

and

Q(zl 3 0)

do not equal or encircle zero in the complex plane.

We can also obtain other graphical tests for stability by
invoking the equivalent criteria of (18)-(20). This leads to
the following theorems.

Theorem 17 [45], [72]: The two-dimensional digital filter
described above is structurally stable if and only if

i) Q(zy,z2) hasno zeroson |z4| = |z2]| = 1; (110)
ii) the Nyquist plots for the one-dimensional functions
(1, z5} and @(z,, 0) do not encircle zero, (111)
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In the test of i), we check the image of the distinguished
boundary. It is indeed the reciprocal of twe-dimensional
irequency response and can be obtained graphically.

Theorem I8 [72]: Let Q be as above. The filter is struc-
turally stable if and only if

i) @z, z5) has no zeros on the distinguished Boundary;
ii}) the Nyquist plots for the one-dimensional functions
O(1, z3)and Xz, 1) do not encircle zero.

Actually the stability criteria of the above two theocrems
are readily obtainable by special cases from the regions of
(18).

Theorem 19 [72]: Let { be as above.
structurally stable if and only if

Then the filter is

i) @ has no zeros on the distinguished boundary,
ii) the Nyquist plot for the single variable function O(z, z)
does not encircle zero.

Remarks:

1) Because the Nyquist piot is related to the frequency
response, it appears that the above tests are useful not only
for checking stability but for design purposes where certain
changes in the frequency response are required. Also, the
extension of the above theorems to multidimensional digital
filters will be explored in the next section.

2) Though DeCarlo er al. have presented the Nyquist-like
tests for the digital filters, similar tests can be readily obtained
for two-dimensional and multidimensional continuous filters,
Furthermore, the Nyquist-like tests can be extended to some
other regions of analyticity than the one quarter-plane region
discussed by the above authors.

8) Stabilization of Unstable Filters: In an effective design
of two- dimensional digital filters, it is often required to
stabilize an unstable filter without perturbing the magnitude of
the frequency response or to guarantee a stable filter. In the
one-dimensional case, this is accomplished by cascading the
unstable filter with a digital all-pass filter which has no effect
on the magnitude of the frequency response and which guaran-
tees stability. Of course, there exist other procedures for ac-
complishing this, In the two-dimensional case, there are
difficulties in extending the approaches used for the one-
dimensional case. These difficulties are mainly due to the
inability to factor a two-dimensional polynomial.

The approaches used for trying to stabilize an unstable
two-dimensional digital filter without affecting the frequency
response are of three kinds, namely, the two-dimensional
discrete Hilbert transform, the two-dimensional complex
cepstrum method and the Planar Least Square Inverse (PLSI)
method. Unfortunately, all three methods are plagued with
difficulties inherent for two-dimensional polynomials.

Read and Treitel (73] have defined a two-dimensional
discrete Hilbert transform to be used for the stahilization of
recursive filters. The basis of this method is to obtain a log-
magnitude function of the denominator polynomial of the
filter and use the two-dimensional discrete Hilbert transform
to calculate the minimum phase (i.e., stable) function associ-
ated with that log-magnitude function. A new denominator
polynomial is then constructed by a complex exporentiation.
In many cases the reconstructed minimum phase denominator
polynomial is infinite. Furthermore, in a discussion by Bose
[74] and Woods [74a], it is indicated that the magnitude
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function is impaired. A recent work by Murray [74b] shed
more light on this problem.

The complex spectrum approach was first used by Pistor
[31] and Dudgeon [46] and later on by Ekstrom and Woods
[47a). The basic idea of this approach is to use the two-
dimensional cepstrum to decompose a magnitude-squared
frequency response to get a stable recursible two-dimensional
filter. The Pistor decomposition was made of four stable
recursible one-quadrant filters while the Dudgeon decomposi-
tion was made for asymmetric half-plane filters. Ekstrom
and Woods, using the concept of canonical spectral factoriza-
tion, decomposed the filter into several forms which included
the above cases as well 4s asymmetric ones. The resulting
factors are recursively computable and of minimum phase
(ie., stable). In all the various decomposition methods, the
factors, though recursively computable and stable, are gen-
erally infinite dimensional. Hence, truncation is used by the
above authors for the recursive filter, This truncation changes
the magnitude function and in some cases the truncated fac-
tors are unstable. To avoid this, Ekstrom and Woods have
introduced windowing. It involves both a truncation and a
smoothing. A weighting factor is applied to the truncated
array which smooths out perturbations in the frequency
spectra introduced by the truncation and tends to stahilize
the truncated filters. 1®

Another stabilization procedure is based on a conjecture due
to Shanks er al. [75]). The conjecture states that the PLSI
of an array is a minimum phase array (ie., stable). To illus-
trate this we assume that we have an unstable filter

P(zl 3 ZZ)
O(z1,22)
which we want to stabilize. Letting g{sm, n) denote the cocffi-

cients of the denominator, we scek an inverse to g, denoted o
such that )

Gz, 22)= (112)

8(m, n)=gq(m, n) ** b(m, n) (113)

where ** denotes the two-dimensional convolution. The filter
b(m, n) is chosen to minimize the error in the above equation.
If b is chosen to minimize the mean-squared error

e= Y lglm,n)- q(m,n)** b(m, n}l?
mn

(114)

then it is referred o as the PLSI of g{m, n). By the conjec-
ture, b(m,n) is a minimum phase array (i.e., stable). To
stabilize an unstable filter, Shanks et al. [75] proposed taking
the double PLSI of the denominator array. This double in-
version will yield a stable filter and the frequency response
of the final result will hopefully approximate the original
frequency response. The final frequency response will be
an approximation to the original one and in some cases might
not be a good approximation. In these cases an improvement
is achieved by increasing the degree of the intermediate PLSI
filter. 'While the conjecture was not proven for the two-
dimensional case, it has been proven for the one-dimensional
case. This conjecture has been used in the design of many
filters and has been discussed by Bednar {761. In a later work

" Further refinement of this method is contained in the Ph.D. disser-
tation of R. E. Twogood, “Design and implementation techniques for
2-D digital filters,” Dep. Elec. Fng., Univ. California, Davis, Nov. 1977,
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Genin and Kamp [77] came up with a countercxample.
Furthermore, they made use of the properties of orthogonal
polynomials in two dimensions to disprove the conjecture in
general [78]. Furthermore, Anderson-Jury [79], and Jury
et al. [BO] have proved the conjecture for low-degree poly-
nomials, In examining the failure of the conjecture in the
Genin and Kamp [77] counterexample, Jury I81] has pro-
posed a new conjecture which is the same as that of Shanks’
except with the added condition that the inverse polynomial
of b(m,n) to be chosen is of the same ‘degree as the original
polynomial of g(m,n). So far no counterexample has been
obtaincd.  Also in [81], Jury discussed the mathematical
difficulties in proving the conjecture with the added condi-
tion. Hence, it appears that the design approach using this
method still remains unsolved.

With the above, we close the stability discussion of the
two-dimensional polynomials and in the next section we
examine the stability of multidimensional scalar polynomials,

IV. STABILITY Or MULTIDIMENSIONAL POLYNOMIALS
(ScaLAR CASE)

Stability problems of polynomials of dimensions higher
than two arise in several applications, The importance and
need for multidimensional digital filtering in certain areas
like seismology have already been discussed [82], [83].
Hence stability problems associated with such filters need to
be considered. Other applications arise in obtaining realiza-
bility properties of impedances of networks and transmission
lines, where the transmission lines are of incommensurate
lengths [84] and in the realizability condition of multivariable
positive real functions [38]. Also in problems connected with
the numerical integration method of difference-differential
equations, we cncounter the stability of multidimensional
polynomials [51]. Other related problems arise in the output
feedbuck stabilization [39], [85], [86].

Analogously with the two-dimensional stability of the earlier
discussion, we will present first the various regions of analy-
ticity for the discrete filter followed by the continuous one.
In the last part of this section, we will present the various
stability tests and their computational aspects. Since the
generalization of regions of analyticity from the two-dimen-
sional case is straightforward, in the first two parts of this
section the review will be succinct.

In the next three sections, similar reviews of stability of
multidimensional polynomials for the matrix case will be
explored where most of the results of this and the eatlier two
sections are readily applicable.

A. Stability of Multidimensional Digital Filters

In the following discussions we will enumerate the various
regions of analyticity for the multidimensional digital filter in
the order of their ecarly developments. The first authars who
indicated such a region for noncausal digital filters were Justice
and Shanks [32}. They expressed such a region for the de-
nominator polynomial of the multidimensional discrete
transfer function G(zy, z5, -+ -, z,,) as follows,

Theorem 20 [32].

