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Abstract— This paper introduces a model for the dynamics of variable. Hence these processes fit under i) and ii) above
a sorption process from the industrial water supply and sewge  as appropriate. Systems theory for these processes is well
treatment industries that is a continuous version .of the Rosser developed [2], [10], [11] and they do have applications area
state-space model fo2D discrete systems. Conditions for unique h as iterative | . trol wh i
solvability and the representation formula are then develped ~SUCN as It€rative learning control where recently controdd

together with the solution of an optimization problem using have been experimentally validated on a gantry robot [12].

boundary control. The solution of this optimization problem The subject area of this paper i® Zystems from iii)
by state feedback is also developed. above, where previous work, such as [13], [14], has focused
| INTRODUCTION on special cases with the work in [14] having a gas pipeline

application. A model for a sorption process, which arises
Many physical processes must be modeled using reprgr waste water and sewage treatment, in the form of a
sentations withn > 1 indeterminates. Applications of both 2p continuous Roesser model, also known in some of the
practical and/or theoretical interest, such as [1], [2H 8] =  mathematical literature as Goursat-type equations isngive
[6], arise, as a representative sample, across the gemeaal a conditions for its unique solvability and a representation
of circuits, image processing, signal processing and obntr formula for the solution are then developed. The control
Also, considering the @ case as a representable examplesf this model can only be by boundary action and the
the propagation of the dynamics in the two independemaper formulates and develops a solution to a quadratic
directions can be a function of i) two discrete variablgsaii optimization problem in the form of state feedback.
continuous variable in one direction and discrete in thegth
or iii) two continuous variables. I[I. BACKGROUND AND PROBLEM FORMULATION
Multidimensional, writtemD for short, systems cannot, in . . .
. ; . The term sorption refers to the action of absorption or
general, be analyzed by direct extension of techniques from

the theory of systems in one indeterminate, also knowrDas 1adsorptlon, where the former is of interest in this paper and

) : is the incorporation of a substance in one state into another
systems. For example, if a transfer-function represenmtati :
. ) . of a different state. Networks and tandems of connected
can be used then coprimeness is a very important analysis .. . :
. . Orption devices are widely used for waste-water treatment
tool but in thenD case there is more than one form of;

primeness. Also there aneD systems theoretic propertiesIn industrial water supply and sewerage. In this paper, the
that have ﬁo D systems counterparts starting point is the mathematical model of a single somtio

: rocess under the assumption of non-equilibrium sorption
In case of examples under i) above, there has been a v

. .d%amics and linear isotherm [15]. This model can be written
large volume of work has been reported based, in the main .

- L as$ a D continuous systems model of the form
on the Roesser [7] and Fornasini Marchesini [8] state-spacée

models. Repetitive processes [2] are a classfsgstems as(x,t)

where information propagation in one of the two directions ot = PxO-sxt), 0<t<t,

only occurs over a finite duration, where this is an intrinsic ap(x.t)

property of the dynamics and not an assumption introduced X = sxt)—pxt), 0<x<ly, @)

_to simplify analysis. The _equat_lon updating the dynamlc\%herell andt; are the length and operation period of the
in one of the two directions is governed by a discrete . ) . .
) . . ) ; considered device, respectively(x,t) denotes the density
variable but in the other by either a continuous or discrete . .
of absorbed substance, that is, the concentration of the
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This paper considers the problem of finding the contrchnd

function u(x) that minimizes the cost function ap(x.t
S(ct) = pxt) + 2R

Jx
Iy Ity IIl. SOLVABILITY AND REPRESENTATION FORMULA
Ju) = /|u(x)|2dx+//|p(x,t)|2dxdt For the optimization problem defined by (1)—(3), &)
0 00 denote the space of continuous functions defined on some set

5 K, AC(K) the space of absolutely continuous functions on

]dxdt, @ K L2(K) the space of measurable and square integratible
functions onK, and C}(M), M := L x T, the space of
differentiable functiond (x,t) defined on some open domain

where Gij(x,t) > 0,i = 0,1,2, and R¢(x) > 0, k= 0,1, are Q > with continuous partial derivative%; and ‘;—tf.

given square integrable functions. The aim is to minimize Lemma 1: The system model described by (1) and (2) has

the concentration of the polluting substance in the outpwan unique absolutely continuous solutiptx,t), s(x,t) for

flow, sorbent consumption, and the rates of change of theaey initial function¢(-) € C[0,t;] and control inputu(-) €

ap(xt)
ot

- et

00

variables. L2[0,14].
s(x,t)-concentration Proof: It is routine to verify by differentiation that if
the polluting substance the absolutely continuous functiqu{x,t) is a solution of the
. in #sorbent following integral equation

v

X t
p(xt) =e "t [ [ e *1p(& n)dEdn+
/]
X (6)
e X+ / u(z)dz+ e Y(t),

0

then p(x,t) and

p(x,t)-conceptrafi
of the polluting
substance in flow

t
sx) = [ €tp(x n)dn + & u(x) ™
0

satisfy (1) and (2). Also it can be shown that the operator
given by

X t
(TH0t) = [ [ (& m)dedn+
0 ox )
e X+ / u(z)dz+ e Y(t),
0

is contractive [16] in the corresponding Sobolev space
WZ(M) for any given functionsy(-) € C[O,t4] and u(-) €
[0,14].

