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Scanning the Issue

The theories of functions and polynomials in several com-
flex and/or real variables, along with their numerous applica-
fons in several areas of systems theory—including, but not
rstricted to, multidimensional digital filtering, multivariable
rtwork realizability, automatic control and communica-
ons—provide primarily the subject-matter for this special
ime. Due to the wide range of topics spanned by the papers,
both from the mathematical and engineering standpoint, it
shoped that the trend towards the understanding and solu-
fion of the challenging problems in this fascinating subject will
ontinue, stimulated greatly by the avenues of discourse
opened up among researchers in different but partially over-
lpping areas. All the papers have been reviewed, each by
wveral reviewers, and it is hoped that in their final form they
w error-free; however, since this is almost an impossibility in
iew of the fact that most of the material has yet to be
lhoroughly digested by the scientific community, the readers
ue urged to spare no efforts in polishing and perfecting the
wncepts and ideas advanced here.

The first paper, entitled “Problems and Progress in Multi-
{imensional Systems Theory” by N. K. Bose, presents the
wssibilities as well as difficulties of extending established
ingle dimensional techniques to multidimensional situations.
This paper also serves as an overview of the present status and
fiure prospects of research in the subject, with emphasis on
multivariable network realizability, multidimensional recursive
dgital filter stability, and constructive implementation of
dgorithms known to exist as a consequence of elementary
fecision algebra. In this paper, attention is also directed to
the fact that problems in different areas of multidimensional
ystem theory often have similar mathematical characteriza-
fons requiring, then, a common mathematical solution. In
winection with the computational aspects of algorithms
mplemented, continuation of research is necessary to deter-
mine sensitivity to parameter variation of certain properties
mder test; for example, in the test for global positivity of a
niltivariable polynomial it is useful and often necessary to
kow the range of values of one or more of the polynomial
wefficients for which the global positivity property of the
plynomial is invariant.

Recently, the potential value in systems theory of some
rsults in algebraic geometry has been noticed. Several papers
i the issue attach importance to the possible future role of
igebro-geometric theorems in future multidimensional
ystem theory. The paper entitled “Application of Algebraic
Gtometry to Systemhs Theory, Part II: Feedback and Pole
Pacement for Linear Hamiltonian Systems” by R. Hermann
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and C. Martin shows how some powerful results from algebraic
geometry can be adapted to study the linear optimal regulator
problem and also how the classical theory of resultants of
systems of polynomials can be used to prove a version of a
theorem in algebraic geometry required in mathematical
systems theory. B. D. O. Anderson and R. W. Scott, in their
paper entitled “Output Feedback Stabilization—Solution by
Algebraic Geometry Methods,” show how the difficult prob-
lem of stabilization for finite dimensional linear systems with
output feedback can be reduced to a problem of calculating
the solutions, finite in number, of a system of multivariable
polynomial equations. The proof of finiteness is based on
results from algebraic geometry, while multivariable poly-
nomial resultants provide a method for arriving at the solution
known to be finite in number. Thus, the problem finally
reduces to the examination of a finite set, element by element,
whose cardinality, however, may be high. The paper entitled
“New Results on 2-D Systems Theory, Part 1: 2-D Polynomial
Matrices, Factorization and Comprimeness” by M. Morf et al.
extends to two dimensions the results on greatest common
right or left divisor, extraction and matrix fraction descrip-
tions. Also presented here are a criterion of relative primeness
of two-dimensional polynomial matrices using concepts from
algebraic geometry, and results related to existence and
uniqueness questions of factorizations.

The properties of the two-variable orthogonal polynomials
on the hypercircle are investigated by Y. Genin and Y. Kamp
in their paper entitled “Two-Dimensional Stability and
Orthogonal Polynomials on the Hypercircle,” and the results
developed are used to show why a well known stabilization
technique for one-dimensional recursive digital filters cannot,
in general, be extended to two dimensions. In the subsequent
paper, entitled “A Levinson-Type Algorithm for Two-Dimen-
sional Wiener Filtering Using Szego Polynomials,” J. H. Justice
shows how the two-dimensional extensions of the polynomials
orthogonal on the unit circle, considered also by Genin-Kamp,
can be used to derive and implement a two-dimensional analog
of the Levinson algorithm occuring in the solution of normal
equations in Wiener filtering. The connection between these
two-dimensional orthogonal polynomials on the hypercircle
and the inversion of block-Toeplitz matrices occuring in the
extension of Wiener filtering to two dimensions is mentioned.
Jury et al., in their paper “Stabilization of Certain Two-
Dimensional Recursive Digital Filters,” consider, from a
different viewpoint, the stabilization problem discussed in the
Genin-Kamp paper by trying to identify classes of two-dimen-
sional recursive digital filters which are stabilizable by the
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extension of the known one-dimensional stabilization
technique.

In the paper entitled “A Stability Criterion for n-Dimen-
sional Zero Phase Recursive Digital Filters” N. Ahmadi and
R. A. King prove, using a criterion relating the stability of a
recursive filter to the properties of its cepstrum, that an
unstable n-dimensional recursive digital filter with a finite
number of coefficients and nonzero, nonimaginary frequency
response is decomposable into 2" stable recursive filters in an
infinite number of ways. In the paper entitled “Fundamentals
of Digital Array Processing,” D. E. Dudgeon tries to present
the link between beam forming and beam spectra for sensor
arrays and 2-D digital filtering. The relationship between
beam spectra and the 2-D DFT is used to point out the dif-
ferences in the beam forming and spectral-analysis approaches
to array processing. The feasibility of using multidimensional
filter design techniques to digital beamforming and array
processing has been discussed. In their paper entitled “Design
of Two-Dimensional Digital Filter via Spectral Transforma-
tion,” S. Chakrabarti and S. K. Mitra try to present in a
cohesive framework research to date on the use of spectral
transformations in the design of 2-D digital filters. The
stability-invariant property of spectral transformations often
motivates its use, especially in situations when algebraic tests
for stability become computationally difficult to implement.

L. O. Chua and S. M. Kang, in their paper “Section-Wise
Piecewise-Linear Functions: Canonical Representation, Prop-
erties and Applications,” present a closed-form analytical
formula for representing n-dimensional surfaces and scalar
functions of n-variables which are piecewise-linear over each
cross section obtained by freezing any combination of (n - 1)
of the n-variables. The scope for using this closed-form
representation in analyzing and modeling nonlinear devices
characterized by finite jump discontinuities is illustrated by
examples. In the paper entitled “Nonlinear Differential
Systems: A Canonic Multivariable Theory,” R. W. Newcomb
shows how a nonlinear polynomic differential system can be
reduced to a canonic quadratic form, through the introduction
of an algebra within which a power-series solution can also
be found. The region of convergence of the solution is worthy
of more investigation. In the paper entitled “On Nonglobal
Positivity and Domains of Positivity of Multivariable Poly-
nomials,” A. R. Modarressi and N. K. Bose consider the
problem of determining all real solutions—including those
lying on continuous algebraic curves, closed or open, as well
as isolated points—of a polynomial equation in several real
variables. The results of this paper are naturally adaptable for
application in diverse problems, and it is hoped that greater
attention will be given to related computational problems
associated especially with polynomials in greater than two
variables. In their paper “New Results in 2-D Systems Theory
Part II: 2-D State-Space Models-Realization and the Notions of
Controllability, Observability and Minimality,” S. Y. Kung
et al. present results on a comparison between different state-
space models that have been proposed in the realization theory
of two-dimensional deterministic systems, after introducing
the notions of (global and local) state, controllability, and
observability along with their relations to minimality of 2-D
system realizations. In the 2-D case, they also introduce an
algebraic definition of observability (modal observability),
which is shown to be equivalent to the right coprimeness of
2-D polynomial matrices like in the 1-D case where contollabil-
ity and observability concepts for multiple-input multiple-
output systems are known to be linked to the relative prime-
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ness properties of polynomial matrices. Subsequently,
minimality of a realization is claimed, if any, only if it is
controllable and observable in the modal sense. The paper
entitled “Statistical Inference on Stationary Random Fields"
by W. E. Larimore adapts classical identification techniques
for application to multidimensional systems. The statistical
techniques to model vector random processes on multi-
dimensional Euclidean space involve parametric statisticl
inference via the maximum-likelihood method. Approxime
tion of multidimensional spectra and maximization of the like-
lihood function under stability constraints are among topicsin
this paper that demand future research.

There are also several items which have been included in the
Proceeding Letters section of this special issue. These include
the letter by C. S. Koo and C. T. Chen entitled “Fadeeva’s
Algorithm for Spatial Dynamical Equation,” the letter “On
Synthesis of Class of Multivariable Positive Real Functions” by
V. Ramachandran et al., the letter by R. DeCarlo et al. entitled
“A Nyquist-Like Test for the Stability of Two-Dimensioni
Digital Filers,” and finally the letter entitled “On the Spatially
Causal Estimation of Two-Dimensional Processes,” by M.G
Strintzis.

This issue hopefully brings to the attention of the reades
the versatile and prolific nature of research activity in thi
area, motivated by scopes for applications in a large number of
problems of scientific and engineering interest. The naturl
difficulty of the topic has often forced progress to be slow,
and often errors discovered in the results of earlier researt
have led, not only to the appreciation of the intricacies of the
subject, but to a better understanding of several aspects of the
subject itself. The detection of errors gives credit to a scien
tist’s aspirations towards perfection as much as commission of
errors gives credit to a scientist’s belief that the only certain,
but ignoble, way to avoid errors is by not doing anything. By
the same token, though it may be unnatural to expect
contents of this issue to be beyond reproach, the issue vil
have more than served its purpose if it fulfills its objective of
exposing to the readers in a coherent manner the progrs
made in this area and identifying the present importan
unsolved problems which should guide future research.

In closing, I would like to thank B. D. O. Anderson, E.l
Jury, A. R. Modarressi, R. W. Newcomb, M. G. Strintzis, anf
D. C. Youla for several helpful discussions from which I hat
greatly benefited. The cooperation given by R. W. Lucky anf
W. R. Crone is gratefully acknowledged.
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Preface to the Special Issue on Multidimensional
Systems

ELY I. JURY, FELLOW, IEEE

development of some problems in system theory which

have been of great interest to many of the readers of this
journal and which have occupied most of my professional
career. I will also mention some problems which necd further
exploration. The historical development of this theory pro-
ceeded in the following stages.