Q(zl,---,zn)aﬁo,{ N |z,.f<1}n{ N |z,-|>1}
i=1 .

fer+t

n{ ﬁ Iz,-|=l}. (115)

i=5+1
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Remarks:
1) In {115), r+s~r+n- g=n (where »n is the number of
the dimensions). For

P(ZI,ZQ,"‘,Z,’)

z1,22," 7", 24)

G(lef.-’z,"',zn): (116)
where P and @ are mutually prime and no nenessential singu-
larities of the second kind on the distinguished boundary of
the polydisk exist, the impulse response of the filter described
by (116}, e, glm,n, k,- - YEI,or

nr R

lgtm. n, e, -+ )| <oe. (117)

2) The ahove theorem is a generalization of the region given
in equation (26). The authors did not present any algorithm
or method for testing the region (115). This will be discussed
later on,

In a subsequent work by Anderson-Jury [87], a generaliza-
tion of both Shanks et af. [75] as well as of Huang’s theorem
[30] was obtained. In addition, in this work a method for
checking this generalization was outlined. Here we give the
salient theorems of this work. The generalization of Shanks’
two-dimensional stability theorgem is given by

n
Q(zl,"',z,',)#ﬁ(), ﬂlz;lé] (118)
i=1

In essence the above is a generalization of the region de-
scribed in (16), This region is related to the stability of the
causal quarter-plane,

Theorem 21 [87]: The analyticity region of (118} is equiv-
alent to

211
{|Z1|=1}n{|22|<1}

n-3
IZ,'| =
i=1

bzgl = l}ﬂ {|3n—1]< 1}

0(z,,0,- -, F0,
Q(ZI,ZZ,O,"',O):)&O,

Qz1,22,° ", Zn=2, 0, 0) # 0, l}ﬁ{lzn-2|<1}

Q{zl’z2s--'»zn-l=0)#:0:

n-1
Q(21,22,"',zn):¢&0, { n lzilzl}n{iznlgl}'
i=t

(119}

The region of (119) is a generalization of the region of (17).
It is a generalization of Huang’s conditions [30] .

In a subsequent and independent work, Takahashi and Tsujii
[87a] have obtained similar generalizations as in equation
{119), They also discussed in detail the computational com-
plexity for testing this condition. Furthermore, they obtained
the stability conditions of a certain three-dimensional poly-
nomial with literal coefficients. These conditions are given
below: Let

zy,23,.23)=1+az, +tbz, tez, tdziz, Yezqazs + 1232,

+82y2225. (120)

103;

The necessary and sufficient condition for structural stability
of G(zy, 24, 23) whaose denominator given in (120) is given by
the following inequalities {after minor corrections) [87a}

1-a 1+a
b-d b+d
A<0, BL0, <0, E<0
D? < 4BC + 4 AF + 8+/4ABCE

lal <1, ’ >1

o |

where

A={c-e~-f+g)?-(1-a-b+d)?
B=(cte-f-gP-(1-a+b-d)?
C=(c-e+f-g) -(l+a-b-d)?
D=8(d+fe-ab-cg)

E=(c+e+f+g)7 ~(1+a+b+d)?. (121

It is of interest to note that the stability inequalities fo:
two first degree two-dimensional polynomials was presentec
by Huang |30]. They are obtained as special cases of (121}
The above shows the formidable complexity which arises wher
higher dimensions are considered.

In an independent and almost simultaneous works botl
Strintzis [44] and DeCarlo ef al. [45] have obtained a criterio
which is simpler computationally than Anderson-Jury. Thi
criterion is a generalization of the condition in (19) and i
given by the following theorem.

Theorem 22 [44], [45]: The following set of condition
are equivalent to (118) and (119):

i) for some by, ---, b, such that |b,|=1,r=1,---}
and forallj, i=1,---,n
Qzy, . 2,)F0whenz, = b, r#i,and [z < 1.
i)' Qzy, 0, z,)F 0when |z,|=|z5] = - = |z, = 1.

(122

For simplicity one ¢an choose b, = 1.

In the enlightening works of DeCarlo et al. [45] and Murray
[43a], the authors have obtained other criterion which ar
simpler than in the above theorem. One such criterion is ths
generalization of (20).

Theorem 23 [43a], [45]: The following set of conditions i
equivalent to {(118) and (119):

i) XNz, z,---,2)=0, lz| < 1

i) Ozy,29,°.29)F0,

lzy|=lzal="""=lzp|= 1.

(123

Along the same lines as above, Strintzis [44] had obtaine
another criterion equivalent to (115) which is computationall:
simpler, It is given in the following theorem. '

Theorem 24 f44]: The following set of conditions is equi
alent to (115), for some &y, - - -, by, B, 0= 1,r=1,2,---,.

191t is of interést that computationally condition ii) with the las
condition of i),i.e., Q(), 1, - zy) #* 0 lz,4| < 1, is equivalent to
Q(zl sZas "

The above is exactly the last condition of (119).

“LZp)#EO,when [z, 1= |2,i= = |2y, |=1and |zg] < 1
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and
i} foreachi,i=1,2,---,r
Qzy, -, zy) FOwhen |z S landz, = b, r#i
ii) foreachi,i=r+1,---,5
Qlzy,  -,z,)F0when |z;|>1and z, = b,, r #i
i) Qzy, **,2,) F 0 when lz)|=lz5]= =g, |=1.
(124)

Another form of noncausal multidimensional linear filters
(processors) is presented by Chang [50]. Such processors are
said to be stable if the impulse response decreascs exponen-
tially in all 2-n directions. In this case the stability condition
is a generalization of (31) and is given by the following:

Qzi,23, "7 ,2,}#0, foralliz;|=lzal=---=]{z,]= 1.

(125)

In concluding this part, it is pertinent to mention the follow-
ing remarks.

1) The above regions for multidimensional stability of
digital filters are the only ones known up to the present time.
They generalize the regions of two-dimensional stability
except the region of a symmetric half-plane of (25). It is
hoped that such a generalization will be forthcoming. It is
expected that as more applications develop more regions of
analyticity will be defined.

2} In most of the stability regions, the stability tests of
-equations similar to (125) are the most significant. All other
conditions are stability tests of one-dimensional digital filters.
Hence, the test of ((z,, - ,2,)¥ 0 forall |z]=1,i=1, 2,
+++,n, will be one of the major items of the stability tests in
the last part of this section.

B. Stability of Multidimensional Continuous Filters

In this part we will obtain the region for a multidimensional
“Hurwitzian” polynomial which is a generalization of the
region in (35). We will also obtain a generalization of the re-
gion in (39). In addition, we will obtain the region for Multi-
variable Positive Real Functions (MPRF) [25].

The condition for a multidimensional polynomial to be
Hurwitzian is expressed following Anderson-Jury [87] as
follows:*°

H
n RESI'?O.

i=1

51,52, " ,5)F0, (126)

It is conjectured that the above condition gives the necessary
and sufficient condition for structural stability of G(s,, - -,
$n), whose denominator is expressed in (126). A generaliza-
tion of (39) is given by Anderson-Jury [87] as follows.

The condition of {126) is equivalent to the following:

Q(sl’ ls”', ])#0: RﬁSI-}O

n-3
Q(Slss2: s 3p-2, 1! 1)?&0, { ﬂ R33i= 0}“ {Resn-l >0}
i=1

* Because of the difficulties inherent in the use of double bilinear
transformation as mentioned in the footnote 8 the proof of (126) is
lacking.
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n-2
Q51,582,781 1)?’—'0,{ N Res,~=0}ﬂ {Res,_, =0}

i=t
n-1

Q(S;,Sz,"',sn)?‘:o, n Res,-=0 ﬂ{R&sn_IZO}.
i=1

(127)

In the works of Strintzis {44], the above is further simplified
to give the following critetrion:

i} for some sequence of real numbers wy, *
eachi,i=1,:-,n

*, Wy and for

Qfsy, "+, 87} F 0 when s, =jw,, r#1i, and Re[s;] 20
ii) Qsy1, * -+, 54) ¥+ 0 when Rels;] = Re[s,] =- - =
Re[s, ] =0. (128)

In particular, if we choose w, =--
conditions are

(5,0, -,00F0
0(0,5,,0,---,0)F0

*=w, =0, the stability

when Re[s;] =0
when Rels, ] = 0

Q0,0,---,0,5,)F0
Olsy,52," " ,8,)F 0

when Re[s,} 20

when Re [s;] =---=Rels,] =0.
(129)

In the investigations of the MPRF, which is given by

Plsy, ", 5n)
s Sp) =

Q(SI:”'ssn)

it is known following Bose {25], that to test one of the con-
ditions for positive realness, we require

Z(‘lesl"-. (130)

n
sy, -, 84} F0, ﬂRes,->0. (131)
i=1
The above condition is required for
n
ReZ(sy, " ,5,) 20 in [ Res; > 0. {132)

i=1

Remark: It is often simpler to determine first whether
sy, ,5,) #0 in Mioy Res; 2 0. If Qlsy, ", 35,) is
devoid of zeros in M, Re 5; 2 0 (utilizing (129)), then it
is possible to replace the test for (132) by the simpler test
for

Re Z(jwy,jwa,  * ,jwy)2 0, forallreal wy,ws, ", w,.