The fixed-point theorem provides the solution of the
ﬁlitegral equation (6), the correspondis,t) can be found

sorbents(x,0)

Fig. 1. Schematic diagram of the sorption process.

2
Remark 1: In (1) unit coefficients for variables is assumedL
for ease of notation, as have unit weighting terms in the co

function (3). _ . _ ) . from integral expression (7), and the proof is completm.
Suppose that the functiop(x,t) is (ggn.tmuou.sly twice dif- 14 gptain the representation formula fpfx,t) introduce
ferentiable and the first derlvatl\féﬁ is continuous. Then the following parametric integral equation

the model described by (1) and (2) can be rewritten as the

following partial differential equation ;

t
p(x,t):ue*(x“)//e””p(n,f)dndf
dzp(x,t)+dp(x,t)+0p(x,t> 00

oxot ox o O @ )
X
with mixed boundary conditions e () / u(z)dz+eY(t), te [0,t], xe[0,14],
p(oat) = w(t)a OSt Stla 0
dp(x,0) with respect to the unknown functiop(x,t), where u is

p(x,0) + ax = uXx, 0<x<l ()  some scalar parameter. This equation is of the \olterra



type whose right-hand side is a contractive operator for arlyy (7). The following theorem is a formal statement of these

given functionsy(-) € C[0,t;] andu(-) € L?[0,1;]. Hence, the facts.

existence of an unique solution of (9) again follows from the Theorem 1: For the given admissible control functioix)

fixed-point theorem [16]. the system described by (1) and (2) has a unique solution
The solution of the integral equation (9) can also be writtep(x,t),s(x,t)) given by

as a power series in the parametens
X

x,t) = i)pn(x,t)u”, (10) p(x,t) = efxil’(t)Jre*(XH)/er(Z)dZ
n= 0
where Xt
x +e<x+t>[ | [etRxt.&np(n)dgdn
Po(X,t) = efxw(t)+e*<x+t)/ezu(z)dz, 00
0 (18)

X X t
@@ [ [e @ MRt E n)dEd d],
—i—b/ uz['z/o/e Xt n r]}z

X t
X+t
Pn(X,t) O/O/Kn t,&,n)po(&,n)dédn, (1)

n=12...

t
—t —t

and the kernel&n(x,t,&,n) are defined by the following set) _/en pxn)dn +& ().
recursion formula 0

Xt where the functiorR(x,t,&,n) satisfies (15) and (17) with

Kns1(Xt En:/ Kn(z,1,&,n)dzdr, u=1.
&n (12)
IV. OPTIMALITY CONDITIONS

_ _ St
n=0,12,..., Ki(xt,&,n)=e"". In this section the representation formula of (18) and
Moreover, the solution of the integral equations in (12) cathe operator setting are used to develop a solution of the
be written in the form optimization problem (1)—(3) in the form of the next theorem
Knoa(x &) = e Ot (x=&)"(t—n)" Theorem 2: For any initial functiong(-) € C[0,t;] the

%561 n! n! optimization problem (1)—(3) has an unique optimal solutio
0 < x&<l;, 0<tn<ti.  (13) () eL?[0,l4].
Proof: Introduce the inner product

Since the functiong,(x,t) are bounded on the domalih
the power series (10) is absolutely and uniformly convetrgen
for each finite parameter valug. Also, under the given
assumptions, for any finite parametgrand fort > 1 the
following power series

lh
(uv), = /u(x)v(x)dx, Y u,ve L?[0,1q], (19)
0
on the spacé.?[0,11]), and define the inner product on the
t,&.nH) = ZOKH (14) spaceAC(MN) as
is absolutely and uniformly convergent to the resolvent ty lg

functionR(x, &,t, T, u). It is easy to check that this function (o), 2 //¢(x ) Wx t)dxdt+
satisfies the both integral equation L ’ ’

00
.t (20)
R(x,&.t,n,pu) =& +u/ / R(zt1,§,n)dzdt,  (15) // a¢ X,t) aw X t) a¢(x,t) AW(x,t) dxlt
&n ot ot '
and the integro-differential equation
t Also introduce the operato# : L?[0,11] — AC(I)
aR(Xatvanau) _
T =H R(Xarvanau)dra (16) X
n (Lu)(x,t) = e*(X“)/eZu(z)dz
with initial conditions
R(thaxvnau):e?(+nv R(X,t,f,t,u):eé+t. (17) X (21)