ﬂ:N THIS BRIEF review, I would like to recall the historical

I.

Early research in this area, including my own professional
work, dealt with problems related to single variable polynomi-
als. These problems included root clustering, special root
distribution, and general root distribution. Much progress,
both theoretical and computational, has been made on these
problems. The theory of inners [1], [ 2] has shown that most of
the problems connected with roots of single variable polyno-
mials can be presented either in terms of Bezoutians (quadratic
forms) and Resultant matrices (innerwise matrices). These two
approaches have been developed extensively in both mathe-
matical and engineering literature. An important feature of
the Bezoutian matrices is their symmetry; an important feature
of the Resultant matrices is that they possess a left triangle of
zeros. Both of these patterns have been utilized effectively in
calculating the various determinants and subdeterminants of
these matrices.

II.

The subsequent problems to be considered were those related
to multi-input multi-output (MIMO) systems. Such problems
lead to polynomial matrices of a single variable. Recent results
[3], motivated by Part I, indicate that most of the problems
related to MIMO systems can be formulated either in terms of
Generalized Bezoutian or Generalized Resultant matrices. In
this case the Bezoutian matrices need not be symmetric, but
the left triangle of zeros are still present in the Generalized
Resultant matrices. Also, in this case the matrices are not
always square as in Part I, and so the rank of these matrices
plays an important role.

III.

The third set of problems to be considered were those related
to multidimensional polynomials, the contents of this issue.
System theory problems related to multidimensional polyno-
mials essentially emerged in the early sixties and have increased
in importance up to the present time. Much of the impetus
has been generated by the technical advances made in multi-
dimensional digital filters. Many problems related to digital

Manuscript received February 15, 1977.
The author is with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720.

filters are presented in this issue. Most of these problems can
also be formulated in terms of Bezoutian or Resultant matrices,
but in this case the entries of these matrices are multidimen-
sional polynomials. Effective solution of these problems de-
pends heavily on decision algebra [4a, b] as developed in the
Tarski-Seidenberg theory. The advent of decision algebra has
made many system theory problems, previously thought un-
solvable, computable.

The mathematical difficulties increase considerably as one
moves from single to two or multidimensional polynomials.
The main source of difficulty is that single variable polyno
mials can be readily factored but multidimensional ones
cannot be. This difficulty and others related to singular
cases are elaborated upon in this issue. The computational
problems related to decision algebra and algebraic geometry
methods are also discussed here. Having discussed Parts Il
and III, it is natural to merge them and this leads us to the
following fourth stage.

Iv.

The fourth set of problems to be considered were related to
polynomial matrices of several variables. This area of research
is still in its infancy and only scattered articles are available in
the literature at the present time. It is expected that as in the
earlier problems most of the problems in this category can be
formulated either in terms of Generalized Bezoutians or
Generalized Resultants. It is expected that in the latter case
the left triangle of zeros will still dominate the pattern of thes
matrices, thus offering a unified feature for all four parts.

The survey, presented by the guest editor in this issue, should
be of much value in describing this work. Much research is
needed in this area in the coming years, and indeed the devel
opments of the theory presented in Parts II and III should ad-
vance the research on the problems described in Part IV.
Many technical applications will also arise in this field of inves
tigation, especially in image processing problems [5].

I have been quite fortunate to work on the problems men-
tioned in the four parts above, particularly on the single vark
able case. This case, and in particular the unified form of the|
various matrices in terms of their pattern, as well as entries, |
has shed much light on the other cases. The unified feature of
a left triangle of zeros is of much use in the computational &
pects of the various problems, and is utilized in several papers
in this issue. I believe future exploitations of the inners ap-
proach to these problems will advance both the theory and
computational aspects of these four categories. It should be
indicated that the mathematical theory in the latter stages was
developed long before its application to system theory
problems.

In conclusion, I wish to thank my colleague and friend,
Professor N. K. Bose for inviting me to write this preface and
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lwish to congratulate him for his many contributions to mul-
fifimensional systems and to his tireless efforts in editing this
important and timely issue. It is a milestone in the progress of
ystem theory and will motivate future work to clarify, simplify
und solve most of the problems presented. I am very grateful
ud fortunate to participate in a minor way in this issue.
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Problems and Progress in Multidimensional
~ Systems Theory

N. K. BOSE, SENIOR MEMBER, IEEE

Abstract—The paper presents the troubles and trends of research in
multidimensional system theory, with special emphasis in the areas of
multivariable network analysis and synthesis, and multidimensional
digital filters. The possibilities as well as perils of extending established
single-dimensional techniques to multidimensional situations is dis-
cussed, and the nature and effect of certain fundamental problems
present when applying the mathematics of several variables is given
cognizance. Open problems are identified at various stages and some
recommendations for future research are made.

I. INTRODUCTION

HOUGH rational functions and matrices (whose ele-

ments are rational functions) of a single complex variable

can be used to satisfactorily characterize only a limited
class of systems, analysis, synthesis, and approximation tech-
niques based on their use have been extensive, reasonably com-
plete, and well documented. Progress in technology has been
accompanied with the advent of diverse and complicated sys-
tems, many of which have been characterized by rational
functions or matrices of several complex variables. Analysis
and design of those wider classes of systems necessitated the
use of new mathematical tools. The major new tools, espe-
cially in the context of this paper, are (though by no means
not limited to) the theory of analytic functions of several
complex variables, multidimensional approximation theory,
abstract algebra (the growing algebraic presence in systems
engineering is already known), topics in decidability theory—
especially those associated with real closed fields—and the
properties of algebraic curves within the more general setting
of algebraic geometry. The appeal of the subject is so broad
that it is impossible in the framework of a paper to present
with equal emphasis most, if not all, possible applications of
relevant portions of these tools in the context of those aspects
of multidimensional system theory, where characterization is
via rational functions or matrices of several complex variables
(some or all of these variables could be specialized to be reals).
Therefore, the reader is forewarned that emphasis on different
areas will be nonuniform. However, more information on
topics that are not adequately covered can be obtained from
the references cited. It is felt that in the absence of satisfactory
documentation of the expanding body of results in this area,
the discussions, comments and recommendations made in this
paper will be of help to future students and researchers.

In Section II, the mathematical preliminaries that are helpful
in the comprehension of the concepts covered in the paper are
presented. Emphasis is placed here on the similarities and
differences between single and multidimensional mathemati-
cal results, on which are based the topics covered in the suc-
ceeding sections.

Manuscript received January 13, 1977; revised January 26, 1977.
The research on which this paper is based was partly supported by
National Science Foundation Grant ENG 75-04979 and partly by
National Science Foundation Grant ENG 75-13397.

The author is with the Department of Electrical Engineering, Univer-
sity of Pittsburgh, Pittsburgh, PA 15261.

TABLE 1

SUMMARY OF CERTAIN DISTINGUISHING FEATURES OF SINGLE AND
MULTIDIMENSIONAL PROBLEMS

Topic Single Dimensional Multidimensional
1. Factorization of Uniquely factorable as a Uniquely factorable as a
polynomial. product of irreducible product of irreducible

w

o

. Singularities of rational

functions.

. Real or imaginary parts

parts of analytic
functions.

. Relationship between

real and imaginary
parts of holomorphic
functions.

. Stability (positivity)

algorithms.

>. Approximation technique

. Stabilization.

. Multiplicative positivity.

. Synthesis.

|
|
|
|
|

|
|

linear factors.

Isolated poles.

Harmonic functions.

One computable from
the other via Hilbert
transform.

No degree reduction
of polynomial.

Haar condition holds.

Least-square inverse
is stable.

Necessary and sufficient |
for the solvability of
moment problem.

Positive realness
necessary and sufficient |

factors, which may not be
linear [183].

Nonessential singularities
of first and second kinds
which lie on continuous
algebraic curves.

Pluriharmonic functions.

One may not actually be
computable from the other

Degree reduction of
polynomial, written in
recursive cenonical form,

Haar condition does not
hold (lack of uniqueness
of best approximation).

Least-square inverse
not stable in general.

Not sufficient for
solvability of moment
problem. |

Sufficiency of positive
realness not yet known. ‘

for LLFPB synthesis. ‘
[
10. Recursive filter BIBO

Numerator polynomial 1
stability.

does not play any role.

Numerator polynomial
might play a role.

In Section III, the progress made and the problems present
in the subject of multivariable network synthesis are discussed.
Section IV is concerned with multidimensional signal pro-
cessing where special emphasis is given to stability problems
in multidimensional digital recursive filters. Section V is con-
cerned with several areas where the results and concepts of
interest in this paper become applicable. Section VI presents
certain conclusions, and recommendations are made towards
future research, particularly along the direction leading to
development and implementation of algorithms relevant to
multidimensional systems via modular methods. Though most
of the notations used are standard and self-explanatory, alist
of nomenclature is contained at the end of the paper for
added convenience. Table I briefly summarizes some of the
distinguishing features that differentiate between single and
multidimensional problems discussed in this paper.

II. MATHEMATICAL PRELIMINARIES
A. Polynomial and Rational Functions of Several Variables

Broadly speaking, the subject matter of this paper will be
primarily concerned with the role of real rational functions of
n complex variables (some or all of the variables could be real)
and matrices whose elements are real rational functions of
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such variables, in the analysis or synthesis of systems which which have only the trivial solution (0, 0, - - - , 0) for any posi-
are characterizable by these classes of functions or matrices. tive integer-valued n. However, other fields exist in which a
Asin the case n =1, a rational function, H(p,, p,, - - - ,Pn)= form F(xi; x5, =<, Xp) in n-variables has a nontrivial Zero,
H(p) in the complex variables P1, P2, " ", pp is defined to be  provided »n is sufficiently large compared to the degree of
4 quotient, of two polynomials P(py, pa, - , Pp) and  F(xy,x,,- - » Xn). The study of such coefficient fields has led
Up1,p2, " " *, py), ie. to the development of an exciting mathematical discipline of

relatively recent origin [8], while the existence or not of non-
PUD1, P33 25 Dy)

H(p1, D2, ", py) = 2.1) trivial solutions in the real number field of a polynomial or

s RS Oy, el DY) form is directly linked to the question of multivariable poly-

: AL ; . 2 : nomial positivity or nonnegativity which has several engineer-

g?;re :12 (2_'9 2 Ql()p ;’; 20’ Wh,elr)l n t)hles Zc())ct: flf‘izltrl](t::lcl)); ;?:)’ ;‘;’;j’ ing applications already [28] , [54]. Most of the results of this
1, ) > Fn .

