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Motivation of the work

Practical applications exist where distributed boundary control is required.

Example: Gas networks
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The gas problem has a repetitive (“periodic”) behaviour:
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A gas pipeline
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Gas dynamics: Hyperbolic PDE

9q(t, x) __Sap(t,X) _ )‘_Czqz(tax)

ot ox 2dS p(t,X) ’ (1)
op(t,x)  c*9q(t,x)

at S oax

where

is space

is time

is pressure

is mass flow

is the cross-sectional area

is the pipe diameter

is the isothermal speed of sound
is a friction factor.

>0 QN T + X

See (J. Nieptocha, 1988) and (A. Osiadacz, 1987).
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Gas dynamics: Hyperbolic PDE

aq(t,x) __Sap(t,x) e ¢ (t,x) - eé ’

ot Ox 2dS p(t,x ’a
op(t,x) _ A aq(t x) \ )6 @
ot S 6\0
where

. . co®
is spa
is tlmeli\\\
is pressure

is mass flow

is the cross-sectional area

is the pipe diameter

is the isothermal speed of sound
is a friction factor.

>0 QN T + X

See (J. Nieptocha, 1988) and (A. Osiadacz, 1987).
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Gas dynamics: Linearisation of the hyperbolic PDE

The linearisation is done around the operational levels: (g, 5(x))

> G is constant

and
X=X0

1
» p(x) is averaged over period of operation T: p(x) = T fOT p(x, t)dt

p(x) = \/ P (x0) - 5o (x - 0)

{ 9 = G+Aq(tx) Ap and Agq are deviations from the reference values

p = B(x)+Dp(tx)

Hence: ) ) ) ,
q° (g+Aq) q q q
RS ¥ ——+2——Aq- —=Ap. 2
b B 500 TR0 2T e @
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Linear hyperbolic PDE

Substituting (2) into (1), we obtain:

O0q(t,x) _ OAp(t,x)  0p(x) AP (G g
ot T 2T ax . Tax 245 \Bo a0 RaEX)
A2 52
L 3
545 5(X)2Ap(t,x) (3)
0Ap(t,x) _c_ZOAq(t,x)
ot T TS ox
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Linear hyperbolic PDE

N
Substituting (2) into (1), we obtain: 6‘50(6\'\
\
08q(tx) __0Bp(tx)  0) A ( de)
Fra ax2 > ox 245 2 2B0x )Aq(t’x))
LA Ap(t x)\é o (3)

d
dAp(t,x) 28
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Discretisation of the linear hyperbolic PDE

L
l 0 L 6h [ ) T T L Ui 3 boa b2 It far IN=L
o gN-+1
— - -
Po [P1 P2 [P3 Pr—1 [Px PN 2 \' —1 PN
qi 9@ g3 G qN-2 qN-1

Assumption: constant mass flow in every segment.
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Discrete linear hyperbolic PDE

Model (3) becomes:

{ Adea(t) = a()Bau(t) + BAp(L—1) +3(O)Ap(k, &) - BApP(L+1) + F (0)
Apei1(€) = Apk(£) + pAg(£+1) - pAgu(£-1)
(4)

where f(khy,hy) := f(£) and

i Shy L )\C2 hlc_]
B = PT ) = 0}
W = ga e = 1m0,

. C2h1
p 25h,’
F) = —(Op)-B(p(+1)-p(t-1)).
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Discrete linear hyperbolic PDE

Model (3) becomes:

{ Aga(f) = a(O)Dge(l) +BApk(€-1) +y(£)Ap(k, ) = BApk(L+1) + F ()
Apea(l) = Ape(l) + pAgi(£+1) - pAgi(£-1) @
4
where f(khi,lh2) := fi(£) and
X1 = Aq N _ X1
x2 = Ap x= X2
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Wave gas model

that is

i1 (€)= Acixi(£-1) + Aoxk(£) + Arx (€ + 1) + (F(()é))

() = Cx(l)
k=0,1,...,T-1
0-0,1,...,L
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Wave gas model

that is
F(¢)
Xa1(l) = Acxi(€=1) + Aoxe(€) + A (£+1) +|
() = Cx(f)
k=0,1,...,T-1
l==N,...,N andN:=[§]
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» Boundary conditions: the most convenient regime of operation of the controllable
units (or players), i.e., gas pressure and mass flow need to be kept at some
desirable levels through time.