X t
Settingt =1 in these last two formulas yields the solution / / /e EHR(x,t, &, n)dfdn}
p(x,t) of (1) and (2), and the correspondisg,t) is given 20



and the operato : C[0,t;] — AC(IN) problem (1)—(3) can be written as

f
(Z)xt) = (t)x t O ezl/ LS dt+//< i)

i 0
+) / / e *R(t,&,n)Y(n)dédn. Ip°(x.t) 9p°(x.t)
00

()
22) +(t—e ) ax ot +

+ (x—z—e )

X t
Then the solutiorp € AC(MN) of the first equation of (1) with / /e (E+n) COROGEE, ) + ap°(x,t) IR(x,t,€,n)
the initial conditions (2) can be rewritten in operator formZ ) Y ox X

as

dpo(x t) OR(x,t,&,n)
dédn |dxdt
p=Lu+ 7o, (23) ot ot ) ¢ n) ” ]

whereR(x,t,&,n) satisfies (15) and (17), witly = 1 and

and hence the cost function (3) can be written as p°(x,t) is solution of (1) and (2) at optimality.

Proof: From (25)
3w = (p.p), +(wu) o (2 o_
u +ﬁ¢)+£u -0, (26)
:(($u+35¢),(.$u+§¢))1+ (u’u)z and using (23) it follows thap® € AC(I) satisfies
(24) =2+ .7¢.
:(u,($*$+o@)u)2+2(u, (3*9)45)2 Also (26) can be rewritten as
2+ su0 =0,
+ (‘l”y*”@q’)z’ and hence
Up = —2*p°. (27)

where & denotes the identity operator Itf[0,14] and.Z* :
AC(M) — L2?[0,1;] denotes the adjoint operator of the opera- The adjoint operatol?* of £ of (21) satisfies, withu €
tor .2 with respect to the scalar products defined above. L,[0,1;], ¢ AC(M) and the scalar product of (19),
Since the operataZ*.Z + & is invertible, the following _eo*

control function in operator form can be introduced (9,21 = (£7¢,U)2. (28)
In particular
(L L+ &)L T, (25) It
¢, Zu // o (x,t), (Lu)(x,1) |dxdt+

and in order to prove thai® is an optimal solution of the ( ! 50 ( (D), (£ ))
problem it is sufficient to check the inequalibyu) — J(u®) >
0 for all admissibleu € L2[0,1;]. LetT = (Z*.Z +&). Then

Ity
/ / 2004 | 990 HLVKY
3(u) = IW) = (M (u—0), (u—u)y, I ot ot ’
and, sincd” = Z* £+ & > 0, where
X
I(u)— I(°) = (2u)(x 1) = e 5V / u(z)dz
(6 +2°2)u-10), (u-u")2 >0, 0
X X t
for any admissibleu, u# w. This last fact means that the ' [ (&)
function u® given by (25) is the unique optimal control and /ezu(z) U '/e R(x,t,é,n)dédn}dz
p° = 2w+ .7 ¢ is the corresponding optimal state for the 0 z 0
problem (1)—(3), and the proof is complete. m and it is routine to verify that
The solution of the linear quadratic optimal control prob- d(Lu)(x.1) X
lem for 1D linear systems can be written as state feedback. ————~""2 = e ‘u(x) + () /ezu
The next theorem shows that the solution of the optimization 0
problem considered in this paper can also be written as state  x x t
feedback. + [euz <//e (&+n) dR(x )dEdn>
Theorem 3: The optimal controli®(z), 0< z< |y, for the 0 X 0



Calculating the required derlvatlve—

9(Zu)(xt)

in the

[12] L. Hladowski, K. Galkowski, Z. Cai, E. Rogers, C. T. Fnean, and

P. L. Lewin, Experimentally supported 2D systems basedtiter

same manner as above, substituting in the last formula, and  eaming control law design for error convergence and perémce,

interchanging the order of integration gives* :

AC(M) —

L2[0,14] as

(2°9)(2) = & 7’“’"’“dt+// X4 6 (x.1)

0

+ (t e (x+t) )d¢(x t) + (X— 7 ef(Xth)) a¢(X,t)

_|_

Substitution in (27) gives the required formula and the proo

N\.X

29 (x,t) IR(xt,&,n)

Jx ot

d¢(xt) IR(X,t,&,n)
ox ox

t
/e*(“”) PCOR(XEEN) +
0

d&dn | dxdt.

ot ot

is complete. [ ]

In this paper the sorption process has been modeled as a
2D system described by the continuous variable form of the
Roesser model. Moreover, an optimal control problem has
been formulated and solved. Further research should aim to
extend to more complicated sorption networks, which are

V. CONCLUSIONS AND FURTHER WORK

much more relevant for applications.
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