0(p) are real, H(p) is called real rational e dasen™ Lt paper will be based on the hypothesis that the field K is either

fers from the n =1 case in several significant respects and real or complex. For the sake of coMpactoRs R Lasda, = p]

: will be used to denote the set of all polynomials in the
those mos.;t relevant to our study here are outlined. For fur- real variables x;, x,, - - - | X, over a real field K, while
the.r details, the readers can consult the several refefences KLt pi s~ Pn] will be used to denote the set of all Doly-
wvailable but are also forewarned that only a small fraction of nomials in the complex variables p,, p,, - - - s bverd chin-

the details which are in general an order of magnitude difficult
than the n = 1 case, are really required for our present purpose.

In (2.1), every polynomial P(p) (or Q(p)) in the n indeter-
minates can be uniquely written in the form

plex field K, which, however, for most of the results of our
paper will be specialized to the field of reals.
In (2.1), whether or not the polynomials Q(p;, py, - - -, Dn)€
: " K[pl,pz,"',p,.]andP(pl,pz,'",pn)eK[pl,pz,"',Pn]
P(py,py, """, Pn) = Z ”k,mk,, prte-- P, ar(? relatively prime can be determined, and .lf not relatively
prime, there common factors can be conveniently extracted
v ke B e (2D [113]. Therefore, it is no restriction to assume that the nu-
merator and denominator of a rational function are relatively
prime polynomials in the following discussion. When n > %
even if P(p) and Q(p) are relatively prime, their zero-sets
ulled monomials. The exponent £; is called the degree of the mMight intersect, resul'ting‘in d b‘_’d type of singularity referred
monomial p¥1 - - - p:n with respect to indeterminate piand k = to as the npnessentlal .smgula.nty' of tl.me seconq llund. 'The
kitky + -+ +k, is called the total degree of the monomial, ¢ffect of this type of singularity in various multidimensional
A polynomial which can be expressed as a sum of monomials Problems will become evident in subsequent sections. A zero
all of the same degree is called a homogeneous polynomial ora ©f @(p) which is not simultaneously a zero of P(p) is re-
form. The monomials of a given degree k generate a subspace of ~ ferred to as a nonessential singularity of the first kind.

where g,k €R or C and d is the degree of P(p). A poly—
nomial in n variables of degree d as in (2.2) has IllcOt more;c than
(n+d)!/n'd! terms. Polynomials of the form Diciiivs p," are

the polynomial algebra in 7 indeterminates, and after assign- The theory of analytic functions of several complex variables
ment of degree k, for k =1, 2, - - - to the elements of the respec- [31-[5] which is useful in the study of special classes of func-
live subspaces, the polynomial algebra in the n-indeterminates is  tions like those which have a rational characterization as in
termed a graded algebra. For any element P(p1,p2," ", pp)of (2.1), have several similarities and dissimilarities with the corre-
this graded algebra, the following Assertion is valid. It is Sponding single variable theory. In the present context, it is
inderstood that the coefficients 9 i of P(p1, 025" ** , bp) only necessary to point out some of these distinguishing

in(2.2) belong to a number field Kland Klprps e ol de- features. First, the term holomorphic will be defined.

totes the ring set of all polynomials over K. D?f.initian 2'1;. A (iomplex-valued analytic Cf,l,l nct}ilon 1(;;(5 1
Assertion 2.1: Every polynomial of degree =1 belonging to  P2> > l_’n) defined in some open set {s}eC" w ere is
i e : the Cartesian product of n copies of the complex field, is said
Kipy, pa, , Pn] can be expressed, within units, as a product 7% Tiol e {5 ided: i) F(p) i BadeE
of factors irreducible in X in an unique manner. Whenn > 1, {0 }'e g 01)1’1(1);'? )C. u;l ls » P ro;]i T h 5 %sbclon i ¢ lm
these irreducible factors may not be linear (i.e., of degree 1) s ate P 1s - or‘nor'p. oGt p Mol L
: : Also, the fact that ii) implies i) is a remarkable consequence of
een when X is algebraically closed. = 1
: : : ; ; a deep theorem due to Hartog [3, pp. 1-2].
Further details concerning properties of polynomials in S : it ;
: ! - SRS The continuity of a holomorphic function in the set of its
several variables can be found in [1], and standard definitions 5 P L
’ variables can be used to obtain its representation in the form
e not repeated here for the sake of brevity. It may be noted : : ; * i
Bst o o R ber field b of an n-dimensional Cauchy integral. From this integral repre-
porynomia, irreducible in one number fie Y000 sentation of Cauchy, the representation of a holomorphic func-

fucible in another. However, a polynomial irreducible in ; : 4 3
wery number field is called absolutel ducibl Al tion as a multiple power series [4, p. 39] or Laurent series
- B By o, tec absolutely ‘reducthle; e [4, p. 88] can be obtained. Similar to the n = 1 case, the exis-

{0 O e : . e abilg
7 + s % 4 i A z v
el ke o1 ¥, o p3 i absolutely irreducible while Pi+pa, tence and continuity of all partial derivatives of a holomorphic

o ; : - g . .
hygh iycible fover th_e re‘al Dsiher” SRl becomen vy function F(p) follow from the Cauchy integral formula.
duicible when the number field is chosen to be complex. An % 3 £ b i
; : : I A Furthermore as in the one-dimensional case the multidimen-
mportant item linked to the problem of factorization is the ' . :

sional counterpart of the Cauchy-Riemann equations are

gro-set or solution-set of a n-variable olynomial equation. e x 3 3 :
e problem becomes. more challenginpg sihen  the qnumber satisfied by a holomorphic function Fi (p) as summarized in the
Assertion below.

field in which solution is sought is not arbitrary but specified

5 5 : : o n

for example, over the field of real numbers there are many Assertion 2.2: F(p) is holomorphic in a open set {s} €L

lomogeneous equations in the real variables x;, x5, * - -, Xryls

fuch as 1t is noted, however, that for a function of several real variables to
2 2 2 be analytic, it is not sufficient that the function be analytic in each

X{txy+ - +x;=0 (2.3) variable separately when the others are held fast [168, p. 142].
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if and only if, [5, p. 3]

T el A e R T
axk byk ayk axk
or equivalently [4, pp. 20-21]
oF
ap’,:-o, k=1,2, , N (2.5)

where F(p) = U(x, y) +jV(x, y) and py = xi +jyk, Pk =Xk -
Vi, k=1,2,",n.

The conditions in (2.4) and the fact that successive deriva-
tives of F(p) exist lead to the pluriharmonic conditions in

(2.6)wherek=1,2,---,nandi=1,2," ", n.
2 2 2 2
0‘U U OSUE -1 S0Rl. =0. (2.6)
Oxkdx;  Oy0Yy; 0x0y; 0x;0 ¥k

Similar conditions as in (2.6) are valid for V(x, y). Thus the
real and imaginary parts of a holomorphic function in n com-
plex variables are pluriharmonic functions, which constitute
evidently a subclass of the harmonic functions. For the n =2
case the pluriharmonic property is called the biharmonic prop-
erty, and a biharmonic function U(x,, x3, ¥1, ¥2), the real part
of a holomorphic function, F(x; + jy1, xo + y2)=U(x,, X2,
Y1, ¥2) +jV(xy, xa2, ¥1, V2 ) satisfies the set of conditions in
(2.7), as a consequence of the results in (2.5) and (2.6) when
specialized for the n = 2 case.

’U  *U o e o
—+—=0 — +-— =0 2.7
ax? ay? - ax} 0y} ety
’U il il B il
axlaX2 ayl ay2 axlayz aylax2
(2.7b)

Thus condition (2.7b) is the restriction added on to the har-
monic property of the real (or imaginary) part of a holomor-
phic function in two complex variables (n = 2), in contrast to
the n =1 case. Due to this added restriction in the n > 1 case
it is not possible, in general, to construct a pluriharmonic
function in a closed domain which shall taken on values pre-
assigned over some portion of the boundary of the domain
under construction, as in the n = 1 case. Actually,in the n > 1
case multifold application of the Poisson’s formula gives a
function which satisfies the harmonicity condition as in (2.7a)
but not necessarily the pluriharmonicity condition of (2.6) or
(2.7b) [4, pp. 276-277]. A continuous complex function in
an open set in C” will be called n-harmonic if the function is
harmonic in each variable separately. The results discussed in
this paragraph can now be briefly summarized. The class of all
functions which are real parts of holomorphic functions form
a subclass of the real n-harmonic functions, and particularly
when n > 1 a n-harmonic function need not correspond to the
real part of a holomorphic function. For example, x;x, + 172
is 2-harmonic but cannot be the real part of a holomorphic
function, while x;x, - ¥y, is 2-harmonic and is the real part
of F(p;, p2) = p1p2- This fact, for example, affects the con-
struction of the real part of a network function, which is holo-
morphic in a polydomain Re p; > 0 as will be seen in Section
III, from prescribed values on Re p; =0. The real and imagi-
nary parts, U(x1, X2, * * * , Xp, Y1, Y2, " **, ¥n) and V(xy, x2,

* . Xn, Y1, Y2, " ' s ¥Yn), of a n-variable holomorphic func-
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tion are, as expected, related to each other as in (2.8).

P
s )= Z{g;k‘

po k=1

V(xl’x2,".)xn)ylyy2’.. dxk

oU

+ a—x,c dyk} (2.8)

where the line integral is taken over a path extending from
some fixed point po to the point p. However, there are pitfalls
in direct extension of one variable results like Hilbert trans-
forms (which relate explicitly the real and imaginary parts of a
single variable analytic function as opposed to the implicit
relationship provided by the Cauchy-Reimann equations
[114, pp. 433-439]) to the multivariable case [115].

A result in several complex variable theory which has a
parallel in the single variable case is the maximum modulus
theorem, summarized in Assertion 2.3. This has direct appli-
cation in the results to be discussed in the next section.

Assertion 2.3: If the function F(p)) is holomorphic in the
open region D C C” and is not constant there, then | F(p)| can-
not take on its maximum value inside the region. If the func
tion is also continuous in the closed region composed of D
and its boundary, then | F(p)| takes in its maximum value on
the boundary of D.