(133)

C. Srability Tests for Multidimensional Polynomials

In this part we will extend the various stability tests men-
tioned in Section II-D to the multidimensional polynomials.
Though this extension is straightforward, the computational
effort becomes exceedingly complicated as the dimension
increases. Also we will discuss the tests for the various regions
of analyticity discussed in Sections [IV-A and B.

1} Symmerric Matrix Form [88]: The first application of
this method to stability tests for three-dimensional poly-
nomials was made by Bose-Jury [88}. In applying this test
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to (119), we have to test for the following equation:
2
Q(zy,22,23)# 0, Nzl =10 {lzal <1} (134)
i=1 .

The test involves applying the Schur-Cohn matrix to the
following equation:

P .
Q(zl,zz,zz)=Za;‘(zl,h)zé- (135)

i=0

Using the same procedure as in the two-dimensional case,
we ohtain thc Schur-Cohn matrix which is Hermitian as a
function of the variables z, and z,, where |z4]= |23 [= 1. This
matrix ought to be checked for positive {necgative) definiteness.

" This indicates that the determinant ought to be positive for all
|zy1=iza|=1. This can be accomplished by the use of the
following lemma.

Lemma 2 [88]: The real function, g;{z1, z1', 22,230 ) >0,
M&, lz;i= 1 if and only if the self-inversive polynomiat,®
e(z,,22) =21 22 g1(z1, 21" 22, z3'), evaluated at an arbi-
trary point z, = zﬁo) on |z, = 1 has exactly n ]2 zeros in each
of the domains |z, | <1 and |z5|> 1, and g(1,1,1,1)> 0. (For
convenience, this lemma is stated for the case when no degree
reduction takes place. If such a case occurs, then the lemma
can be modified to account for the critical case.)

Based on the above lemma the stability test for the three-
dimensional polynomial using (119) can be carried out in
terms of root distribution with respect to the unit circle. In
the general case, one has to determine the positivity of (n - 1)
dimensional real functions. To do this for n > 3, Bose-Jury
[88] pointed out the use of decision algebra of Tarski-
Seidenberg to accomplish this. The application of this method
to the stability of multidimensional discrete and continuous
systems was discussed by Bose-Jury [891, and to other prob-
lems was discussed by Anderson-Bose-Jury 139].

Similar discussions arise for testing the region of (127) (ie.,
for the continuous case). For the three-dimensional filter, we
have to test the positiveness of

2
ﬂ-mﬁiw,—ém

i=1

Diwy, ) >0, (136)

where

D(w), Wy ) =D(-wy, ~wa) (137

For the n-dimensional case, we have to check the positivity
of (n- 1} dimensional real functions for positivity far all the
real variables w;. This is referred to as global positivity. This
methed of symmetric matrix form can be also applied for
checking other regions mentioned in Sections IV-A and B.

2) Innerwise Matrix Forms [54], [56]: This approach is
extensively used by Bose and his coliaborators in ascertaining
both global positivity, nonglobal or local positivity (this refers
to positivity confined to a proper interval of the real variable
R), or nonnegativity asin (132},

The basis of this work is to use the inners determinants to
ascertain the distinct number of real roots. If this number is

4 A real mullivariable polynomial @z, ,2,, -, 21 ) will be called
self-inverse if and only if a zero of Q(z,,2,,°* " »¥p-) 2t (z;'),zg" ,
S, zgyl y implies also a zero at (qu“), 1,rz§° KIS l/z(;:)_l).
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zero then global positivity is ascertained [56). For nonnega-
tivity, Modaressi and Bose [90] have shown that if is reducible
to positivity by increasing the dimension by one. For local
positivity Modaressi and Bose [58] and Modarcssi [57] have
shown the use of the inners theory to ascertain this required
test. Furthermore, they examined all the critical cases that
arise from degree reduction and others.

Of importance in this work is the proof of the following
lemma due to Bose and Basu [54].

Lemma 3: OQlzy," -+ ,2,) is devoid of zeros on NE, lzh=1
if and only if Q,(x,, """, X, }is devoid of zeros in
—léxlél,-léxzéi,'-',—léxn-él (138)
simultaneously where
QL(M:Zz,Za,“',Zn)=Q(21,22,"'=Zn)Q(31132,"‘,2n)
Oa(x1, %2, 23, "2 2p) = Q@1(x1,22. """ 1 Zn)
) <Oy (x1,22,7 " 2a)
Op(ee, X2, 2 %0) = Qpo1 (X1, X2, 72 %15 Zn)
'Qn—](xl:'tZs“-»xn—]sEn) (135)

{where Z; denotes the complex conjugate of z;) implying that
-1 <x;<1 when |z;/=1, and x;={z; +z1)/2 on [z;1= 1.

The above lemma enables us to ascertain the stability of the
multidimensional discrete filters by testing the local positivity
of another multidimensional polynomial. Furthermore, by
using direct test formulation the authors have also tested the-
region given in (123).

Remarks:

1) Though the inners approach can be used to check multi-
dimensional stability of both discrete and continuous systems
by rational operations, for practical use, it becomes compu-
tationally prohibitive for r larger than three or four. This is
due to treating a plethora of critical cases.

7} Because of this difficulty, other methods for checking
global and localpositivity using resultant theory and minimiza-
tion techniques are developed. These methods will be briefly
reviewed later on.

3} Table Form for Stability Test: The use of the table
form of the Cohn-Marden-Jury for the discrete case when
n =4 was first introduced in Anderson-Bose-Jury [39] and
later on by Bose~Kamat [91]. In the latter work an algorithm
with a view toward computer implementation is given. The
algorithm is based on the generation of a number of multi-
dimensional polynomials, reduction of each of these into
several single~dimensional polynomials by a [inite number of
rational operations. Thus the ideas of decision algebra theory
were the basis of this reduction. It seems that the computa-
tional complexity of such an approach is more than the inners
‘method discussed in 2). The same is true when one uses a
Routh type of array in the extraction of the “GCD” factor
from two multivariable polynomials, A related work on the
use of the table form in discrete and continuous systems is
discussed by Siljak [92].

4) Local Positivity Method: This method which was dis-
cussed earlier for two-dimensional polynomials has not been
extended to the multidimensional case. It is believed that
using the regions in {122) and (123) and noting (138) and
{139) one can obtain such a generalization. This is lelt for
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future research.?? A similar extension is feasible for con-
tinuous multidimensional systems.

5} Impulse Response Test: The discussions of Section [II-D5
can be readily generalized from the two-dimensional to multi-
dimensional digital filters. Indeed, Strintzis [64] has ob-
tained such a generalization. For stability test, it appears that
the following theorem which is a generalization of Theorem 12
is of importance and could be useful for stability checking:

Theorem 25 [64]: Let {gk Lk, kn} be the sequence
obtained by the multidimensional generahzatwn of the re-
cursive relationships in (93)-(95). The following condition
is necessary and sufficient for BIBO stability of Glzy,2,,"
z,) (i.e., generalization of (1) in theorem 12).

Tim |gkl,k,,"',kn ll/(k;+k1+-..+kn) <1 (140)
for all but a finite number of values of (k, K2, kg )

The other theorems presented for the two-dimensional case
can be readily generalized.

6) Cepstral Stability Test {93]: In this work Ahmadi and
King [93] have extended the Pistor method discussed in
(Section I1I-D6) to the multidimensional cepstral method. In
this case they defined the multidimensional z-transform of the
cepstrum é\(zl,zz, s+, Zy,) as the logarithm of the multi-

dimensional z-transform of an armray g(m, n, k,- -+ ,DE L,
Gz1,22. 7 20 =y [Z{glm, n, &, -+, D}
=1,G(z),25, 7", 2,). {141}

Based on the above, the authors generalized the stability
theorem of Pistor [31] to give the following theorem.
Theorem 26 {93]: The sequence

latm,n ko0 D, m20n=0,---,020 (142)

is recursively stable if and only if there exists a power series

2O X Gm ok, DT g
m=0 n=0 1=0
(143)
that is absolutely convergent and equal to In Q(z 1,‘ CLEZn)
for all z; such that ﬁ, 1 |z < 1 (where q(m nk.---,Dis

the first quadrant sequence and {§(m, n, k&, - -, 1)} is the in-

verse z-transform of (2, 24, " " * , z,,), i.e.,
{1Gm, n ke, D} 0y, 25, 25)
' =InQzy," -

Z,) represents the denominator of

LZx). (144}

In the above Q(zy,25, ",
the causal filter

1
Qzy, 22,7, 2,)

A similar peneralization can be obtained for each of the
other 2" quadrant functions g, in which b = 2,3, 2%
Similar to Pistor [31] the authors of this generalization have
not presented an algorithm for checking stability, It remains
to generalize Ekstrom and Twogood’s [69] algorithm for the
multidimensional case. In the paper by Ahmadi and King
(93], the authors showed how an unstable multidimensional

F(zl!zz""yzn)= (145)

*2Very recently in an article to be published in ASSP, the solution to
this problem is given by N. K. Bose.
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recursive digital filter can be decomposed into 27 stable
recursive filters, The number of dimensions in this case is
“n.

