Big OLAP Data Cubes in Multidimensional Big Data Analytics: A Shift-Paradigm for Next-Generation Big Data Analytics

Alfredo Cuzzocrea

iDEA Lab, University of Calabria, Italy & Dept. of CS, University of Paris City, France SEMINAR @ LIAS-ENSMA

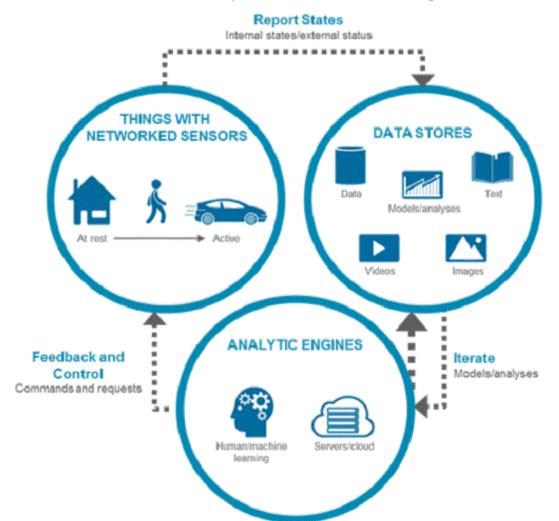
e-mail: alfredo.cuzzocrea@unical.it

- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions

- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions

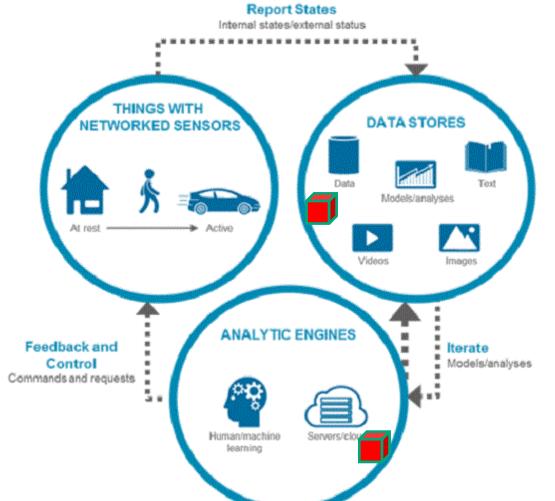
Big Data Principles

- Massive amounts of heterogeneous data
 - Relational Data (Tables/Transactions/Legacy Data)
 - Text Data (Web)
 - Semi-structured Data (XML)
 - Graph Data (Social Networks, Semantic Web)
- Large-scale data (distributed repositories, clouds)
- Scalability issues: running on very-large, growing data sets
- Elastic metaphors Cloud Computing paradigms
- Database As A Service (DaaS)
- Easy and Interpretable Analytics
- Privacy-Preserving and Secure Data Management


Big Data Principles

- Massive amounts of heterogeneous data
 - Relational Data (Tables/Transactions/Legacy Data)
 - Text Data (Web)
 - Semi-structured Data (XML)
 - Graph Data (Social Networks, Semantic Web)
- Large-scale data (distributed repositories, clouds)
- Scalability issues: running on very-large, growing data sets
- Elastic metaphors Cloud Computing paradigms
- Database As A Service (DaaS)
- Easy and Interpretable Analytics
- Privacy-Preserving and Secure Data Management

- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions


Context Example: Big Data Analytics on IoT/1

Interaction Between the Three Components of the Internet of Things

Context Example: Big Data Analytics on IoT/2

Interaction Between the Three Components of the Internet of Things

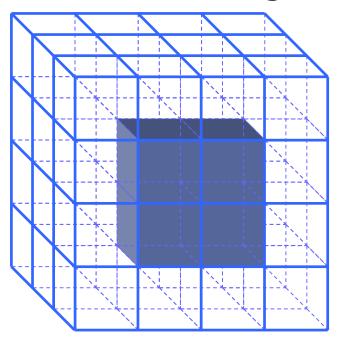
Data cubes arise in several data layers of the reference framework:

- in the proper data storage layer;
- in the extended analytical layer.