An implication of the above Assertion in relation to the |

topic of the succeeding section is that for a real rational func-
tion Z(p), holomorphic in Re p >0, the test to determine
whether Re Z(p) =0 in Re p > 0 cannot be replaced by the
simpler test to determine whether Re Z(j@) =0 in Re p =),

i
|
i

when nonessential singularities of the first or second kind are
present on the boundary Re p =0 of the open polydomain
Re p >0, as will also be substantiated by examples later. For
the n = 2 case, any singularity of Z(p) in Re p = 0 present in
the set of points which are contained totally neither in Re p >0
nor Re p =0, may induce a singularity in Re p =0 [3, pp. 97-
99]. This type of behavior of the singularities on Re p =0,
complicates, in general, their extraction, unlike in the n=|
case. Various other details concerning the distinguishing fea-
tures of analytic functions of several complex variables, which
are not of direct interest here can be found in [3] and [4]. An
interesting discussion of the basic similarities and dissimilarities
between analytic functions of complex variables and analytic
functions of real variables can be found in [116, pp. 30-44].
A common feature in the development of the theory of
analytic functions is the property of single-valuedness [4,
p. 17]1. On the other hand, algebraic functions are multiple-
valued and some useful material concerning these as well as
analytic functions can be found in [6]. The definition of an
algebraic function is generated from a several variable poly-
nomial equation and is illustrated by considering a two
variable polynomial Q(p;, p2) € K[p1,p2] in (2.9)

0(p1, p2) =ao(p1)P5 +a1(py)P5 !
+ 0 +ay1(p1)p2 tay(p). (29)

In (2.9), a,-(p,) €K[p,], forj=0,1,2, -, m. An algebrai
function is then a function, p, = G(p;) defined for values of
p1 in C by an equation of the form Q(p;, pz) = 0. With
Q(p,, p») written as in (2.9) as a polynomial in p, with coeffi
cients which are polynomials in p;, primitivity is assumed, ie,

there is no factor common to all the polynomial coefficients &

ao(p1), a1(p1), " * * , @m-1(P1), ap(p1). This, incidentally,
does not imply that there is no common factor to the poly-



BOSE: PROBLEMS AND PROGRESS

nomial coefficients in p, when Q(p;, p2) is written as a poly-
nomial in p; with coefficients which are polynomials in p,, as
isevident from the example given next.

Q(p1,p2) =p1P3 + P} +p1p2 t1
=(p3 +p2)p1 + (P +1).

The zeros of ag(p; ), corresponding to values of p; for which
degree reduction of Q(p;, p,) takes place alongwith other
values of p; for which the discriminant D(p;) of Q(p1, P2),
considered as a polynomial in p, [D(p;) equals the resultant
of Q(p1, p2) and 0Q(p,, P2)/0p2 ] is zero constitute the sin-
gular points of the algebraic function p, = G(p;). Since, the
concept of ‘“‘degree reduction” plays an important role in
various types of tests performed on multivariable polynomials
(721, [73], [54]1, [117], its relation to the theory of singular
points of algebraic functions, a topic well explored in [6], is
worthy of attention.

Due to the fact that this paper is concerned with problems
which are characterizable by a special class of multivariable
functions namely those which are meromorphic at every point
in the space of analysis (i.e., rational functions), the properties
rlated to these types of functions are underscored. For ex-
ample, only nonessential singularities are mentioned as rational
functions in several complex variables do not have other types
of singularities. Readers interested in distinguishing features of
other types of singularities for functions of several variables are
referred to the very readable book by Osgood [168]. It is
dso mentioned that another branch of mathematics, namely
dgebraic geometry, studies rational functions systematically.
As several papers in this issue, including the ones by Martin
nd Hermann, Anderson and Scott, and Morf et al., deal with
wnrious aspects of applications of algebrogeometric theorems
in system theory, the readers are referred to those papers as
well as the excellent treatise by Shafarevich [10] for infor-
mation.

b. Multidimensional Approximation

The problem of multidimensional approximation is very im-
prtant in the context of this paper, and as reference will
acasionally be made to this prcdlem in the succeeding sec-
fions, it is considered pertinent to present a brief state-of-the-
ut summary of aspects of approximation theory in several
nrables which have relevance here. Though several text-
fooks [118]-[121] have appeared which deal extensively
vith single variable approximation theory, the topic of multi-
timensional approximation, though mentioned briefly in some
fooks [119], is mostly found scattered in various technical
ournals. A very fundamental and important result in approxi-
ntion theory is that of Weierstrass, who essentially proved
fiat the set of all polynomials is dense in the space of all con-
inous complex-valued (not only real-valued) functions
fifined on a bounded closed interval of real numbers, implying
fat such functions can be uniformly approximated by poly-
omials. The generalization of this result to functions of
weral variables has been proved [119, p. 8]. This generalized
wsults of Weierstrass, because of its fundamental importance,
ssummarized next.

Assertion 2.4: Let {s} be a closed bounded subset of the
iimensional Euclidean space. Then, the set of polynomials

kl... kn
Z"kl---k,, X1 *Xn

0<k1 +k2+"'+kn<d

827

is dense in the space of all continuous functions G(xy, x2, " " *,
Xp)on {s}.

A nice proof of the result in the above Assertion along with
other .interesting discussions can be found in [122, especially
pp. 244-245], though the first extension of the Weierstrass’
theorem to several variables was made by Picard [123]. The
role of Bernstein polynomials in the proof of Weierstrass’
celebrated theorem is well known [118, pp. 66-69] and
modifications of these polynomials for purposes of approxima-
tion on infinite intervals have been considered along with their
use to approximate discontinuous functions [124]. For this
reason, it is interesting to note that Bernstein polynomials for
functions of two variables have been introduced [125] and a
study of some of their properties has been made [126],[119,
pp. 69-72]. Extensions to several variables of the well estab-
lished classical theory of interpolation has also been made
[127], [106] and some added comments on this are reserved
for a later section. In [127], attention is given to the adapta-
tion of results for numerical computation, and the key con-
cepts are nicely illustrated by an example.

From the practical standpoint, the theory of uniform approx-
imation based on Chebychev’s result is highly important and
the literature available on the topic is vast [119]. A. Haar
presented a set of necessary and sufficient conditions that an
unique solution exists to the approximation problem of a real
continuous function on a compact set in Euclidean space in a
Chebyshev sense [118], [119], [128]. An extension of Haar’s
condition to the complex case was proved by Kolmogorov in
1947 and a different proof based on a technique (mainly based
on the Hahn-Banach extension theorem and the Reisz repre-
sentation theorem for linear functionals), using functional
analysis was given in 1960 [129]. Attempts to extend the
Chebyshev approximation theory to several variables suffer
because of a serious obstacle—the lack of uniqueness of best
approximations to functions of more than one variable [130].
This is because the multidimensional counterpart of the Haar
condition, referred to above, is not generally satisfied. In
particular, it has been shown [128] that best approximations
cannot be unique unless the functions are defined on a space
homeomorphic to a subset of the unit circle. In spite of this,
some workable theories for the computation of best approxi-
mations in several variables have been obtained [131]. An
intrinsic feature of Chebychev approximations is that of alter-
nation or oscillation [119, pp. 16-36] —a feature for which a
simple geometric interpretation is difficult to give for func-
tions of several variables. Therefore, though it appears that the
famous Remez exchange algorithm [118, pp. 96-100] cannot
be generalized to functions of more than two variables, suitable
modifications of the “one for one exchange’ algorithms used
for actual computation of best approximations of functions of
several variables were first given by Rice [131, pp. 461-465].
For some special results on unicity of approximation for
classes of functions in several variables the reader is referred to
[132], [133], [119, pp. 103-104, p. 126], [134]. Approxi-
mation by rational functions is the subject of a treatise by
Walsh [135], among others and various aspects of this topic
from a different viewpoint are also discussed in [118, ch. 5],
where an extensive bibliography on the subject is also present.
A nice but concise discussion on rational Chebychev approxi-
mation in several variables occur in [119, pp. 153-158]. The
preceding discussion summarizes some of the limited progress
that has been made for approximating functions of several
variables. These limitations provide some motivation for the
use of piecewise-linear approximation of nonlinear multi-
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variable required in his realization. The solution to the prob-
lem of the minimum number of ideal gyrators required for
synthesizing an arbitrary nonsymmetrical two variable reac-
tance matrix is favorably influenced by the recent solution to
the important problem of minimum-gyrator synthesis of an
one variable nonbilateral dissipative m-port by Oono [26].
Another paper [27], similar to Youla’s in several respects,
proved that a minimal realization of a (m X m) two-variable
reactance matrix as a lossless (m + k)-port in one variable ter-
minated at its k-port by unit reactances in the remaining
variable, is possible. The heart of the synthesis scheme in this
case dwells on the feasibility of factorization of a mr X mr real
polynomial parahermitian matrix 7(p;), nonnegative on the
P1 = jw; axis in the form

T(py)=M(p,) M, (p1)

where M(p;) is a mr X k real polynomial matrix with a left
inverse which is analytic in Re p; > 0, r and k being, respec-
tively, the p; and p, degrees of the specified reactance matrix,
Z(p1, p2) of order (m X m). It is also possible in this case to
implement the synthesis via factorization as in (3.5) of a real
rational parahermitian matrix, positive definite on the imagi-
nary axis. The absence of the multivariable counterpart to the
factorization in (3.7) as well as the problems encountered in
the multivariable factorization of the type in (3.6), discussed
earlier, prevents extension of the synthesis scheme to reactance
matrices in greater than two variables. Koga [20] made a
valiant attempt to prove that the positive realness condition
is also sufficient for synthesis of an arbitrary passive multiport
when the number of variables in the prescribed matrix is
greater than one. The shortcomings and error in the general
applicability of the procedure has been recently discussed [28].
Consequently, a significant open problem remains as to
whether a synthesis procedure can be given for a prescribed
positive real matrix in several variables. It is recommended
that new results towards this goal be sought by considering
first the synthesis problem of an arbitrary two-variable positive
real matrix. In case, positive realness is proved to be not a
sufficient condition for multivariable multiport synthesis, then
the derivation of a complete set of conditions (including posi-
tive realness) that will serve as necessary and sufficient condi-
tions in the context under discussion, is of interest.