> Initial conditions: a starting regime of operation; two possibilities to initialise the
flow/pressure vector are:
(i) using the optimum solution found at the previous period of operation;
(i) a starting value could be found in pre-computation.

ye(0) = dcand yi(L)=gk, k=0,1,...,T-1 (5)
XO(K) ¢(Z)7 £=0,1,....,L (6)

di is the pumping regime at the inlet
gk is the contracted delivery level at the offtakes.
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Presentation outline

o Motivation: Gas dynamics in the pipeline

9 Gas Wave RP model

e Formulation of the differential game with boundary control

e Open-Loop Nash equilibrium

e Necessary and Sufficient conditions for the existence of Nash equilibrium
G Controllability and observability

e Conclusions and future work
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Wave model of len N

N p—2
Xk+1(€) IZ A,‘Xk(f + I) + Z BjUj’k(E), (7)
i=-N =t
[e+il <N
yk(Z) = CXk(f) ke K, {el

See (K.Galkowski, C.Cichy, E. Rogers, 2006), (R. Palucki et al., 2012), (T. Schewerdtfeger, K. Galkowski, A. Kummert, 2013).
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Wave model of length N

N p—2
Xk+1(€) IZ A,‘Xk(f + I) + Z BjUj’k(Z), (7)
i=-N =t
[e+il <N
yk(Z) = CXk(Z) ke K, {el
. L
L = [-N,N]nZ withN = [5] (8)
K := {klx(¢)=0,k=T+1,... and k=...,-2,-1}

KxIL is the compact support of x(€), uj «(€), yx(£)

See (K.Galkowski, C.Cichy, E. Rogers, 2006), (R. Palucki et al., 2012), (T. Schewerdtfeger, K. Galkowski, A. Kummert, 2013).
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Wave model of length N

N p—2
Xk+1(€) IZ A,‘Xk(f + I) + Z BjUj’k(Z), (7)
i=-N =1
[e+il <N
yk(Z) = CXk(f) ke K, {el
. L
= [-N,N]nZ withN= [5] (8)

L
K := {klx(¢)=0,k=T+1,... and k=...,-2,-1}
KxIL is the compact support of x(€), uj «(€), yx(£)

xk(€) e R"  state vector along pass—k Ai € R™"
ujk(£) e R control vectors along pass—k, j=1,p-2 B; ¢ R™%
yk(£) e R™  pass profile vectors along pass—k CeR™" D;j e R™

See (K.Galkowski, C.Cichy, E. Rogers, 2006), (R. Palucki et al., 2012), (T. Schewerdtfeger, K. Galkowski, A. Kummert, 2013).
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nomous wave model of length N

Xk+1(£)

yi(£)

L =
K :=
KxL
x(£) € R

ujk(£) e RY
ye(£) e R™

space

o .

L

N p—2
:Z A;Xk(£+l')+ ZBjUj,k(e),
i=-N J=1
[e+il<N
= Cx(f) keK, (feL
. L
[-N,N]nZ with N = [5]
{klxc(£) =0,k =T+1,... and k=...,-2,-1}
is the compact support of xx(£), uj «(£), yk(£)
state vector along pass—k A; € R™"
control vectors along pass—k, j=1,p-2 B;j € R™"
pass profile vectors along pass—k CeR™", D; e R™

k  indexes the pass number
¢ indexes the steps per pass
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Autonomous wave model of length N

N

Xk+1(£) =Z Aixi(€+ 1) + pZQ Bjuj «(0),
i=-N =t
[e+il<N
() = Cx(£), keK, (LelL
x0(0) o(0), L=-N,...,N  (11)
Yi(=N) di and yi(N) = g, (12)
k=01,...,T-1
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nomous wave model of length N

N p—2
Xk+1(f) =Z A,‘Xk(f + I) + Z BjuJ-,k(K), (9)
i=-N J=1
[e+il<N
yk(ﬁ) = CXk(E), ke K, Lell

(10)

XO(E) ¢(£)7 EZ_N:"'aN (11) ~
ye(=N) = di and yx(N) = gx, (12) 4
k=0,1,...,T-1

IT:=KxL

x()elP"(I) =X

;. () € £*7(T) =U; the controls are admissible
() e2™(1)

ZZ'U(I) Hilbert space of v-dim sequences defined on Z with the standard scalar product

However, in this presentation we start with the case T < oo.
Gas Nash eq. with wave dynamics
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Operational objectives

There is a quadratic cost functional associated to each player:

N-1 T-1 N-1

Ji(ur, ... up, @) = Z xT(E)Mixr(€) + Z Z X () Qixi (£)+
-TN+1 k=0 ¢="N+1
p—2T-1 N-1 (13)

+ > Ul k(O Rjiuik(0),

i=1 k=0 £=—N+1

where —* is the hermitian transpose

M;, Qe R™" Rje RV ji=1,...,p-2 k=0,...,T-1.
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Compacting the notation

X = (x(-N+1) - xk(N—l))*7
®i=(p(-N+1) -~ S(N-1))", X, dexCVD

Ui+ = (u(-N+1) = ge(N-1) etV j=1,...p

Ao Al - Ay 0 ... O 0
Ai A - ... Av ... O 0

A= A._N ‘ AN
0 An : : An-1
0 0 0 0 Ay Al Ao
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Compacting the notation

Up-1,k = di and up k := gk

Bpii=(Aa Az - Ay 0 - 0)
Byi=(0 « 0 Ay Aya - A
R(m, p) = R(ZN—I)m x (2N-1)p

B, = bn1®Bj(t)eR(n,r)

]R_," = I2N-1®Rj,’€ R(rj,r,-),

S = B;R;'B] € R(n,n)

Qj = hy-1 ® Qj € R(n, n)

M; = IQN_1®KJ-€R(n,n),j:1,...,p

® is the Kronecker product and /; is the i-dim unit matrix
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Differential game with boundary control

-

T-1 p T-
Opt Ji(t,y ..., up, ®) = XeMX7 + Z X QX + Z UikR;i Ui, (14)
k=0 i=1 k=0
P
s.t. Xir1 = AXi + ZBjuj’k (15)
j=1
Xo=® (16)

The two last players are boundary controls
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Differential game with boundary control

T-1 2 T-1
Opt Jj(U1, up, d)) = X-,*-MXT + Z X:QX/( + uﬁkRj,-u,-fk, (17)
k=0 i=1 k=0

2
s.t. Xiv1 = AXy + ZBjUj,k (18)

=1

Xo=® (19)
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ntial game with boundary control

Opt  Ji(ur,m,®) = XiMXr + :Z_:x;ka + il :Z: Ry, (17)
R;;=0,j=1,...,p—2
st X1 = AXe+ iﬁjuj,k (18)
j=1
Xo=® J (19)

Assumptions:  Single pipe: 2 player game
Finite time horizon
OL information structure: the only information is at the initial pass
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OL Nash equilibrium: Assumptions

> p-player game
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OL Nash equilibrium: Assumptions

> p-player game

> finite time horizon
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OL Nash equilibrium: Assumptions

> p-player game

> finite time horizon

» OL information structure
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OL Nash equilibrium: Assumptions

> p-player game

> finite time horizon
players choose their strategies ug, u»
prior to beginning of the game

» OL information structure — +
Their only information is the initial state of the game
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> finite time horizon
players choose their strategies ug, u»
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OL Nash equilibrium: Assumptions

> p-player game

> finite time horizon
players choose their strategies ug, u»
prior to beginning of the game

» OL information structure — +
Their only information is the initial state of the game

initial pass: xg(£)=¢(£), £eL
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Open-loop Nash equilibrium

Consider a p-player game, -2, on a finite time horizon, T < oo, with OL information
structure:

(01, ) is called a (2-player) OL Nash equilibrium strategy on the system (9)—(5) if
S(l, 02, ®) < Si(un, 02, P),

(20)
(i, o, ®) < Jo(lr, u2, P)

for all initial states ® € X¥™) and all admissible strategies u1, u» eZ/ll(zN_l) X L{2(2N_1).
v

See (Basar and Olsder, 1995).
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Best reply

An admissible control dj,j = 1,2, is called the best reply of player-j, to any set of
admissible controls 15 = {u;|i € {1,2}\{j}} on system (18)—(19) if

Jj(ﬁjauj—?q)) < Jf(uj7uj—7¢)

and Jj,j =1,2, is given in (17).

@ i1, 0> is an OL Nash equilibrium in a 2-player game for system (18)—(19) if both
players simultaneously achieve their best replies.

@ In a one player game, i.e., p = 1, the Nash equilibrium coincides with the best reply
and is the solution of a standard optimisation problem.
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Value function approach

Value functions for the cost functionals of (17)?
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Value function approach

Value functions for the cost functionals of (17)?