Hence, OLAP data cubes provide several functionalities for supporting big data analytics

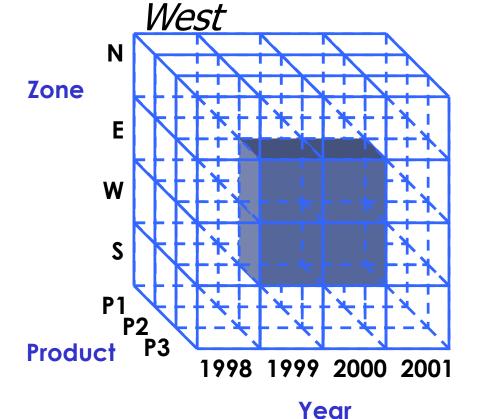
- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions

OLAP: Problem Statement/1


 OLAP: Performing fast aggregations on huge amounts of data to support decision making processes

data oubo

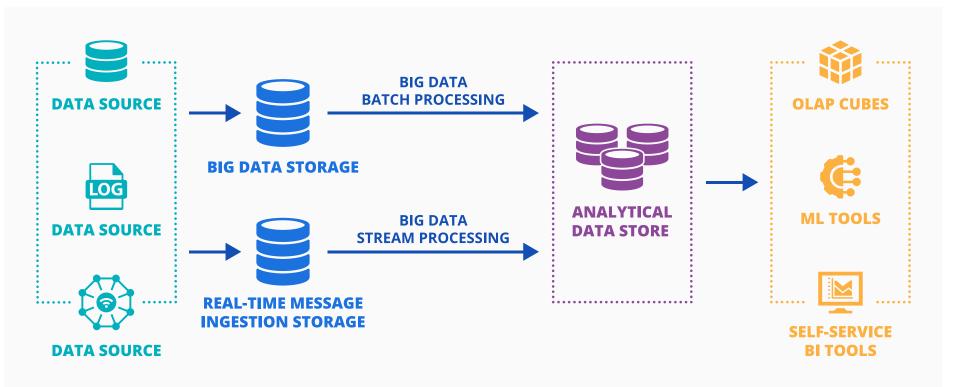
Dim				daid CUD		
Product	Year	Zone	Sale	multidimensional		
				representation	Zone	
				ν		
					Product	Year



 A range query over a data cube is defined as the application of a SQL aggregation operator (such as SUM, COUNT, AVG etc) on the subset of data which belong to a given range

OLAP: Problem Statement/3

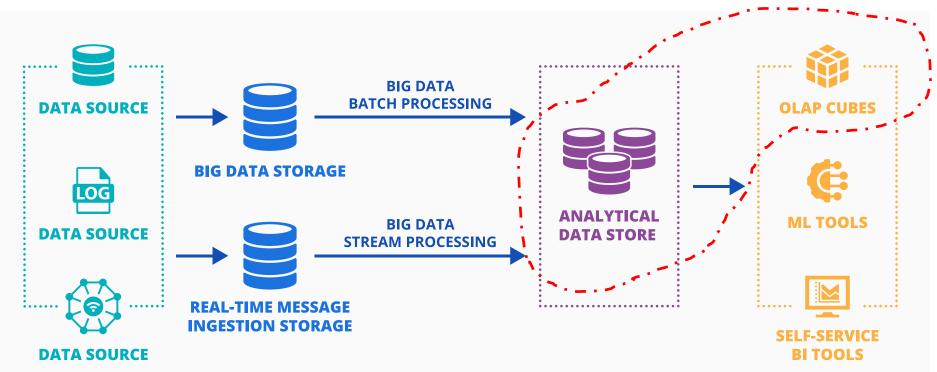
Example: total amount of sales of the product P3 between 1999 and 2000 in zones East and


Product	Year	Zone	Sale
•••			•••
Р3	1999	W	
P3	2000	Е	
P3	2000	W	

- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions

Big OLAP Data Cubes on the Cloud

- What for Big OLAP Data Cubes on the Cloud?
- A powerful analytical model


BIG DATA ARCHITECTURE

Big OLAP Data Cubes on the Cloud

- What for Big OLAP Data Cubes on the Cloud?
- A powerful analytical model

BIG DATA ARCHITECTURE

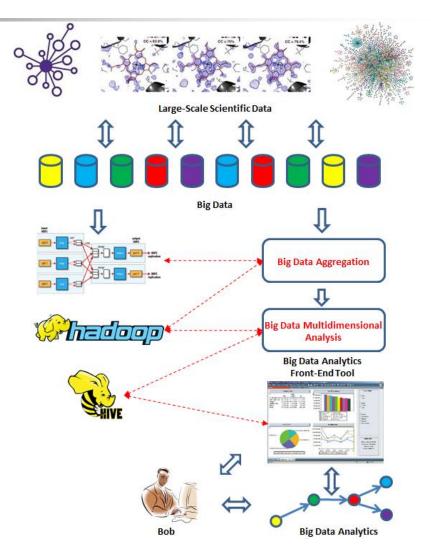
- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions

Multidimensional Big Data Analytics/1

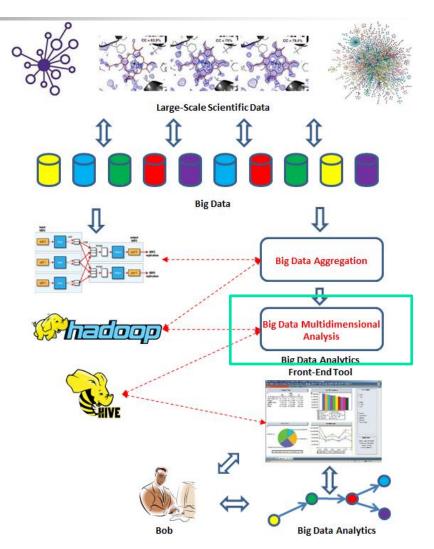
New big data analytical metaphor proposed by me in 2011:

Alfredo Cuzzocrea

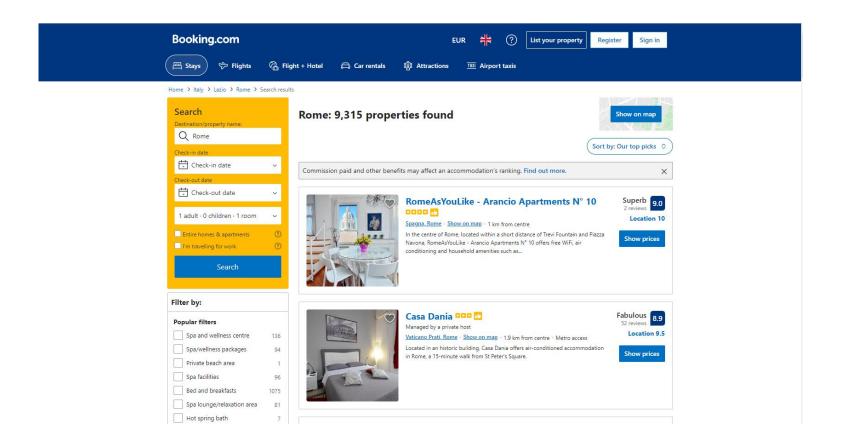
Professor of Computer Engineering, <u>University of Calabria</u>, Italy
Email verificata su si.dimes.unical.it - <u>Home page</u>
Big Data Database Systems Data Mining Data Warehousing Knowledge Discovery

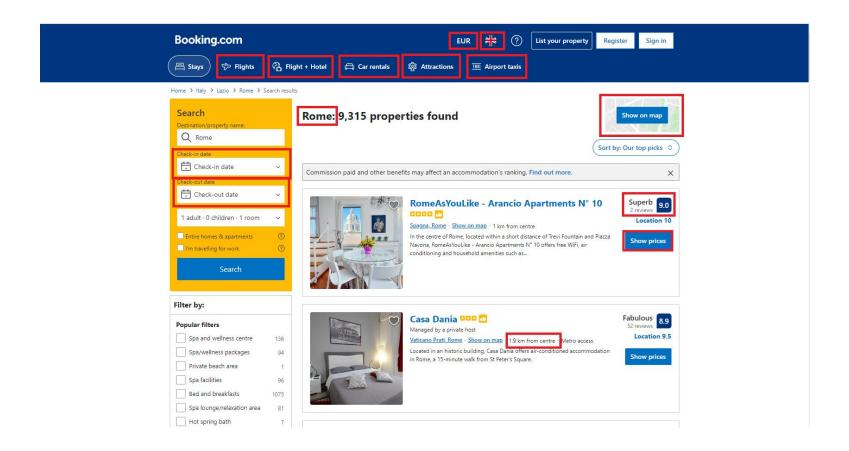

TITOLO	CITATA DA	ANNO
Analytics over large-scale multidimensional data: the big data revolution! A Cuzzocrea, IY Song, KC Davis Proceedings of the ACM 14th international workshop on Data Warehousing and	480	2011

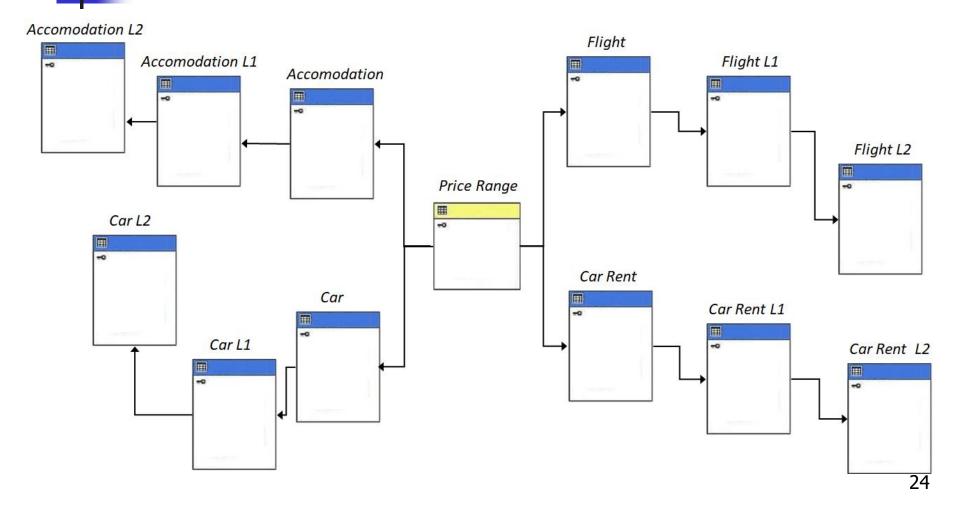
- Apply the principles of multidimensional data representation and analysis to the big data analytics process
- The target big data source is modeled in terms of dimensions and measures
- Aggregation procedures (e.g., pivoting) and machine learning algorithms (e.g., clustering) are applies on the deriving multidimensional data structures
- A new paradigm that is overbearingly emerging