7] Nyquist-Like Tests 45}, {72]: The peneralization of
the theorems given earlier for the two-dimensional case to the
multidimensional case is straightforward and was obtained by
DeCarlo, Murray and Saeks [47], [75] using the concept of
homotopy. These three theorems are presented below.

Theorem 27 [45], [72]: The multidimensional filter de-
scribed in (116) is structurally stable if and only if

i) Q(zy,22,***, z,) has no zeros on N{-, lz;|=1
ii} the Nyquist plots for the one-dimensional function

e, .-, 0, k=1,2,---,n

do not encircle zero.
Theorem 28 [453], [72]: Let Q be asin (116). The filter
is strycturally stable if and only if

i) Q(z4,22," "+, z,) have no zeros in N}, lz;l =1
ii) the Nyquist plots for the one-dimensional function®

Q-+, 1,2, 1, +-,1), k=1,2-.n

do not encircle zero,
Theorem 29 f45], [72]: Let Q be descnbed as in (116).
The filter is structurally stable if and only if

D) Qz1,25, 7, 2,) F0for ML |z =1
ii) the Nyquist plot for the one-dimensional function

Q(ZI,Z2,"'

does not encircie zero,

Remark: From the earlier theorems, it is evident that the
difficult part of the test is that Q should have no zeros on the
distinguished boundary of the unit polydisk, To do this by
plotting the image of the distinguished boundary is extremely
difficult for n > 2. So far, the authors have not come up with
a straightforward procedure for performing this test. How-
ever, for the case n =2, this method is simple and of much
importance. Furthermore, as mentioned in the earlier dis-
cussion for the two-dimensional case, this method can be
extended to multidimensional continuous systems and to other
regions of analyticity.

8) Direct Methods of Stability Tests {85], [86], [94]-{96] :
From the earlier discussions, it is apparent that in the stability
tests for the various analytic regions one has to check either
global positivity, nonnegativity or local positivity and non-
negativity. One such method which tackles these tests as
mentioned before was based on the inners concept as ad-
vanced by Bose and coworkers. Based on the equivalence
of inners determinants and minors of half-size matrices as
discussed in Section II, the symmetric matrix approach can
be similarly applied. The tests for positivity and nonnegativity
are important not only for checking multidimensional sta-
bility, but also appear as crucial tests in many other applica-
tions such as in Lyapunov theory, in limit cycles existence, in
the output feedback problems, in multivariable positive real
testsand in a host of other problems. Their study hasattracted
much activity.

In addition to the inners approach, there exist two other

2

l,zk,(),"'

’zn)szi Ty == IgseE

*Ttems ii) of Theorems 27 and 28 can be obtamed as a special case
of the followmg b, 10%k: @y, ap) # 0, when |zp<
1, k=1 nandlbl—llfa,.lﬂl
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TABLE If
PROPERTIES AND METHODS FOR RESOLVING PosrriviTy
AND NONNEGATIVITY

Exact Dimension Special
Method Sufficient Necessary Arithmetic Growth Case Localization
Resultant yes no yes yes no global
Resultant with yes ves no yes no global,
back substitu- non-global
tion, factori-
zation
Decision algebra yes ves yes ne yes gobal,
(inners) (positivity) non-global,
ves local
{nonnegativity)
Minimization yes yes no no no local

appreaches, The first is based upon a augmented theory of
resultants and resultants with back substitution and factoriza-
tion as expressed within the framework of algebraic geometry
ags discussed by Anderson-Scott [85] and Scott [86]. An
extension and elaboration of this method is advanced by
Bickart-Jury [94], [25]. An algorithm is given for the various
tests. The second approach is proposed by Gesing and Davison
[96]. Their approach is based on a minimization procedure
for a resolution on a hypercube of IR" of the positivity and
nonnegativity, In the study of Bickart-Jury [94], a compara-
tive study of the three methods is attempted and in Table II,
we present the summary of the results.

V. Brier REVIEW OF ONE-DIMENSIONAL
STABILITY (MATRIX CASE)

In this section, we present the various tests for stability of
one-dimensional polynomial matrices. The study of such
matrices arise in the MIMO system (open-oop and feedback).
These systems are also known in the literature as multivar-
iable systems. Their study has been the center of major re-
search activities in the past two decades. The texts of Rosen-
brock [97], Wolovich {98] and Desoer-Vidyasagar [99] are
only but a few of the extensive publications in this important
field.

In the review of the stability tests, we will divide the meth-
ods into analytical and graphical (or Nyquist-like tests). The
applications of these methods to the stability of two-dimen-
sional and multidimensionsl polynomial matrices to be dis-
cussed in the next sections will be emphasized, In particular,
the differences between the stability of the one-dimensional
and multidimensional polynomial matrices will be singled out.
Finally, it should be mentioned that the stability tests intro-
duced in Sections 1I-1V will play a major role in this and the
next two sections, thus providing a unification of the various
methods for all the six sections.

A. Analvtical Tests

To mention the various analytic tests, it is pertinent to
present the mathematical description of MIMO systems, These
ate presented (for the continuous case) in time domains as

2(t) = Ax(1) + Bu(t)

¥(t)=Cx() + Du(t) (149)
or in terms of the transfer function as follows:
G(s)=C(sI- A ) B+D. (150)

In other situations it is presented in terms of a system matrix
as defined in [97]. In this case the system matrix is

- A
Pis)y=

-8B
(151}

C D

Without going into the details of each of these descriptions,
we will introduce the following stability tests.

1) Lyapunov Test: If the system is presented by the state-
space equation (149),then one can determine “BIBO” stability
from the 4-matrix. One such method is based on Lyapunov’s
method. Since we are dealing with linear time-invariant sys-
tems, Lyapunov stability and “BIBO” stability are one and the
same, Also, from the 4-matrix, one can obtain the charac-
teristic polynomial which needs to be Hurwitz for stability,
Thus one can apply any of the classical stability tests on the
characteristic polynomials, Other methods are available for
testing the stability of the .4-matrix. For discussion of such
methods and Lyapunov’s tests, we refer to Jury [23]. Alsoin
this reference the stability of the 4-matrix inside the unit disc
is discussed which relates to the stability of the state-space
difference equation description.

2) Determinant Test: This method is based on testing the
stability of a polynomial for its Hurwitz character. It is based
on the following considerations,

The matrix G(s) (bounded at s =*°) in {(150) can be factored
as

Gis)=Ni(s)yD ' (s) (152)

where

1y M) and D(s) are n X n matrices whose elements are
polynomials in s,
2} N(s) and D(s) are right coprime.
3) detDis)* 0
4) s is a pole of G(s)} if and only if it is a zero of det D(s).
(153)

Based on the above facis, one can determine the stability
of G(s) by examining the Hurwitz character of the determi-
nant of D(s). Hence it is called the determinant method. For
definitions and algorithms for the factorization, see MacDuffie
[100] and Rosenbrock [97]. For items (3) and (4), we refer
the reader to Bourbaki [1011], Popov [102], Rosenbrock [97],
Wang [103], and Wolovich [104]. It appears that the above
test is due to many authors and none can claim priority for
all the above considerations.



1038

Remark: The above stability test is very important for its
cxtension of two-dimensional and multidimensional poly-
nomial matrices and will be the major topic of the next
sections. Extension of this method to the fecdback case was
formulated by Desoer-Schulman [105],

3) Nondeterminant Test: This method due to Anderson-
Bitmead [106] who considered the following test: Given a
square, nonsingular polynomial matrix D(s), how does one
test, without cvaluating the dcterminant, whether all the
zeros of D(s) in (152) are in the open-left half-plane?

The approach of this test is to derive from [D(s) a rational
transfer function matrix which is lossless positive real (Ipr)
if and only if det D(s} is Hurwitz. The Lp.r. property is easily
checked using the coefficients of the rational function only.
This checking involves the use of a generalized Bézoutian
matrix whose connection with the generalized Sylvester
matrix was discussed by Anderson-Jury [ 29a]. In this method,
the construction of the lp.r. function requires solution of a
polynomial matrix equation. Up to this writing, this method
seems computationally more involved than the preceding one.
However, future research on this problem might lead to
simpler results.

If one restricts the ¢lass of polynomial matrices, then Shieh
and Sacheti [107] have shown how to use a form of the Routh
table to test stability. The restriction involves both the odd
and even parts of the matrix polynomial be symmetric.