\/j(k)::%XZEj(k)Xk+ej*(k)Xk+dj(k), k=0,....T, j=12  (21)
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Value function approach

Value functions for the cost functionals of (17)?
1o« + )
Vi(k) = SXCE () X+ (k) X+ dj(K),  k=0,...,T, j=1,2 (21)

where
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Value function approach

Value functions for the cost functionals of (17)?
1o« + )
Vi(k) = SXCE () X+ (k) X+ dj(K),  k=0,...,T, j=1,2 (21)
where

» Ej(k) € R(n,n)
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Value function approach

Value functions for the cost functionals of (17)?
1o« + )
Vi(k) = SXCE () X+ (k) X+ dj(K),  k=0,...,T, j=1,2 (21)
where

» Ej(k) € R(n,n)
» X, ei(k) e R(n,1)
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Value function approach

Value functions for the cost functionals of (17)?
1o« + )
Vi(k) = SXCE () X+ (k) X+ dj(K),  k=0,...,T, j=1,2 (21)
where

» Ej(k) € R(n,n)
» X, ei(k) e R(n,1)
» di(k)eR
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To make functions V; value functions for J;

Let solutions Ej(k) of the symmetric standard discrete time matrix Riccati equations
(SSRDE)

0 = A'E(k+DA-E(k)+Q-

-AEj(k+1)B; x (R + B Ej(k + 1)1133,-)‘1 B; (t)Ej(k+1)A (22)

E(T) Mj,  j=1,2.

exist for k=0,..., T
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To make functions V; value functions for J;

Let solutions Ej(k) of the symmetric standard discrete time matrix Riccati equations
(SSRDE)

0 = A'E(k+DA-E(k)+Q-

-AEj(k+1)B; x (R + B Ej(k + 1)1133,-)‘1 B; (t)Ej(k+1)A (22)

E(T) Mj,  j=1,2.

exist for k =0,..., T (hence necessarily Sj(k) = Rjj + B} Ej(k + 1)B; is invertible).
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To make functions V; value functions for J;

Let solutions Ej(k) of the symmetric standard discrete time matrix Riccati equations
(SSRDE)

0 = AYEj(k+1)A-E(k)+Q-
-AEj(k+1)B; x (R + B Ej(k + 1)1133,-)‘1 B; (t)Ej(k+1)A (22)

E(T) Mj,  j=1,2.

exist for k =0,..., T (hence necessarily Sj(k) = Rjj + B} Ej(k + 1)B; is invertible).

Then, for admissible controls ui1, u> the difference equations:
0 = Bje(k+1)-Si(k)bj(k)+B;Ej(k+1)v(k)
0 = -A"Ej(k+1)Bjbj(k) +A*(t)Ej(k+1)vj(k) + A%ej(k+1) - (k) (23)
0 = g(T)=b(T), j=12

are solvable backwards, where (k) = >  Bsus .

s#j
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To make functions V; value functions for J;

Furthermore, with d;(k) a solution of the simple difference equation:

1. 1 o
i (k-+1) = di(K) = 357 (KIS (K)Bi(K) + 5 3 Rt o+

s#j

#375(K) Bk (k) + & (K + oy (K)
4(T)

(T
o o
—.
1l
-
N

we obtain for j =1,2

1 . . T-1

5= 3 (R EOX+ g%+ 4O+ T o0l ).
k=0

where we used ¢;(k) = S (k)B} E;(k + 1)AX + bj(k) and Xi is the solution of

(17)-(19).

(24)

(25)
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Convexity conditions

In case of convexity assumptions, i.e. if Q; >0, M >0 and R; >0, j=1,2, the SSRDE
(22) is always solvable ( see [Kandil, Freiling, lonescu, Jank, 2003]), hence we always
can obtain the representation (25) of the cost functionals.
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Convexity conditions

In case of convexity assumptions, i.e. if Q; >0, M >0 and R; >0, j=1,2, the SSRDE
(22) is always solvable ( see [Kandil, Freiling, lonescu, Jank, 2003]), hence we always
can obtain the representation (25) of the cost functionals.

However, such convexity assumptions appear to be too restrictive in real application
problems, since they are violated, for example, in zero-sum games or in general rather
conflicting game situations.
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Unique best reply representation

Player j obtains a unique best reply to any action of the other players if S;(k) >0 and
Bk = (k) = =S (K)B} Ej(t + 1) AX = by (k).

The existence of a minimum of J; in (25) necessarily implies S;(k) > 0.
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Sufficient conditions for existence of Nash eq.