3.7)

C. Synthesis with Constrained Topology

In practice, constraints are often imposed upon the topology
of the network to be synthesized. A very important practical
class of lumped-distributed networks, especially at microwave
frequencies is a cascaded structure of uniform commensurate
or rationally related transmission lines separated in general, by
lumped 2-port lossless networks terminated in a load that is
passive but otherwise arbitrary (when there are m lines with
same one way delay 7> 0, the network is called m-lines,
lumped-terminated reactive, 7-cascade). It is well known that
these networks are often realized by the use of coaxial cables,
striplines, or waveguides with lumped elements in the form of
step discontinuities, dielectric beads, irises, or posts and are
useful as filters especially with the growing interest in micro-
wave integrated circuits. It has long been appreciated that over
and above the two variable positive real constraint on the
driving point condition, an ‘‘even part” constraint must be
satisfied before realization can be implemented. References to
related synthesis considerations along with discussions of con-
ditions on the driving-point admittance when each of the

-+ PROCEEDINGS OF THE IEEE, JUNE 1977

lumped reactive two-ports consists of only a single shunt
capacitor or a series inductor, are given in [29]. A correct,
complete, and compact solution was recently advanced and
because of the importance of this result the main result in
[30] is briefly stated below as a theorem.

Theorem [30]: The driving-point impedance of an m-line,
lumped terminated reactive 7-cascade can always be expressed
in the irreducible form

bo(p1) +bi(p1)za + - * * + b, (p1)27

Z(p1,z2) =
ao(p1) tay(p1)za + - - +a, (P12
= M(p,, z,)

N(pla 22)
where the g;’s and b;’s for i =0, 1, 2, - - -, m are real polyno-
mials in py, z, = € 2P\" m < m, and

bm(Pl)am(Pl)EFLO-

Moreover

(i) ao(p1) +bo(p1)#0,Rep; =0

(i) M(p1,22) N(-p1,23") + M(-p1, z3") N(p1, 22) = u(p)
where u(p;) = u(-p1), u(p1) has real coefficients, and u(jw;)?
0, -0 K Wi < oo

(iii) Form =1 let

[ao(p1)
ay(p1)  ao(p1)
A(py) = . .
| @m-1(P1) @m-2(P1) ao(py)
-bo(Pl)
by(p1) bo(p1)
B(py) = . .
| bm-1(P1) bm-2(P1) “** bo(p1)

and define the m X m parahermitian ‘resistivity matrix’
K(p,) associated with Z(p,, z,) by

A(p1) B (p1) +B(p1) A, (p1)
g ’

K(py)=

Then K(p, ) admits the factorization
K(p1)=L(p1) L.p1) (338

where L(p,) is real, square, polynomial, lower triangular, anf
minimum-phase;i.e.,

det L(p;)#0 Rep; >0.

Conversely, a Z(p;, z,) of the form above satisfying cond:
tions (i)-(iii) is realizable as the input impedance of an m-li
lumped-terminated reactive 7-cascade and the synthesis may
always be carried out with linear lumped reactive network
which are ‘“all-pass free on their output side.”

The remarkable fact about the above theorem is that tk
difficulty of testing a two variable polynomial for positir
realness is replaced by relatively simple tests. Moreover, ow
and above the well known conditions that were known to
necessary for this type of cascade synthesis, the theorem bring
out clearly an additional constraint (involving the so-calll
resistivity matrix) which must be met if the passive topologic
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sfmicture of the cascade is to be retained. The preceding
tieorem provides the basis for an explicit solution to the
nline, lumped-terminated reactive T-cascade. The details of
the procedure yielding expressions for the junction reflection
wefficients of the lumped networks between any pair of lines
sgiven in [31], uses properties of sequences of polynomials
othogonal on the unit circle [32, pp. 182-184]. In the one
nriable case this procedure yields an efficient alternative to
the cascaded synthesis based on Richard’s transformation and
fieorem [33] or the algorithm of Kinariwala [34] in which
fhe transcendental impedance function is not converted to a
utional function via a transformation. For the synthesis of
lmped-distributed networks, it is noted that Weinberg [35]
ud Riederer [36] instead of converting the single variable
fanscendental function problem to a two variable rational
finction problem (in the case of m-lines, lumped-terminated
ractive 7-cascade) followed a philosophy similar to that in
[34] to present a synthesis algorithm. It appears that there
ue some merits in this approach and it is worthwhile to make
1 detailed comparison including considerations of computa-
fional complexities between the two basic approaches—one
sing two variable rational functions and the other using single
nriable transcendental functions. The n-variable characteriza-
fion n > 2 becomes necessary when in the cascaded structure of
he generic type, the electrical line lengths are incommensurate
ornot rationally related. As such a possibility has no practical
tlevance, the scopes for extension of the results in [30] and
(1] will not be considered here. It may be possible, however,
fiut more than two variables may be required in the character-
mtion of other types of networks consisting of say, RC as
wll as LC uniform or nonuniform transmission lines along
vith lumped elements, and future research should not totally
werlook n-variable synthesis, when n > 2. A word of caution
§ pertinent here. Though, as stated above, there has been
ume nice results in two variable theory applicable to cascaded
ynthesis of lumped-distributed networks, there are certain
joblems in the lumped-distributed area which are not bene-
fitd via transformation into multivariable problems. For ex-
mple, it is not true that the stability of a given lumped-
fstibuted network can be checked by checking the Hurwitz
moperty of a multivariable polynomial as asserted in [37].
The multivariable Hurwitz property might serve as a sufficient
it not necessary condition for the stability of a given lumped-
istibuted network. The catch lies in the fact that the 7;
mariant (where 7; > 0 corresponds to line delay) realizability
inditions in the single complex frequency plane are in one-to-
e correspondence with the multivariable realizability con-
itions provided all possible 7; are considered [38]. This also
tlineates as a open problem the devising of procedures to
ktermine the range of 7; that will guarantee stability of a pre-
ibed active lumped-distributed feedback network, via multi-
imensional techniques. The importance of this type of
arch is further enhanced by the fact that though there are
iblished computationally feasible techniques to test, for

ple, whether a polynomial Q(p;, p,) has zeros in Re i =
,i=1,2 [14], [21], the techniques advanced so far to test
¢ characteristic equations (which are entire functions of a
ige complex variable) obtained from the meromorphic sys-
functions of lumped-distributed networks, for zeros in the
ght-half plane, are either very difficult to implement [39] or
proximate at best [40].

Multivariable rational functions have also been used in the
acterization and synthesis of variable-parameter networks
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including passive variable networks [12], [41] as well as active
variable networks comprised of constant elements in associa-
tion with variable active elements [42], [43]. The characteri-
zation considered for networks of this type (in combination, if
necessary, with distributed elements as well) is in terms of
rational functions in several complex as well as real variables.
There is considerable scope for developing applicable synthesis
techniques for these types of functions, using as basic building
blocks not only passive but active elements as well [44] , [45].
Another important problem which demands considerable atten-
tion in the future is that of multivariable approximation,
which, really, in practice serves as a prelude to synthesis of
desired amplifier or filter characteristics. Though, the impor-
tance of the approximation problem was mentioned on several
occasions [12], [46], most of the work to date either does
not undertake or side-steps this approximation problem. In
[47], attention has been given to the setting up of conditions
for maximally flat approximation for a cascaded connection of
noncommensurate transmission lines, while in [48] the approx-
imation problem for a class of two-variable resonant ladder
networks has been considered. As the multidimensional
approximation problem is also germane in other areas outside
network theory, some additional comments on it will be
made later. Finally, it may be worthwhile to point out that
several dissertations have been written in the area under dis-
cussion in this section and some of these dissertations which
have not so far been directly cited are listed for further refer-
ence, [49]-[55].

IV. MULTIDIMENSIONAL SIGNAL PROCESSING

The range and depth of topics that could be covered in this
area is tremendous as is evident from the volume of publica-
tions in the form of books, reports, and research papers over
the last decade or so. The purpose here is to discuss in what
way the mathematical tools or principles discussed, for ex-
ample, in the previous sections are adaptable in other areas
requiring processing of multidimensional data. The charac-
terization by rational transfer functions of the input-output be-
havior of space-invariant multidimensional optical processing
systems has been considered in [56], [57], and the literature
on multidimensional digital filters used for a variety of signal
processing applications can to a great extent be found in [58] -
[50]1, [61, ch. 7], and [62], though the literature in all these
areas is expanding so fast that continuous updating of refer-
ences become necessary.

A. Multidiinensional Digital Filter Stability Problems

In order to emphasize upon the breadth of applications, the
emphasis in this section, as opposed to the previous one, will
be on multidimensional linear descrete-time systems, whose
input-output characterization is via a rational function in the
variables (zy, z3, ***, z,) =z. A multidimensional digital re-
cursive filter, for example is characterized by the multidimen-
sional z-transform H(z) in (4.1), obtained from the spatial-
domain difference equation relating the input and output
multidimension sequences

_ @)
0(z)

where P(z) and Q(z) will be assumed throughout to be rela-
tively prime polynomials. One of the major problems in the
design of a recursive filter is the problem of stability. For
quite some time the stability of a multidimensional filter in

H(z) (4.1)
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the bounded-input, bounded-output sense has been related to
the absolute summability of the impulse response and subse-
quently to the condition

0(z2)#0,lzI<1 (4.2)

where |z| < 1 will be interpreted as equivalent to |z;| <1,
z,1<1, - -,|z,| < 1simultaneously. Very recently, Good-
man [63] has shown with clever counterexamples that the
nonessential singularities of the second kind on the boundary
of the unit polydisc in the z-plane, can cause problems and
that though the condition in (4.2) is sufficient for stability of
the system characterized by (4.1), it is by no means neces-
sary. Therefore, interestingly enough the stability problem
for n>1 is influenced not only by the denominator poly-
nomial of H(z) but also by its numerator polynomial. It is
intuitively felt by several digital filter designers that it is not
worth implementing filters when the condition in (4.2) is not
satisfied, i.e., nonessential singularities of the second kind on
the unit polydisc must at all cost be avoided even if those do
not lead to stability problems on paper. It is the author’s
opinion, nevertheless, that a more thorough study of transfer
functions that lead to such singularities is necessary. When

the multidimensional transfer function H(z, -z, * - * , z,) is
separable, i.e.,
: n
H(zy,22,° " ,2) =[] Hi(2) (4.3)
. i=1
where H;(z;),i=1,2," -, nis atransfer function in one com-

plex variable, this problem can be satisfactorily addressed to.
However, when the separability condition of (4.3) is not satis-
fied, or when the transfer function H(z) in (4.1) is not even
upper (lower) semi-l-reducible (i.e., when cither the numera-
tor P(z) or the denominator Q(z), but not both, can be ex-
pressed as a product of single variable polynomials, thus one or
the other, but not both, is 1-reducible) [64], the problem of
checking (4.1) for absence of the singularities referred to on
the unit polydisc appears to be a difficult one. The question
then arises as to what the precise limitations of separable (1-
reducible) or upper (lower) semi-1-reducible filters are, be-
cause in the former case the nonessential singularities of the
second kind on the unit polydisc do not occur (when the
numerator and denominator are relatively prime polynomials)
‘and in the latter case, it may be feasible without too much
difficulty to check into the presence or absence of such
singularities on the unit polydisc. This is because in the event
a filter designed to meet certain specifications is found to be
not separable or upper (lower) semi-1-reducible, it may be-
come necessary to test for the presence or absence of non-
essential singularities of the second kind on the unit polydisc,
which problem is equivalent to that of ascertaining whether or
not there exists a z = z satisfying simultaneously

P(z9)=0,0(z) =0 and |zo[=1 (4.4)

where P(z) and Q(z) are polynomials as in (4.1) and | zo| = 1 is
interpreted to be equivalent to |z1ol =1z201="""=12pel =1,
when zg = (210, 220, * * * » Zno)- Though it is possible to solve
the above problem as implied by the results from elementary
decision algebra [15], the computational complexities are very
high.