4) Mairix FEntries Test:** In this case a “MIMO” one-
dimensional linear system whose transfer function G(s) given
in {130) is BIBO stable if and only if each entry of G(s) corre-
sponds to a single-input single-output system which is BIBO
stable. We can apply the known tests to each of the entries of
G(s). Of course, in certain cases this involves formidable
computations.

3} Diagonal Dominance Test: This test which was developed
by Rosenbrock [97] and based on a diagonal dominance
condition of a polynomial matrix as discussed by Ostrowski
[108] is a very powerful test for “MIMO™ stability. The
condition for diagonal dominance is based on the following
definition:

Definition: A matrix D(s) is a diagonally dominant on
Re s = 01if a) d;(s)has no “poles”on Res = 0,i=1,2, -+ LM
and b) for alls: Res = 0

either Z d”-(S), i= 1,2," -
F*i
|d,—,—{s)| > (1>
or der‘(&'), i=1,2,---,n
§¥Ei

If the above condition is satisfied, then one can check sta-
bility by testing only the diagonal terms of the matrix D(s).
This represents a significant simplification.

B. Graphical Tests

In examining the form of (153) based on the determinant
method, it becomes evident that one can apply the Nyquist
criterion for testing the Hurwitz character of det D(s) = 0. The
idea of expressing stability conditions in terms of the Nyquist
plots of the eigenvalues of G(s) was originated by MacFar-

MC. T. Chen, Introduction to Linear System Theory. New York:
Holt, Rinehart snd Winston, Inc., 1970, Th. 8-5, p. 322.
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lane [109]. This work was followed by him and his co-
workers in a series of papers. The latest by MacFarlane and
Postlethwaite [110] generalizes this method to obtain the
characteristic frequency and characteristic gain functions. A
comprehensive study of the “MIMO™ stability based on the
eigenvalues of G(s) was presented by Barman and Katzenelson
[111]. Several important theorems were presented in this
work. It is of interest to note that in both MacFarlane’s and
Barman-Katzenelson’s works, problems associated with
algebraic functions of two dimensions are explored. The
advantage of the eigenvalue design lies in the fact that it pro-
vides the designer with the insight which enables him to
choose a compensater. This was effectively demonstrated by
MacFarlane and his coworkers in several important papers.

Another major contribution to applications of Nyquist
diagrams to “MIMO™ stability was obtaired by Rosenbrock
[97]. In this work the author utilized the concept of diag-
onal dominance of the matrix D(s) to test stability by using
the Nyquist plot. In this case, Rosenbrock combined graph-
ically the test of diagonal dominance and Nyquist tests by
plotting the Gershgorin’s bands on the Nyquist locus. In the
next section we will extend this methaod for checking graph-
ically the two-dimensional “MIMO” stability. As mentioned
earlier the diagonal dominance condition of D(s) considerably
simplifies the stability test. The Gershgorin’s bands are a
graphical method for testing diagonal dominance.

Recent work by Saeks [112] and DeCarlo and Saeks [113]
has demonstrated the power of the Nyquist-like tests. In this
work the authors utilized concepts from algebraic topology
such as homotopy theory to construct new proofs of the
Nyquist criteria. This work is of significant value for it shows
the general applications of the Nyquist-like test to many cases,
in particular the two-dimensional case discussed earlier. In
extending their results to “MIMO” stability, they proved the
following thecrem.

Theorem 30 {113]: The system described by G(s) in (152}
is stable if and only if the Nyquist plot of det D{s} does not
encircle nor pass through “0” in the complex plane, For ap-
plying this theorem conditions 1) and 2) of {153) should be
satisfied.

Other major applications of the Nyquist-like tests are dis-
cussed in detail by the Desoer-Vidyasagar text [99].

Remarks:

1) Though the above tests are discussed for open-lelt-half
plane stability {continuous systems), they are also extended
to stability within the unit circle (discrete systems). The latter
form will play a major role in the discussions that will follow.

2) Since DeCarlo and Saeks [113] are mainly interested in
an answer only to stability, their method seems simpler than
that of MacFarlane or Barman-Katzenelson’s methods. Fur-
thermore, it seems that the latter method has not yet been
extended to two-dimensional and multidimensional systems.
Hence, comparison with the two-dimensional extension meth-
ods of DeCarlo-Saeks and Rosenbrock to be discussed in the
next section is premature.

VL. STABILITY OF TWO-DIMENSIONAL POLYNOMIALS
(MaTRIX CASE)

In this section, we will present stability tests for two-
dimensional polynomial matrices. These matrices arise in the
MIMO two-dimensional digital filters. To obtain these ma-
trices, it is useful to describe the two-dimensional filter in the
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state-space representaticm.25 The stability tests which we will
present are analytically as well as graphically based on the
Nyquist-like tests. These tests are generalizations of what we
described in Section V.

In the past several years, different state-space representations
were formulated for the two-dimensional recursive filters
which are causal and of first quadrant types. Among such rep-
Tesentations are those of Attasi [114], Fornasini and Marche-
sini [115] and Roesser {116]. Without going into detail of
advantages and disadvantages of each model of repreéentation,
weé only mention that relying on the definitive and noteworthy
contributions of Kung et @l [117] and Mo«f ef ol [118], we
will present our discussions based on the Roesser model. Morf
et al. have argued in favor of Roesser’s model for it represents
a truly first order system,26 while the other models do not.
They have shown the merits of Roesser’s model in their
exhaustive discussions of the properties of MIMO two-
dimensional systems. For other informative discussions of the
models mentioned above as well as other important items, we
refer the reader to the work of Willsky [119]. Before we pre-
sent Roesser’'s model, we might mention that some of the
stability tests are also applicable to the other models with
some modifications. Whenever appropriate we will also
mention some of the stability tests related to the other models,

Formulation of Roesser’s Model [116]: In the following
formulation, i, j are integer valued vertical and horizontal
coordinates, {R} € R™ , {§} € R"? are sets which convey
information vertically and horizontally, respectively. The
input and output of the system are {u} €R?, {y} €R". The
system to be considered is discrete, causal, and its state and
output functions are described by

RE+1,7)=A R JI+ A8 j)+Buli, )
SUEF+HD=A3RG, I+ ALSE i)+ Bau(, i)
YU F)=CRUEYFC S )+ Dauli, f)

We apply the two-dimensional z-transform 1o the above equa-
tion and assuming zero initial conditions, we obtain

(155)

-1 -1
Z1 I . _Ai _A2
¥z, 22)= (€4, Cql [ " -1
-4, 27y, ~ Ag
Bl
: +Dtlifzq, z3) (156)
B,
or -
2, - A -A -1 ra
G(zl,z1)=rc.,czl[ oo mh T ] [jw
“A3 Za 1"2 7A2 B

(157)

where G(z,, z;) is the two-dimensional transfer function. It is
described by a two-dimensional polynomial matrix. Tt is the
two-dimensional discrete counterpart of (150).

Remarks:

1) The computation of the square bracketed term in equa-
tion {157) is often required and for this Koo and Chen [120]
have obtained an efficient algorithm lo compute the charac-
teristic polynomial based on extending the one-dimensional
Fadeeva algorithm.?” After obtaining the characteristic poly-

®They can also be oblained from the matrix transfer function.
*That Is, R and Sin (155) together comprise a valid local state.
"8ee also | 1 20a].
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nomial, the stability tests of Section III-D are readily appli-
cable. Such a test was performed by Barry ef al {125].

2) The models of Fornasini and Marchesini [115] as well
as of Attasi [114] are represented respectively as follows:

x(m+1l,n+1)=Adgx(m,n)+ A, x(m+1,n)
+Azx(m, n+ 1)+ Bu(m, n)

yim,ny=Cx(m,n) {158)

and
x(m+l,n+t1)=Fix(m,nt 1)+ F,x(m+1,n}
- FFyx(m,n)+ Gu(m, n}

y(m,n)=Hx{m, n) {159)

where it is assumed that

FyFy=F,F, (160)

is a separable two-dimensional system. It is noted that Attasi’s
model is a special case of (158). Since it is separable, many of
the one-dimensional concepts and results are readily extended
to this system, in particular, the stability tests mentioned in
the preceding section.

BIBO Stability: We will define the concept of “BIBO’ sta-
bility for the system described by (155). The following theo-
rems follow from the work of Humes-Jury [37].

Theorem 31 {37]: A “MIMO” two-dimensional linear sys-
tem described by (155) is “BIBO” stable if and only if there
exists a real ¥ <Cee such that for all positive integers m, n

> 3 UGk, DI <y <oo

k=0 1=0

(161)

Note:

1
Glk, 1) = Glzy,zy) 275 25!
(k, D) (Eﬁj)sz (z1,25)27° 23" Yz dz,
cl c!

(162)

where ¢, and ¢, are the boundaries of the unit bidisk.