Let E;(k) be a solution of SSRDE such that Sj(k) = R; + B} Ej(k + 1)B; > 0, for
k=0,...,T-1,j=1,2. Then controls

Uik = =S; (k)B] Ej(k + 1)AX — bi(k), j=1,2, (26)

determine a Nash equilibrium for any solution of the following BVP

0 = Be(k+1)-Si(k)bi(k)+
-B; Ej(k+1) > B, (S; ' (k)BIEo(k + 1)AX; + b;)
0 = +A*Ej(k+1)IE%7bj(k)+
+A*Ej(k+1)v;(k) + A*ej(k +1) - ¢(k) (27)
0 = e&(T)=b(T), j=12,
X1 = AXi— TP B; (S (K)B; Ej(k + 1)AX, + by)
Xo = W
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Sufficient conditions for existence

Consider that solutions Ej(k) of SSRDE (22) exist for k=0,...,T;j=1,2.
If the BVP X
Yi(k) = QXi+A%Y(k+1)
Yi(T) = MiXy, (#(T+1)=0) (28)
Xest = AXe—XP BoRI'Biths(k +1)
Xo = V¥
admits a solution then ej(k), bj(k), X« are a solution of the BVP (27) if we set
(k) = (k) - Ei(k)Xk (20)
bi(k) = SH(k)Bj(k)[Ei(k+1) Y. Bsiss+e(k+1)],
where
ik = —R;'Biyj(k+1), t=0,...,T-1. (30)
On the other hand, if ej(k), bj(k), Xk are a solution of the BVP (27) then, with the
settings (29),(30), we obtain a solution of the BVP (28).
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Sufficient conditions for existence/uniqueness

Let SSRDE (22) admit solutions E;j(k) such that

Si(k) =R + B/ Ej(k+1)B; >0
forall k=0,...,T-1andj=1,2.
@ The functions u; x in (30) are a Nash equilibrium if and only if the BVP (28) is

solvable. This is an explicit condition for playability as it was obtained in the operator based approach [Same
authors, Controlo'08]

@ Nash equilibrium is unique iff BVP (28) is uniquely solvable.
© Nash costs for each player can be calculated from (25):
1

5 [X5 Ei(0)Xo + & (0)Xo + d;(0)],

where €;(0) was defined in (29) and d;(0) is obtained by solving (24).
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Sufficient condition for existence/uniqueness

Let SSRDE (22) admit solutions Ej(k) such that Sj(k) >0 for k=0,..., T -1,j=1,2.

Furthermore, if the discrete time OL Nash Riccati difference equation (OLNRDE)
Ki(k) = Q+A"Kj(k+1)Q"A,

(31)
K(T) = Kj, j=12, k=0,...,T-1,

P
admits a solution, where Q := | | + ZIB%SRS_SIB: Ks(k + 1)) , then there exists a unique OL

s=1
Nash equilibrium defined in quasi-feedback form by
ik = —R;'Bf (Kj(k +1) X1 + Dj(k+ 1)) ,k=0,..., T -1,

whence D;(k), Gj(k) are defined as:

Di(k) = A"Dj(k+1)+Gj(k), Di(T)=0, (32)
Gi(k) = —A*Kj(k+1)QflzijsRs;113:Dj(k+1) (33)

v

See (T-P Azevedo Perdicodlis- & G.-Jank,-2008).
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Team controllability

Let [, be a 2-player game. We say that the game is team controllable if for any initial
and terminal states Xp, X1 € X and initial time ko € K there exist a terminal time ki > ko
and a set of control functions uj « € U;,j = 1,2, such that for the solution of the
difference equation

Xk+1 = f(k, Xk, Uj ks ﬁj,k) = AXk +Bju_,'7k +EJ-L’}J—7;<, X() =

X(ki) = X; holds.
v

See (Kun,2000) and (T. Perdicoulis, nDS2013)
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Individual controllability

Let I be a 2-player game. Suppose that strategies are chosen such that ({1, d2) is an
equilibrium for [',. Then, we say that the game is controllable at this equilibrium point,

from the point of view of the jth player, if the control system

Xk+1 = f(k,Xk, Uj k, ﬁj,k) = AXk TP Bjuj,k i BJ_[}Lk

is controllable in the admissible set of uj «,j=1,2.
.