The test for the condition in (4.2) has been considered by
several researchers. For the n = 2 cases, several solutions have
been offered in [14] and [65]-[68]. Some of these more
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recent results along with previous contributions on the subjed
have been treated in a recent review paper [69]. While
present, two-dimensional recursive filtering is finding wide us
in a variety of technological problems, false scepticism o
doubts regarding the applications of higher dimensional filter
ing should not set the boundaries of present research activity.
In fact, the importance and need for multidimensional filterin;
in certain areas like seismology have already been discuss
over several years [70], [71]. In [72], the test for stability o
three-dimensional filters was explicitly presented, the problen
of degree reduction of multivariable polynomials (when written
as a polynomial in one variable with coefficients in the remain
ing variables) mentioned, and the need for generating a cor:
structive algorithm for stability tests for higher than three
dimensional digital filters using Tarski’s generalization o
Sturm’s theorem was discussed [7, vol. 3, pp. 312-316]. B
fore this, there were some doubts regarding even the existenc
of such procedures. In [73], a constructive tabular approac
to implement the simplified test conditions for multidimen
sional digital filters [74] has been suggested. Preliminary ir
vestigations have revealed that the computational complexitie
in the tabular approach to multidimensional problems tendf
be high. This is especially true when a self-inversive poly:
nomial like C(z,, z;l, Zas z;l, e 2 z;l) cannot be expressl
as a polynomial in (z, +z;1), (z, +z2'1), 2 ez +z;’l
This is always possible when n = 1, where

m
R A
(zy,2; )= E cj(z{+zll)
j=

can always be expressed as [14], [65]

m 3
C(zy,27) = D> di(z, + z' )
j=0

where d;’s are constants expressed in terms of constant ¢;’s. 4
case in point is the polynomial z lz"l + zzz;l which cannot &
expressed as polynomial in (z, +z; ) and (z, + z;l ). This fad
also complicates the multidimensional stability test problemi
other methods are used [75]. Though multidimensional digi

filter stability test using schemes like inners [76, pp. 28-2|
should also be possible, the efficiency of each type of imp

mentation has to be assessed. A comprehensive study of thes
problems is being carried out and will be reported in du
course. It is pointed out that an alternate set of conditions
besides those already given in [74], to test for the conditionit
(4.2) has been presented [77]. Here it is claimed that Q(z,

2y, ,2,)F0,in |2y | < 1,12, <1, -, | 2z,| < 1if and ony
if the following conditions are met:
0,1, -+,1,2z;,1,---, 1)F0in [z <1fori=1,2," "1
(4.5
and
Oz1,22," "+, 2) #0in |21l = lzgl = -+ = [ Zyl =1,
(4.59)

The de!ree of difficulty in the implementation of the test for
condition (4.5b) remains to be assessed.

In [63] also are considered the problems that occur in trying
to extend to the two-dimensional case some of the resultsit
the one dimensional case where, for example, either of th
conditions in (4.6a) and (4.6b) serve as necessary and sufficient
for the filter with a rational transfer function H(z;) and im
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pulse response h,(H(zy)= Z h,z") to be bounded-input

n=0
bounded-output stable
lim h, =0 (4.6a)
n—oo
(4.6b)

Z |hy, |¥ < oo for some k= 1.
n=o0

The validity of the extensions is, however, claimed when some
restrictions are imposed on the two-dimensional filter transfer
function [78]. Also, here and in [79] investigations into
stability conditions are made in a more general setting.

- B. Realization Problem

Several approaches to the realization problem of two-
dimensional recursive digital filters have been proposed since
the first paper on the subject [80] introduced a scheme of
direct implementation of the two-dimensional difference equa-
tion represented by the rational transfer function in two com-
plex variables z; ,z, . Other direct form realizations of arbitrary
two-dimensional transfer functions have been presented [81].
Nevertheless, because of the fundamental problem of factoriz-
ing multivariable polynomials (as in Assertion 2.1, when n >
1), some special types of structures which do not, in general,
lead to multidimensional realizations are the parallel, cascade,
continued fraction or ladder and lattice structures. The role
of the continued fraction expansion in synthesis of classes of
two variable reactance functions [82] as well as in infinite
impulse response (IIR) two-dimensional (2-D) filter realiza-
tions [81], has been considered. The fundamental hindrance
to generality is associated with the nature of generalization of
Buclid’s division algorithm [2]. Certain state-space models of
2D systems have also been introduced [83], [84]. Since a
unified treatment of these and other approaches along with
results concerning existence or not of minimal realization plus
related results form the subject of another paper by Kung,
Levy, Morf, and Kailath, duplication will be avoided here. In
contrast to the recursive deterministic filter realization tech-
niques mentioned so far, some progress in filter synthesis in a
stochastic setting has also been made [85], [180]-[182] where
the design of an optimal steady-state filter that avoids phase
grror problems (which, in general, demand serious attention
in 2-D image data, unlike the 1-D case [86]) has been con-
sidered. Extensive references to existing literature in the
topics mentioned in this paragraph can be found in recent
dissertations like [87], [88]. In [87], the theory of spectral
transformation has been extended to two-dimensional filter
design using the stability preserving property of the spectral
transformation operator. Further details concerning this
approach can be found in [89] and in a paper in this issue by
Chakrabarti and Mitra.

C. Stabilization Problem, Approximation, and Miscellaneous

The tests for stability discussed solve only part of the overall
stability problem. The problems of designing filters that are
guaranteed to be stable or that of stabilisation of an unstable
filter without significant change in its frequency response are,
in practice, very important. With respect to the first problem,
the role of spectral transformation mentioned above can be
useful as it does yield some information on what types of
frequency responses one can get from classes of simple filters
whose stability property is conveniently controllable. Thus a
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stable filter design can be altered quickly to produce other
stable designs. With respect to the second question, the proof
of a conjecture by Shanks [90] had been long outstanding.
The invalidity in general of the conjecture has been demon-
strated by a neat counter example [91], and the detailed
theoretical developments based on the properties of two vari-
able orthogonal polynomials on the hypercircle that lead to
the construction of the counterexample to Shanks’ conjecture,
are contained in the paper by Genin and Kamp in this issue of
PROCEEDINGS. Recently, after observing that the counterex-
ample of Genin and Kamp involves a polynomial of third
degree in two variables which allows an inverse polynomial of
lower degree in each variable (linear in the case under discus-
sion) violating the stability conditions, Jury conjectured that
the double planar least square inverse polynomial of the same
degree as the original unstable polynomial is stable. Even if
this conjecture is true, the proof is expected to be difficult
[92]. Jury et al. explore a class of polynomials in a paper (this
issue of PROCEEDINGS) that satisfy Shank’s conjecture, and re-
search directed towards determining precisely the scope for
broadening this class is of interest. In the realization of a goal
to obtain stable, 1-D recursive filters, factorization of poly-
nomials into their causal and anticausal components is neces-
sary. This is done after a prescribed magnitude characteristic
is approximated by a ratio of two cosine polynomials. In [68]
a theory of 2-D spectral factorization is presented with the ob-
jective of designing half-plane recursive filters conveniently. In
the 2-D case, though spectral factorization retains analyticity
properties, the factors may not be of finite order as in the 1-D
case. Therefore, imposition of a finite order constraint on the
spectral factors becomes necessary in a practical design algo-
rithm. Ahmadi and King consider the problem of generaliza-
tion of some of the ideas in [68] to n-dimensional recursive
filters, in a paper appearing in this issue of PROCEEDINGS. It
becomes evident from the above discussion that useful progress
has been made towards the resolution of the important prob-
lems related to overall filter stability considerations of multi-
dimensional recursive filters since 1972 [93, p. 163].
Considerable work has also been done in the design of 2-D
nonrecursive filters which have the advantage of linear phase,
are less sensitive to quantization errors, and do not suffer
from stability problems. A large volume of result on the
design and implementation of such filters is available and the
reader is referred to some recent publications which present
new results and refer to previous contributions on the subject
as well [87], [94]1-[96]. In addition to implementation via
direct convolution or transform techniques like FFT and
number theoretic transforms, an interesting approach involving
the use of residue arithmetic and computations in finite fields
with subsequent advantages of parallel processing has been
used in the implementation of 1-D nonrecursive filters [97].
Research into the possibility of extension of this type of result
in the design of| multidimensional filters might be helpful.
Space limitations'do not permit detailed survey of the various
results, especially those which have already been adequately
exposed in numerous articles including thesis and dissertations.
In a nutshell, it has been seen that in spite of the difficulties
encountered in higher dimensional filtering due to the absence
of the fundamental factorization theorem of algebra (n > 1
case in Assertion 2.1) and the Haar condition (Section II-B)
considerable progress has been made, especially in two-
dimensional recursive as well as nonrecursive filtering. For
additional detailed reference, the readers are alerted to some
of the pertinent dissertations in this area, which often contain
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valuable information not available in papers publishing con-
siderably condensed versions [98]-[103].