A. Analytic Tests

Theorem 32 [37]: A “MIMO” two-dimensional linear digi-
tal filter whose transfer function is given by the matrix
(2, 25} in {157) is “BIBO” stable if every entry of G(z,, z,)
corresponds to a single-input single-outpul system which is
“BIBO” staplc.

1) Matrix Entries Test:

Theorem 33 f{37]: A system whose transfer function is
given by (137) is BIBQ stable if every entry G{z,, z;) has no
“poles” [note (z,,Z,) is a “pole” of G(z1, z;) if (Z;,Z2) s a
zero of the denominator of some entry of G{z,, 2,)] in the
region U2 = {(z;,2;): [z;( < 1, |z,{ < 1}. On the other hand,
if G(z),z,) is the transfer function of a BIBO stable system,
then no entry of G(z,, z;) has poles on U* or nonessential
singularities of the second kind, except possibly on the distin-
guished boundary T2 = {(z,,z,): |z, = |z,] = 1}. Such cases
have been discussed earlier in Section III-Ala. This method
corresponds to the application of 2-D digital filters stability
test (discussed in Section 1M} m X p times. It is the counter-
part of the matrix entries test discussed in Section V-A4.
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2) Determinant Test: The extension of the determinant
method discussed in Section V-A2 to the two-dimensional case
will be developed. This method is based on the (right or left)
decomposition of G(z,,2,) in {157) into 2 two-dimensional
polynomial matrices N(z,, z5) and D(z,, z3) such that

G(zy,22)=Ng(z,, 22)55{1(31, z3) =Dz_1(z1, 22} Nylzy, 2,).
(163)

The pertinent and important results developed by Morf er al.
[118] on two-dimensional polynomial matrices facilitates the
derivation of the determinant test by Humes-Jury [37]. W
will presenl a few facts from Morf et al. [118]. The one-
dimensional counterpart of these facts can be found in Rosen-
brock [97].

Fact 1: N(zy,z,), D(zq,2z,;) are
coprime (left coprime) if

i) N, D are one-dimensional right (left) coprime as poly-
nornials in z; with coefficients that are rational functions
of 2o,

ii) N, D are one-dimensional right (left) coprime as poly-
nomial matrices in z; with coefficients that are rational
functions in z.

Fact 2: Let N(z,,z,) be a full rank two-dimensional poty-
nomial matrix. Then there exists a unique N{z,, z,) {modulo
a right unimodular matrix) and a unique N*(zl . Z2) (modiilo
a left unimodular matrix) with

two-dimensional

right

detﬁ(zl,zg)=ﬁ(zz) (164)
and N*{zl , Z3) primitive®® such that
N(zy,22)=N(zq, 2;) N *zq, 23). (165)

Furthermore, Moif er af. [118] gave an algorithm that gives
the Greatest Common Right Divisor (GCRD) of N(z, 2, ) and

D(zy,z,). It is based on obtaining the primitive factorization
on the right-hand side of N and D, i.e., find N¥, D", and R,
such that
N N *] R (166)
p bp*]°

N*
with [D *} primitive.
Fact 3: If Glzy, z3) = Ng(zy, 22) DRz, , 22) = D7 (zy, 29)

Nz, z;) with Ng, D two-dimensional right coprime and
Ny, Dy are two-dimensional left coprime, then

detDR(Zl,Zz)=dEtDI(ZI,Zz). (167}

Considering the above facts and assuming we have the right
coprime factorization of G(z,, z;), i.c.,

G(z,,23)=Nglzi,2,) DR 2y, 25)

the following theorems present useful procedures for testing
BIBO stability as proven by Humes—Jury [37}.

Theorem 34 {37]: The pair (z;,Z;) is a “‘pole” of G(z,, z,)
if and only if (Z,, %) is a zero of det Dp(z,, z4).

(168}

**By primitive we mean the following:

Let A(z, w) be a m X n polynomial matrix (m < n} then A(z, w) is
said to be primitive in Flw]}[z] (the ring of polynomials in z with coef-
ficients in Flw]) iff A(z, w,) is of full rank for al! fixed co, .
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Theorem 35 {37]: Let G(z,, z;) be the transfer function of
a two-dimensional *“MIMO” digital filter written in one of the
following forms:

G(z1,22) =Ng(z1, 2;) DR (24, 22)

with Ng, Dp two-dimensional right coprime
or
Glz1,22) =D (21, 22) Nifzy, 22)

with Ny, Dy two-dimensional left coprime. (169)

If det Dy(z,,z,)=det Dg(z,,z,) has no zeros inside the
unit bidisk U? = {z,,2,:{z,/<1,]z;] <1} then the system
is BIBO stable. On the other hand if G(z,, z;} is the transfer
function of a BIBO stable system, then det D(zy, z;) has no
zeros in U > and G{(z,, z5 ) has no nonessential smgulantles of
the second kind on U * except possibly on T2 = {z;,z5: |z} =
|zz1=1}. In this case the nonessential singularity of the sec-
ond kind must occur in all entries of the matrix

Nizy,z2)adj D(z;, z,)
detD(Zl,Zz)

G(zy,2z9)= (170)

Remarks:

1) To determine if det Dy(zy, z,) = det Dg(z,,2,) has no
zeros on the unit bidisk U2, we can invoke any of the stability
tests for two-dimensional polynomials (scalar case) discussed
in Section IIL

2) From now henceforth, we assume that the critical case of
singularities of the second kind on the boundary of the bidisk
is avoided, as we did for the two-dimensional scalar case, and
therefore we refer ‘the reader to the necessary and sufficient
condition of “BIBO” stability as structural stability.

3) Lyapunov Test: This test was development by Piekarski
[12] for the n-dimensional matrix case for both continuous
and discrete forms. In the following we will present only the
two-dimensional version of this test and in the next section
the general form will be presented.

Two-Dimensional Discrete Case: Suppose g(z,, z,) =
det (A, - A, ,}is a two-dimensional characteristic polynomial
of an arbltrary ny X 1y complex matrix Ap,, where Ay =
-2 P . +z.1, , Is an ny X ny diagonal matrix with dlagonal
complex variables zy, z,, where + denotes the direct sum of
matrices. The following theorem follows.

Theorem 36 {121]: The necessary and sufficient condition
that the two-dimensional characterisiic polynomial g(z,, z;)
have all its eigenvalues inside the unit bidisk if and only if
there exists a positive definite Hermitian matrix

W, = Wi, +Wp, >0, with W, = W), i=1,2
{(171)
such that
Ag Wy Ay - W,, <0. (172)

Two-Dimensional Contintious Case. The two-dimensional
characteristic  polynomial g,(s5y, 5,) = det{A, - A, ) is
Hurwitzian if and only if there exists a positive definite Herm1—

tian matrix
=Wp, + Wy >0, i=1,2

(173}

Wy, with W, Wm‘,
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such that

Wn, An, +Ap Wp, <0, (174)

Remarks:

The application of the Lyapunov tests to Roesser’s model
is not yet developed. However, Attasi [114] has developed
a two-dimensional Lyapunov test for his model. In his case,
one simply needs to check the one-dimensional systems along
vertical and horizontal lines. This leads to one-dimensional
Lyapunov equations which do not constitute any noted new
results. :

4) Some Necessary and Sufficient Conditions for Stability -
In concinding the analytical tests, it is pertinent to mention a
useful necessary condition for stability as developed by Alex-
ander and Pruess [122]. It is based on the description of the
“MIMO” two-dimensional digital filter whose transfer function
is represented by )

G(m,n)=B1Gm-1.n t B2Gmn-1 + AFm,n.  (175)

The above model is a parficular case of Fornasini-Marchesini
[115] when Ag =0 in (158). The following theorem follows.

Theorem 37 [123]: The two-dimensional system described
by (175) is unstable if any one of the spectral radii, 2(B1),
p(By), p(By +B,) is greater than or equal to one. Note in this
case the two-dimensional z-transform definition of Alexander
and Pruess [122] is in terms of negative powers of z; and z,.
Based on the definition, a necessary condition for stability is
that all the spectral Tadii are less than unity.

Remarks:

1) The spectral radius of the matrix B is defined as the mag-
aitude of the largest magnitude eigenvalue of the matrix B.