See (Kun,2000).
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Characterisation of individual controllability

Let > be a linear OL quadratic differential game. Suppose ({1, 0>) (and X its respective
trajectory) to be a Nash eq. for I'», based on the solutions Kj(k),j =1,2, of the
correspondent OLNRDE, then T is individually controllable for the jth player iff any
triple (ko, ®,®) € K x XN o N1 of the following linear control system

X1\ (A0 X &'B; \
()?m) B ( o o)l %) o )ur (34)

with

2 2
Q=1+ > BRIBIK(k+1) and Q=1+ > B.RIBIK(k+1)
s=1 s=1
S+

can be controlled to a pass X¢ x XOCNY for all Xp e XN,

Proof: See (Kun,2000).
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Individual pass controllability

System (9) is (completely) pass boundary controllable for player j in ko, ko +1,..., ki
with ko, ki € K if for any initial conditions ¢(~N +1),...,(0),...,6(N—1) in (6) and
any vector pass x¢(¢), £ € L, if there exists sequences of boundary data dx (or

gk), k = ko, ..., ki such that x, (£) = x¢ (£),£eL.
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Individual pass controllability

The wave model (9) is completely pass controllable on 0,1,..., T, if and only if the
grammian matrix

@ = Tf M(s)M(s)* (35)
5=0

is positive definite, and where

QA o0\ OB
M(S):( 0 Q’IA)( Jo’)'
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Individual pass controllability

Consider the linear control system (34) written in terms of the initial pass and recall
that the boundary conditions are written as controls in (18). Hence:

X, oA 0 \( o k(a0 \7 o'
N _ T o +Z ] a R DT
X 0 QA ® 0 QA 0 2

s=1

=1
Then the grammian Gt is defined in terms of the transition matrix ( QJ_OA Q_OIA )

and the output matrix QTOBJ )

Then the proof is the same as in classical systems and therefore omitted here. (]
v

See (T-P Azevedo Perdicolilis & G. Jank,2008) and (Knobloch & Kwakernaak, 1985).
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Individual initial pass controllability

System (9) is completely pass controllable by initial pass control if for any boundary
conditions do, di,...,dr and go,g1,...,87 in (5) and any vector pass x¢(£), £ € L, there
exists a sequence of initial data ¢(-N +1),...,$(0),...,¢(N —1), subsumed in ®, such
that X7 = Xr.

v

System (9) is completely pass controllable by initial pass control if

G'A 0
( 0 QA ) € R(2n,2n) has full rank.

Proof: See (T-P Azevedo Perdicodlis & G. Jank, 2010).
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Observability

System (9)—(10) is pass-boundary observable in {0,1,..., T}, if forall 1 e N,O<t; < T
and boundary data ® for any two trajectories Xy, Xk, 0 < k < t1, corresponding to the
same input ujk,j =1,2,0 < k < t1, from

CXk = CX,0< k < ta,

it follows necessarily that Xj = Xi,0 < k < t1.

System (9) and (10) is pass-boundary observable in {0,1,..., T}, if
rank ((CAk*lBs) =n.
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servability

Using the compact notation, we define C = diag{C,...,C}.
If we set X = X — Xk, k=1,..., T, i.e.,, X is the solution of the homogeneous equation, then
pass boundary observable is equivalent to the condition:

CXy=0 = X, =0,0<k<ty,

considering ® = 0. Hence:

Yi = Yi-Yi=CX(-CX
2 k-1 B
= CY > AMB, (us,i - i)
s=1 i=0

Considering Y =0,k =1,2,...,t;, we obtain:

2

Yi = CY Bs(uso—is0) =0 = us0 = isp
s=1
2

Y, = CZ]BS (u570—ﬂ570)+A]Bs(u571—ﬁ571) =0
s=1

= us,1 = ls,1

Then we have that the boundary controls are uniquely defined by a measured output. O
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Conclusions

» Formulation of a wave RP as an OL Nash game where the strategies are the
boundary settings.

> We state sufficient conditions for the existence/uniqueness of the equilibrium
strategies.

» These sufficient conditions are suitable for numerical calculations.

> We study structural properties of the equilibrium strategies.
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Future Work

» Consider the same problem for the infinite time horizon/moving horizon.

» Then, questions such as individual stabilisation of the solution by the different
players become relevant as well as uniqueness of the equilibrium strategies.

> Consider other type of information structures and equilibria for the same problem.
> Consider a system whose parameters are not constant but depend on k, ¢, instead.

» Extend the wave model/differential game to a complex network
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Thank you!
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