This section will be terminated after additional discussion
pertaining especially to the problem of multidimensional
approximation, which actually is a prelude to design and
synthesis. The design of a multidimensional digital or analog
filter from a prescribed magnitude response specification
reduces to the construction of a rational function in several
complex variables whose magnitude function approximates
within suitable error specifications the prescribed magnitude
characteristic. In the case of a nonrecursive digital filter, the
rational function is a polynomial. The theory of interpolation
is well established [105], and this theory even with several
variables is years old [106]. In the case of two variables, for
example, let F(x,, x,) be the function required whose values
are defined at the points x =a;, y =b;,i=0,1,2,---,j=0,
1,2, -. A polynomial P(x,, x,) such that

Pla;, bj) = Fay, bj) (4.7)

and its degree is not greater than m and n, respectively, can be
represented in the form

m n m m
P(xy,x7)= Z Z Ck,, k, n (x1 - a) n (x2 - bj).
k=0 k,=0 i=0 j=0
i+k, j¥Fk,
(4.8)

The coefficients Ck,, k, in (4.8) can be successively found.
The most remarkable property of the coefficients is that those
need not be reestimated even if the number of points at which
the value of the function is given is increased. This type of
basic 2-D Lagrange interpolation formula and its ramifications
have been used in the approximation (in a Chebyshev or
equiripple sense over closed compact sets) of frequency sam-
pling and optimal nonrecursive filters [107] as well as in real-
ization [87], [108]. An authoritative account of the role of
Chebyshev approximation in the design of 1-D or 2-D nonre-
cursive digital filters, the possibility and problems in extending
1-D theory to the 2-D case, and open questions in multidimen-
sional approximation can be found [112]. Inanother instance,
similar to that in the 1-D case, an optimization algorithm to
minimize the Ip-error criterion subject to stability constraints
has been proposed for the approximation and design of 2-D
recursive filters [109]. However it has been shown in [110],
that examples can be found in two dimensions for which the
algorithm in [109] will attempt to converge to an unstable
solution—the source of the problem in the counterexample
being the presence of nonessential singularities of the second
kind (see Section II) on the boundary of the unit bidisc in
the z,, z, planes. Another technique has been presented for
designing stable 2-D recursive filters whose magnitude response
is approximately circularly symmetric [111]. The problems
that occur here and in [80] due to nonessential singularities of
the second kind on the distinguished boundary (defined by
|z1]1=|z,|= 1, which in this paper has been also referred to as
boundary, without scopes for confusion because of context) in
the 2-D rotated filter has been considered in [142]. Though
the problems of stability, design and synthesis, and approxima-
tion problems have been discussed with attention to the role
of nonessential singularities of the second kind, recent results
on topics like error analysis of multidimensional digital filters
[169], [170] are not considered to limit the size of the paper.
Also, the emphasis has been on multidimensional digital filter-
ing though there is considerable overlap in the areas of digital
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filtering and image processing. Image enhancement, for
example, is directly related to digital filtering, especially when
the classical procedures of Wiener filtering and regression
techniques are applied. The special issue [171], provides
considerable information about research in the area till 1975,
along with a listing in its editorial of other previous special
issues on the subject.

The two separate disciplines of digital image processing and
numerical analysis often merge when one models imaging
techniques in linear or matrix formalism. The problem of
computer storage in digital form of a 2-D array of numbers
characterizing individual brightness values taken from an
original photograph, is inherent in the representation and
restoration schemes of images in digital image processing.
However, a sampled and quantized image is merely a matrix of
nonnegative numbers, which is open to manipulations by a
large class of linear or nonlinear operations on a digital com-
puter. The efficient implementation of these operations is
almost a subject by itself and the readers are referred to [172,
pp. 51-54] for more information and additional references on
this subject, in the context of multidimensional problems.

V. OTHER AREAS OF MULTIDIMENSIONAL
SYSTEM THEORY

This section presents other areas of research, besides those
covered in the preceding sections, that fall within the scope of
multidimensional system theory from the standpoint of this
issue. In order to keep the size of the paper within reasonable
bounds, only brief comments on recent progress in the areas
are made and the readers are referred to the original sources
for specific technical details.

A. Multidimensional Polynomial Positivity, Nonnegativity,
and Solution Regions

The concepts of positivity and positive definiteness in rela-
tion to the theory of generalized functions has been the sub-
ject of intensive research by mathematicians and an excellent
account of this topic can be found in [143, ch. 2]. The dis-
cussions of positive definite generalized functions and condi-
tionally positive generalized functions of one and several
variables are useful in the theory of random processes and
random fields. The basic concepts there of positivity [143,
p. 142], positive definiteness [143, p. 151], and multiplicative
positivity [143, p. 230] pertain to the theory of topological
algebras with involutions [143, p. 229]. One example of a
topological algebra with involution is the algebra of polyno-
mials of several variables discussed in Section II. The study of
positivity of these multivariable polynomials is our major
concern here. In the algebra of polynomials of two or more
variables, some multiplicatively positive linear functionals
are not positive, unlike in the algebra of polynomials of a
single variable. This fact follows from Hilbert’s example of a
positive two variable polynomial (not form) with real coeffi-
cients which cannot be expressed as a sum of squares of two
variable polynomials with real coefficients (the independent
variables are also real in the polynomials). The relevance of
the sum of squares representation problem in network synthe-
sis has been discussed in [28]. Interestingly enough, Hilbert’s
two variable polynomial ‘example is also connected with the
moment problem for functions of two variables. Unlike in the
case of one variable, the weaker requirement of multiplicative
positivity of the linear functional Fin the space of polynomials
in two real variables is not sufficient for the moment problem
to be solvable [143, pp. 235-236]. However, the requirement
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of positivity is both necessary and sufficient for the moment
problem in two variables to be solvable.

A large number of problems in system theory are essentially
reducible to determination of global or nonglobal (including
local and semilocal) positivity (nonegativity) of a polynomial
in several real variables. Some of these problems are global
symptotic stability investigation by the direct method of
Lyapunov, determination of the existence or not of limit
tycles using the Poincare-Bendixon theorem, determination
of positive realness in multiport network analysis and synthesis,
constrained as well as unconstrained optimization, the classifi-
cation of singularities of nonlinear systems, and stability prob-
lems associated with recursive digital filters used in areas like
image processing and seismic or geophysical data exploration.
In view of such a broad scope for applications, it seems ap-
propriate to develop algorithms which are suitable for imple-
mentation with storage, time, and cost constraints. Very
recently, a general procedure [117] to test a multivariable
polynomial for global positivity has been given. The n-variable
polynomial global nonnegativity test has also been formulated
in terms of a class of (n + 1) - variable global positivity test
[144]. Also, a procedure to test a two variable polynomial for
local positivity test has been given [75] and nonglobal multi-
variable polynomial positivity test considerations have been
included in [145], [146]. The polynomial global positivity
test algorithm has been programmed and its complete listing
c@n be found in [54]. The Ppaper in this issue of PROCEEDINGS
by Modarressi and Bose takes steps towards the getting of
exact solution regions in the real number field when a given
polynomial in several real variables is found to be not sign
&finite. The restriction of solutions to a real field results
in the possible presence of isolated points along with con-
tinuous algebraic curves (closed or open) in the solution space.
Itis mentioned that scopes for implementing the multivariable
polynomial global positivity test using other procedures—in
paticular via use of Routh type of array—has been investi-
gited. However, the computational shortcomings of such
ipproaches appear to be more than the method used in [117].
The use of a Routh type of array in the extraction of the
geatest common factor from two multivariable polynomials
dso appears to lead to worse computational problems than the
method suggested in [113].

In many applications requiring positivity test on a polyno-
mial V(xy, x5, , x,) in n real variables, the magnitude of n
i rather high. For cxample, consider the important problem
of determining the portion x; of power which is to be supplied
by cach of the generators Gii=1,2,"- . nina generating
system to a fixed load 4. The generators have costs C; which
a functions of the power output x;, i.e.,

Ci=Pi(xlax2)”'sxn) (51)
where P; (xy, x5, - » Xp) is usually a polynomial of low
degree in the variables Xj, i=1,2, -+ n. The transmission

line looses L; of each of the gencrators are also usually given
by

L,-=Q,-(xl,x2,---,xn) (5.2)

Where the Q;’s are also polynomials, usually of degree not
geater than 2 in each of the variables x3,i=1,2,-*-, n. The
problem reduces to minimizing the cost function

n n
F(xl,xh'.'yxn):Z Cl':ZPi(xl;xz,""xn) (5'3)
i=1 j

i=1
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subject to constraint
n
C@nXaxp)= Y (+0)-h=0. (54)
x=1

The Lagrangian multiplier A= =g introduced in the

new function
Fi(ey, x5, - sXn;Xp+1)=F +x,,, G

and a real solution provided one exists, to the system of equa-
tions in (5.5) is sought.
6 F,
T ST 25 it T
) X
This is equivalent to determining a real solution, provided
one exists, of the multinomial in (5.6)

ntl1 (§F Xy X7, wie i 2
V(XI’x2"",xn+l)=Z { e 52 "H)} =0:
i=1 Xi

(5.5)

(5.6)

The question of existence of a real solution can be settled by
investigating into whether or not V(x1,X2," " ", Xp41) OF its
negative is globally positive. In case Vi(xy, %0, 0 » Xn iir) s
found to be not sign definite, the question of constructing a
real solution arises. It may be noted that physical problems of
the type just considered involve in the mathematical formula-
tion a multinomial having quite a few variables each of rela-
tively low degree m;, where m; is the degree in x;. In problems
of different physical origin like those encountered in stability
studies of bidimensional recursive filters in image processing
or in realizability theory of networks composed of commen-
surate transmission lines and lumped reactances, the number
of variables 7 is usually smalil while the magnitude of m; in
the polynomials associated in the characterizations can run
quite high.