2) It is computationally convenient with the present avail-
able methods to compute the spectral radii of matrices. Hence,
the above theorem serves as a quick methoil for checking for
instability. -

3) W. E. Alexander in his Ph.D. dissertation [122al had
presented some sufficient conditions for (BIBO) stability and,
herein, one of these conditions:

The system given by {175) is stable if

plabs(B,) +abs(Bz)] <1 (175a)

where abs(B ) represents the matrix made up of the absolute
values of the corresponding elements of the matrix B, i.e.,

abs(§)= [lbﬁ” {175b)

4) In as yet unpublished results by Humes,” a sufficient
condition for asymptotic stability for the Roesser model given
in (55) is obtained. It is given as follows:

A sufficient condition for asymptotic stability of the system
siven by the first two equations of (155} is given by:

A1+ BAall - AN Aal + 1Azl ilAs] <1 (175¢)

where ||-|| represents the norm of the matrix.
It is of interest to note from {175c) that for the one-
dimensional matrix case, we obtain

lall <1 (175d)
which is also a sufficient condition for asymptotic stability.
®ana F. Humes, “‘General stability criteria for multi-input-multi-

output multidimensional digital systems,” Ph.D. dissertation, Dep. Elec.
Eng. Comput. Sci., Univ. California, Berkeley, June 1978.
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B. Graphical Stability Tests {123}

In this test, we will apply the Nyquist-like test discussed in
(Section IT1I-D7) to the two-dimensional matrix case in connec-
tion with the diagonal dominance condition.

From the determinant test discussed earlier, the structural
stability is determined by

det D(z;,z,)# 0, forall z,,2, ET? (176)

The objective of the following discussion is to show that if
D(z,,z,) is diagonal dominant on the distinguished boundary
T2, then we can determine stability by applying the Nyquist-
like test to the elements of the diagonal of D{z,, Za)

Diagonal Dominance Conditions f123]: A matrix

Q(thz)em(zl,zz)"xn

is diagonal dominant on T?if
a) q;(z),z;) hasno “poles’ on T: i=1,2,""",n
b) foratlz,,z, €T?

either z qy(zy,22),  i=1,2,77°,n
jFi
lgis(zy, 223>
or ZQ,!,‘(Z;,Z;), i=1,2,"‘,n.
IEal)
(177)

From the above definition, we arrive at the following theorem
by Humes-Jury [123].

Theorem 38 [123]: Let G(z1,22}=N(z1,22) Diz1, z,)7!
be the transfer function of a MIMO two-dimensional digital
filter, with ¥V and D being two-dimensional right coprime. Let
D{(z,,z,) be diagonal dominant on T2%. Then G(z;,24) is
structurally stable if and only if the Nyquist-like test of ail the
diagonal elements of D(dj;(z,, z3),i=1,"--,n) do not en-
circle or pass through the origin.

Graphical Construction of Diagonal Dominance {1 23]: This
construction is done by using the the parameterization of T2 =
{(e/®, 2,): lzo] = 1, « € [0, 27)}. By this procedure for each &
we reduce the problem to a single variable z;. Thus the tech-
niques of Rosenbrock [97] discussed in Section V can be
applied. )

Let dy; map {(¢’%, zp):lzal=1, 2 €10, 2m} into T (o) for
each i. Now consider circles for each {z5| such that |z;]=1,

with centers at d;,—(e’“, z5),i= 1,2, - -, nand radius given by
gither Z: dij(eja, zy), i=1,2,-"",n
J#Ei
ri(a: Z'Z) =
or 3 dulef™. ), =12, .n
IET
(178) .

When z, varies along the unit circle, the corresponding circles
sweep out a band which can be represented by a finite number
of circles. Those bands are called Gershgorin’s bands. If for
every @ and i, these bands exciude the origin we readily ascer-
tain that D is diggonal dominant on T2. In checking stability
these bands are drawn for each parameterized Nyquist plot,
similat to Rosenbrock’s [97] construction for the one-
dimensional matrix case.
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If D fails to be diegonally dominant on 72, we can proceed
in either of the following ways: _

1) apply the Nyquist-like test to each entry of D

2) evaluate det D and then apply the Nyquist-like test to it.

VILI. STABILITY OF MULTIDIMENSIONAL POLYNOMIALS
(MATRIX CASE)

In this section we will generalize the theorems of the preced-
ing section to multidimensional polynomial mairices. Some of
the theorems are readily extendable, while others are not. We
will discuss some of the difficulties of such extensions in more
detail. '

If we have n spatial dimensions, we can generalize Roesser’s
model [116],[116a] to the following:

Rylky, ", ky)
Rylku Ka, k)= LAga = Ag |
Rylky, -, k)
By
oo futen, k)
By,
Rylky, o ky)
y ) =10 Gl
Rylky, - ky)
tDuky, -, ky) (179)
for i=1,-- ',n,. each Ay is 4 matrix of dimension n,—Xn,—
(/j=1,-+-,n), By, C; are matrices of dimension n; X p and

m X n;, respectively, and D is of dimension m X p.

By applying the n-dimensional z-transform to (179), we
obtain the r-dimensional transfer function (corresponding to
(157)),

Glzy,22," ", 24) = [Cy, "7, €y
21y - An) - Az~ - Ay, |7 By
_AZ](Z‘.:I}‘n2 "-‘422)_"'_‘42;1 B,
. : +D. (180)
“Apy Ay = - @, - Aun)] | Ba

Extending the stability theorems of the preceding section,
we obtain following Humes-Jury [37] the following.

Theorem 39 [37]: A “*MIMO” sn-dimensional linear system
described by equation (179) is “BIBO” stable if and only if
there exists a real v << such that for all positive integers
(m,n,--,r)

)3

k=0 [

M=

e G L <y <o (181)
£=0

I}
<

where G(k,{, -+ ,s) is obtained in a similar but generalized
form as equation (162).

Theorem 40 {37]: A “MIMO™ n-dimensional linear digital
system whose transfer function is given by the matrix
G(zy," -, z,) is BIBO stable if and only if each entry of
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G(zy," ", zy) comesponds to a single-input single-output
system which is BIBO stable.

Theorem 41 [37]: A system whose transfer function is
given by equation (180) is BIBO stable if every emtry of

Gl(zy, " -, z,) has no “poles’ in the region
U ={(zy, ", 25): lz,] <1, lz21 <1, , |z, < 1}
On the other hand if G(z,, - - -, z,,) is the transfer function of

A BIBO stable system, then no entry of G(z,, - -, Z,) has
poles on U™ or nonessential singularities of the second kind,
except possibly on the distinguished boundary of U” (ie,
when |z, | =[z;|=---=|z,[= 1)

Remark: Similar to the two-ditensional discussions, we will
ignore this type of singularity and we refer-to “BIBO” stability

-as structural stability. Thus the above theorem will give the

necessary and sufficient condition for structural stability.
To generalize the determinant method discussed in Section
VI-A2, we will first present the following definitions.
Definition {118]: The n-dimensional polynomial matrices
N and D are n-dimensional right coprime if and only if ¥V and
D are one-dimensional right coprime in3®

‘m[zi](z])ZZJ T s i1 i1 - ,Zn),

for i=1,2,--+,n ({182}

The following theorems were developed by Humes-Jury
[124] as a generalization of the two-dimensional case,

Theorem 42 {124]: Given an n-dimensional rational matrix
G(zy,"**,z,), suppose

GGz, ", 2p) = Nplzy, " ,2p) Drlzy,* +,2,)7

=Dyzy, " ':zn)_lNl(zlx T, Zn)

where Ng, Dy are n-dimensional right coprime n-dimensional
polynomial matrices and V;, D, are n-dimensional left coprime
n-dimensional polynomial matrices. Then

det Dg = det D; (mod. constant). (183)
Theorem 43 [124]: Let G = ND™' where
GER(zy, 2z, NER[zy, *-,z,)P%4
and DER[z,, **,z,19%9. Furthermore assume N and D
are n-dimensional right coprime. Then
(Zr, ", Zp)EC  isazero of det D <= (Zy, ++ ,T,) E¢"

is a nonessential singularity of 7,
Note: (Zy,"**,Z,) is a nonessential singularity of G if
(Z4,°**,7,) is a zero of the denominator of some entry of G.
Based on the above theorem and assuming that we are given
the n-dimensional right {or left) coprime factorization of the
transfer function of the system G =ND"!, we can ascertain

. the necessary and sufficient condition for structural stability

by testing the zeros of

det D(zy, -, z,)=0.

To test the stability of the n-dimensional scalar polynomial
of equation (184}, we can apply any of the stability tests dis-
cussed in Section I'V.

(184}

D, Youla with G. Gnavi in a recent work entitled, “Notes on n-
dimensional system theory,” to be published, have introduced three
definitions of coprimeness and the ahove is equivalent to one of them,
It should be noted that many definitions of coprimeness exist.
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Remarks:

1) It is shown by a counterexample®! constructed by Youla
in as yet unpublished notes that the primitive factorization ap-
plicable for the two-dimensional matrix case no longer exists
for n 2 3.3? The author is grateful to Youla for supplying him
with these unpublished notes.

2) Because of 1), one is not able to obtain the GCRD factor-
ization in a similar fashion as for the two-dimensional case.
Indeed, the meaning of the GCRD factorization for the n-
dimensional case is an open question as well as the existence of
an algorithm for obtaining it. This question will be posed as
an open research problem in the next section.

3) If the n-dimensional polynomial matrices N and D in
ND™! are not n-dimensional coprime, then to test stability,
we may Tesort to testing stability of each entry of the n-
dimensional polynomial matrix G(zy,* ", Zp)-

Lyapunov Test [121]: We will present the general n-
dimensional form of the Lyapunov test as developed by
Piekarski {121]. First we present the discrete and then the
continuous case.

n-Dimensional Case: Suppose g(2,,2,," ", 2,)= det[A,,r -
Apn,] is a n-dimensional characteristic polyncmial of an arbi-
trary n, X n, complex matrix 4,, , where

A, =21l 220 Fo b Dy, (185)

is an n, X n, diagonal matrix with diagonal complex variables
21,22, "", Z,, where + denotes the direct sum of matrices.
The following theorem follows.

Theorem 44 [121]: The necessary and sufficient condition
that the n-dimensional characteristic polynomial g(z,, 23,
-+-,z,) to have all its roots inside the unit polydisk if and
only if there exists a positive definite Hermitian matrix

Wy =Wy + W+t Wy, >0 (186)
with (W, = Wpn), fori= 1,2, -+, rsuch that
Ay Wo Ay, ~ Wy <0. (187)

Remark: The above theorem is applicable for stability when
one wses the classical definition of the n-dimensional z-
transform (i.e., with negative powers of the z;s). )

n-Dimensional Continuous Case {121]: The n-dimensional
characteristic polynomial g, (s2, §2, ' ", §) = det(/\nr - A,,r) is
Hurwirzign if and only if there exists a positive definite Hermi-
tian matrix

W, = Wi, * Wp +0d Wp >0
with (W, = Wy ),i=1, 2, *+, 7 such that
W, An, + An Wy <0,

Remark: Similar to the remark mentioned for the two-
dimensional case, the above theorem for the n-dimensional
discrete case was not shown to be applicable for testing stabil-
ity of Roesser’s model or the Fornasini-Marchesini model
either. Hence, the Lyapunov test is not as promising for test-
ing stability as other previously mentioned tests. It is of
interest to note that in recent works [123], [126], the role
of the various state-space models is still considered unclear.

* Another counterexample was independently obtained by B. Lévy.
*15ee also footnote 30,
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VII. CONCLUSIONS AND RECOMMENDATION
FOR FUTURE RESEARCH

In this paper a comprehensive study of two-dimensional and
multidimensional systems stability was presented. In particu-
lar the various tests for stability are applied to the various
regions of analyticity which classify the particular system.
This classification which features one of the main contribu-
tions of this paper enables the reader to deal with both
continuous-discrete or mixed systems in one unified approach.
The complexity of the region of analyticity depends on the
stability requirements of the various applications.

It is shown in this paper that the stability tests of two-
dimensional and multidimensional systems reduces to several
applications of the stability tests of one-dimensional systems.
A comprehensive survey of such tests was published in a
companion paper by this author [1]. Hence, the earlier paper
and this one present a detailed survey of the stability tests for
linear time-invariant one-dimensional or many-dimensional
systems. '

The area of two-dimensional digital filtering is increasing in
importance in recent years because of the many applications.
A survey of this work as done by Mersereau and Dudgeon
[22] three years ago included about fifty references. In that
survey the stability problem section was only one of several
other sections. In the present survey, we mention over a
hundred references only to the stability problem and these are
by no means exhaustive. This attests to the big strides made in
the study of this problem in the past three years. This surge
of activity will undoubtedly continue unabated in the years to
come. Hence, it is felt that such a survey is timely in order to
integrate the widespread volume of publications into a unified
theme so that the researcher in this field can find it easy to
grasp and evaluate the various tests. It is hoped that this
objective of the author will materialize. ’

In studying the history of the development of stability tests
for one-dimensional systems which span over 120 years and
the present tests for two- and multidimensjonal systems which
spans about two decades, certain analogies and differences are
singled out. In this survey, it is pertinent to remark on them.

1) Both the study of one-dimensional and multidimensional
stability investigations were motivated by practical applica-
tions. For instance Maxwell’s work on stability [2] as well as
that of Vyschnegradsky in Russia was motivated by the steam
engine regulators. The work of Hurwitz at the urging of
Stodola was motivated by the stability of turbine engines.
Such a historical review was recently presented by the author
[59]. Similarly, the stability study of two-dimensional and
multidimensional systems was motivated by the effective
design of two-dimensional and multidimensional digital filters
and other applications.

2) The early work on stability of one-dimensional systems
was done mainly by mathematicians or mathematical physi-
cists. In contrast, the present work on multidimensional
stability was done mainly by engineers. This attests to the
competence and insight of engineers in the mathematical liter-
ature as well as to the solid mathematical education of the
engineering curriculae.

3) Most of the early research on one-dimensional stability
was done by European and Russian scientists, while the present
research performed on multidimensional systems is to a great
extent done in the U.S.A. This is due mainly to the generous
research support of the National Science Foundation and other
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governmental agencies to encourage and to give impetus to
such study. It is also due to the advanced technology of recent
years especially in imagery which motivated the theoretical
study connected with these applications. This activity will
undoubtedly increase in importance and effort in the coming
years,

A major objective of this write-up is to single out some
research problems which remain unsolved up fo the present
time. These are itemized as follows.

1) The study of the significance of the various definitions of
coprimeness of N-D matrix polynomials is warranted.
Furthermore, the possibility of extracting the common factor
(right or left) when the two N-D matrix polynomials are not

coprime. This is needed for system theoretic study of N-D -

matrix case.

2) Extension of the Ekstrom-Twogood [69] cepstral
method of testing stability to the multidimensional case. This
method was discussed in Section III of this survey.

3) Research in obtaining sufficiency conditions for stability
for two- and multidimensional systems. This is done in the
one-dimensional case and needs to be developed for higher
dimensions.

In view of the computational complexity of the stability
tests, such conditions are indeed warranted. : :

4) In the stability tests of one-dimensional systems, it is
known that Levinson’s algorithm can be used. This is shown
by Berkhout [127] and Viera and Kailath [128]. Although
the two-dimensional Levinson’s algorithm was developed by
Justice [129], Lévy ez al. [126] , it has not been extended for
stability tests of two-dimensional discrete systems,

5) Extension of the Lyapunov method for stability testing
of Roesser’s model. This was indicated in the preceding
section,

6) A method for testing nom-essential singularities of the
second kind.>*  Also if such singularities of both numerator
and denominator polynomials exist on the unit bidisk (or
polydisk), how can one ascertain the stability of the system?
This was discussed in Section II1.

7) In this study the various regions of analyticity were pre-
sented because of the various applications. It is of interest to
extend these regions to others not yet dictated by the practical
applications and to ascertain whether the present tests are still
applicable.

8) Extension of the analyticity region of two-dimensional
asymmedric (nonanticipative) half-plane digital filters to the
multidimensional case.

9) Extension of the Nyquist-ike test for the testing of the
sign of the multidimensionzl polynomial on the distingnished
boundary on the unit polydisk. This was discussed in Sections
I and VI.

I0) It was mentioned in Section III that Shanks' conjecture
is false in general. However, it was conjectured by Jury {81]
that if the original unstable polynomial and its least sqiiare
inverse are of the same degree, then Shanks’ conjecture might
be valid. 8o far, no countereXxample has been obtained for this
conjecture, Hence, it is of interest for effective design to either
verify or refute this conjecture and in the same vein, to obtain
whatever additional constraints needed to be imposed to verify
the conjecture.

*Such an existence test has been very recently obtained by T. Bickart
in 2 note entitled, “Existence criterion for non-essential singularities of
the second kind,"” to be published in Proc. IEEE,
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11) Extension of the Anderson-Bitmead [106] or Shieh and
Sacheti [107] method fo the two-dimensional case. These
methods were discussed in Section V.

12) There is aclass of one variable problems of the following
variety. Given a nonsquare matrix polynomial Ay =Z4",
say whether there exist values of A in Re A = 0 for which AR
has less than full rank, (Example: Decide whether x = Fx + Gy
is stabilizable. The polynomial AQ)is [/ - F G]). What
about two and higher dimensional versions of this problem?
The author is grateful to Prof. B. D. O. Anderson for suggest-
ing this research topie.

13} In this survey, the emphasis of stability tests was on
linear time-invariant multidimensional systems. In practice the
nonlinear effects of quantization, roundoff error, finite arith-
metic and others should be taken into account for stability
and design. Hence, the extension of the methods presented
this paper to nonlinear and time-varying multidimensional sy
tems is a major task. For various practical applications, the
recent book edited by Oppenheim [130] is a noteworthy
contribution.

The above research problems and other mentioned in the
text are but a few of the many more which surely exist and
are not known to this author. Some »f the above problems are
difficult and some are straightforward and indeed it would give
this author great satisfaction to see the above solved by
researchers in our lifetime.
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