B. Nonlinear System Characterization via Volterra Series

The application of multidimensional transform methods
in the analysis of continuous nonlinear systems represented
by Volterra functional series is several years old [147], [148].
Analysis with multidimensional z-transforms of nonlinear
sampled-data systems, for which the continuous representation
is a Volterra functional series or in which the Volterra kernels
take a form which is easily transformable is also several years
old [149], [150]. Multidimensional power series expansions
of multidimensional transforms expressed as rational functions
of several complex variables have been used in the identifica-
tion and synthesis of classes of nonlinear systems [151, pp.
311-313]. References to a number of previous papers on the
use of Volterra series in the development of distortion analysis
techniques for electronic amplifiers, analytical modelling,
identification, and synthesis of classes of nonlinear systems
can be found in [152]. The polynomial separability results
presented in [64] are applicable to the synthesis algorithm
suggested in [152]. The identification problem for a class of
nonlinear systems composed of certain interconnections of
stable linear systems and integer power nonlinearities have
been recently considered [153], [155]. A realization algo-
rithm has been provided for a class of nonlinear systems com-
posed of linear dynamic systems connected in parallel with
outputs multiplied in the time domain, using the state variable

@resentations for internal behaviour in conjunction with the
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Volterra multidimensional transfer function representation of
the input-output property [154]. It may be noted that the
algorithm proposed does not in general lead to a minimal
realization and that though the class of nonlinear systems,
assumed to be stable, are completely identifiable from steady
state measurement of responses to two-tone or two-frequency
inputs, a more satisfactory upper bound on the number of
such two-tone inputs required should be obtainable.

C. Stiff Differential Systems

In order to exploit the stiff property satisfied by the dif-
ferential equations characterizing most practical circuit and
system problems, scientists have given considerable emphasis
to the study of stiff differential systems over the past several
years [156]. In a program designed to solve a set of ordinary
differential equations with prescribed initial conditions on a
digital computer, the computation time, which is directly
proportional to the number of integration steps, is consider-
ably reduced if the integration formula implemented enjoys a
particular kind of numerical stability, termed A-stability
[157], a condition which is well suited to match the stiff
property of certain differential equations. A comprehensive
discussion of A-stability and multistep methods can be found
in the article by Bickart and Rubin contained in [156]. Also
the article [158] is of interest in this context. A new
approach to the synthesis of stiffly stable linear multistep
formulas, based on the concepts of positive real functions and
maximally flat approximations at infinity was presented by
Genin in an important paper [159]. In [159], a canonical
fraction, which is single variable real rational function, was
associated with each linear multistep formula and a necessary
and sufficient condition for A-stability of this formula was
expressed in terms of positive realness of the, associated
canonical fraction. Furthermore, the canonical fraction of an
optimal linear multistep formula was claimed to be a maxi-
mally flat approximation at infinity of a logarithmic function.
A significant feature of the approach just mentioned is that
the canonical fraction permits a complete decoupling of the
problem of accuracy from the problem of stability with subse-
quent simplification of both problems. In a more recent
report [160] Genin extended the canonical fraction concept
to that of a polynomial in two complex variables called a
canonical polynomial, which can be associated with linear any
multistep integration formula containing derivatives of any
order [161]. In particular an algebraic criterion for A-stability
is arrived at for a linear multistep-multiderivative formula in
terms of the properties of a canonical polynomial Q(p,, p3),
summarized in (5.1) below

(5.1a)
(5.2a)

0(1,p2)#0 Rep; 20 Rep, >0
0@;,p2)#0 Rep; >0 Rep, =>0.

A polynomial in two complex variables satisfying the condi-
tions in (5.1) is called a Hurwitz polynomial in a narrow sense
and a procedure to test whether or not a polynomial belongs
to this class is considered in [162]. Other equivalent formula-
tions in terms of positivity of algebraic functions are con-
sidered in [160]. It is worthwhile to investigate into alternate
tests possibly simpler from computational standpoint, for the
verification of the conditions in (5.1). It may be possible to
formulate alternate tests along lines resembling the tests in
[14] or [21] which were given for verification of a slightly
different condition for Q(p;, p,) viz. Q(P1, pP2)#0, in
Rep; =0, Rep, =0.
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D. Miscellaneous Areas

In this subsection brief references will be made to other
areas, where applications of the ideasin this paper have recently
been made. In [163], the application of decision methods,
described in Section II and in [15] have been made to mini
mal-order observer design. In [164], two equivalent sets of
necessary and sufficient conditions for the existence of an
asymptotically stable partial realization (in the determination
of minimal stable realization from partially specified Markov
parameters) are presented, and the conditions are in a form
where methods of elementary decision algebra become applic-
able. In both the above papers, it appears that adequate atten-
tion has not been given to the computational problems, when
those appear to be intractable. Attention to computational
algorithms employing the methods of elementary decision
algebra has been given in [54], [117], and [165]-[167]. As
opposed to the exact computational algorithms developed in
[54] and [117], many allied problems in system theory can
be translated into multidimensional optimization problems
where use of the numerous optimization procedures including
those based on the gradient of a function or direct random
search and search region contraction become applicable,
Though computational problems often tend to become un-
manageable some work on the solution of the output feedback
stabilization and related problems via stochastic optimization
has been reported [176].

In addition to the papers [42], [43] cited in Section III, the
scope for use of rational functions in complex as well as in real
variables occur in the symbolic analysis problems of analog
and digital circuits [177], [179], as well as in stability prob-
lems of active linear systems [178].

The need for a 2-D rational approximation of a signal
spectrum subject to stability constraints of the 2-D recursive
filter occur in Markov random field image modeling problems
[180, p. 597]. A discussion of difficulties as well as pos
sibilities of extending 1-D linear filtering results to the cor
responding problem for multidimensional fields can be found
in [181], where the need of the two-parameter martingale
calculus [182] with its associated structural richness has been
mentioned.

VI. CoNCLUSIONS AND FUTURE RECOMMENDATIONS

This paper presents aspects of a broad class of multidimen-
sional system theory problems which are characterizable by
rational functions or matrices in several complex (including
the special case of real) variables. To keep this paper within
reasonable size, some areas have received more emphasis in
the paper than others. In spite of a reasonably large list of
references, no attempt has been made here to compile a dic
tionary of all or most publications in the subject. On the
contrary, only those items which have been directly discussed
in the paper are referenced, and previous survey papers, books,
dissertations, or reports which contain bibliographic materials
relevant to the present context, are merely identified. Itis
evident that the subject of multidimensional system theory
provides an arena for application of some of the difficult but b
fascinating branches of mathematics including function theory
of several complex or real variables, decidability theory,
algebraic geometry, theory of approximations, and abstract
algebra.

Almost throughout the paper the effect of nonessentid
singularities, especially of the second kind whenever they
exist, is brought out. Unlike in the single variable case, whert
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fransfer function has isolated poles which can be extracted
ia partial fraction expansion, the nonessential singularities
[ a rational function in n-variables as in (2.1) have as their
ocus whole (2n-2)-dimensional analytic manifold (or mani-
olds) or whole (2n-4)-dimensional analytic manifold (or
nifolds), depending upon whether the nonessential singu-
rities are of the first or second kinds. Even though the
umber of such monogenic analytic configurations which
ourse the neighborhood of a given zero of Q(py, p2,. ..,
) is finite, extraction in general presents a problem. Other
operties discussed in Section II-A include the fact that
malytic functions of several complex variables are far less
pable of adapting themselves to a preassigned region of
gfinition than is the case with the functions of a single
riable. In Section II-B the important fact that functions in
veral variables fail to satisfy, in general, the Haar condition is
ought out. This is almost as bad a fundamental curse as that
| the factorization problem for n > 1, in Assertion 2.1. In
ite of these fundamental drawbacks, the strides that have
n taken (or are yet to be taken) are referred to in the
joper context in the preceding sections. One of the implica-
ons of the decidability theories, alluded to in Section II-C,
several difficult problems can be solved in a finite number
isteps via rational operations has opened up unlimited scope
research into the search for more efficient algorithms.

n particular, the first steps [117] that have been very
cently taken towards the simultaneous construction and
plementation of a multivariable polynomial global positivity
it algorithm, though very encouraging, suffer from the
iessity of prohibitive computer storage requirements which
its its applications to polynomials of not too high degree
d containing not too many variables. On the other hand, a
g¢ number of engineering problems like those associated
th generator power-sharing in a complex power grid or in
eentralized control of large scale systems, have different
juirements—the polynomials in the relevant mathematical
mulation or characterization having usually a large number
ariables and being, in general, of relatively low degree. It
pears that research towards the desired goal via the use of
jerful modular methods [9], [173]-[175], is worthy of
estigation. It is suggested, as a first step, that the imple-
ntation of the multivariable polynomial global positivity
algorithm in [117], modulo irreducible polynomials, and
ibility of exact evaluation of determinants of multivariable
multidimensional polynomial matrices (with elements
ch are multivariable polynomials having integer coefficients)
dulo irred}cible polynomials be investigated, to speed up
tlation and possibly reduce storage. Each of the elements
he matrix should be represented modulo a set of irreduc-
gpolynomials using the multidimensional version of Euclid’s
rithm [2], and thus several matrices, each represented
dulo an irreducible polynomial, will be obtained. The
erminants of each of these matrices can then be evaluated
ultaneously using parallel processing and the actual deter-
ant of the original matrix may be recovered using an
rithm analogous to the Chinese remainder algorithm.
ally, it is expected that in this way the resultant as well as
subresultants of the inner matrix required in [117] can be
ined from the representations of the matrix modulo a
able set of irreducible polynomials, without any extra
it except repeated application of interpolation and
fese remainder theorem. Computations to calculate the
est common divisor of two bivariate polynomials modulo
ducible single variable polynomials, for example, have been

Rep=0
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done [173, p. 394]. The method suggested here is expected
to have similar advantages to methods for determinant compu-
tation modulo prime numbers in a finite field. As a second
step, it may be possible to develop a new global positivity
test after representing the given polynomial modulo a suitable
set of irreducible polynomials. Preliminary investigation has
revealed that formulation of such a direct test using modular
methods appears to be feasible, though the computational
advantages need to be established. The test appears likely to
be conceptually elegant and the computational advantages, it
seems, can be exposed by suitable choice of the irreducible
polynomials as modulii. Needless to say, such a choice is
nonunique as in the case of ordinary prime numbers, and
guidelines to obtain an ideal set should be established. Again,
the initial stage of representation modulo irreducible polyno-
mials can be implemented via use of the multidimensional
version of Euclid’s algorithm.

NOMENCLATURE

R Real number field.

C Complex number field.
R™ Cartesian product of n copies of R.
C" Cartesian product of n copies of C.
(n X 1) column vector of variables (p;, p2, " * , Pn).
Absolute value of F(p).
Rep; =Rep, =---=Rep, =0.
[L(p)]* Transpose of matrix L(p).

Ax(p) [A(-p)]®.

lzl=1 |z3l=lz3l="""=lz,] = 1.

p* Complex-conjugate of p.

p
|F(@)I

Re Z(p) Z(p) + [Z*(p)]®.
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