Multidimensional Big Data Analytics/3

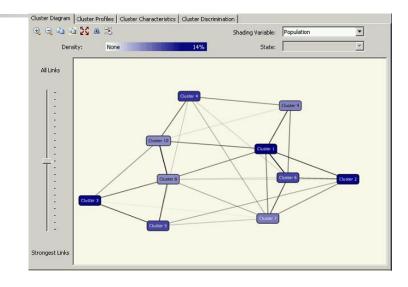
 A reference architecture for supporting multidimensional big data analytics (scientific settings)

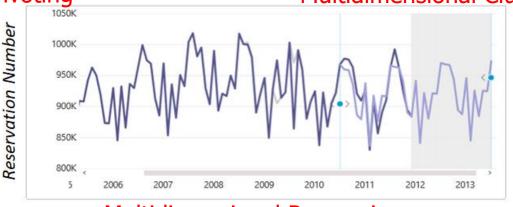



Multidimensional Big Data Analytics/3


 A reference architecture for supporting multidimensional big data analytics (scientific settings)

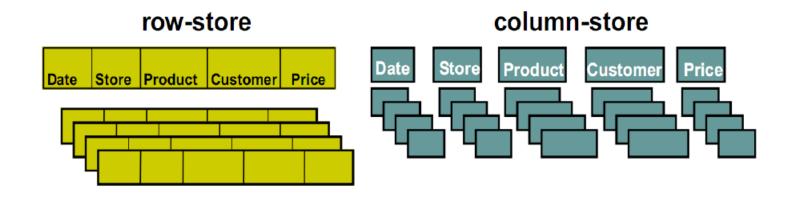
- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions



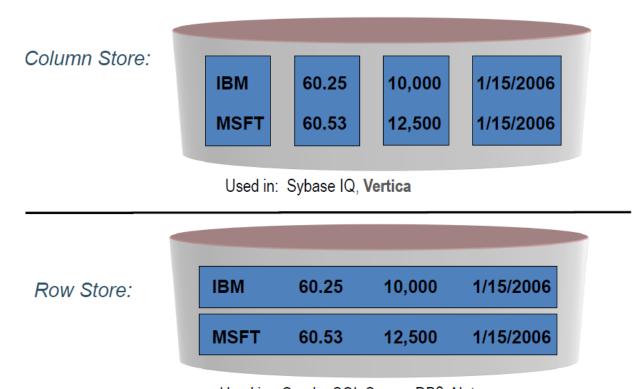


	Zone		Calabria		СТ	Sicily
Time	RC	CZ		ME		
2009	3,084	3,120	6,204	3,090	3,126	6,216
January	1,024	1,036	2,060	1,026	1,038	2,064
February	1,028	1,040	2,068	1,030	1,042	2,072
March	1,032	1,044	2,076	1,034	1,046	2,080
2010	3,012	3,048	6,060	3,018	3,054	6,072
January	1,000	1,012	2,012	1,002	1,014	2,016
February	1,004	1,016	2,020	1,006	1,018	2,024
March	1,008	1,020	2,028	1,010	1,022	2,032
Grand Total	6,096	6,168	12,264	6,108	6,180	12,288

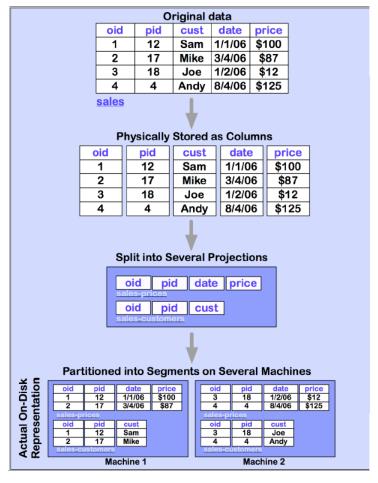
Multidimensional Regression


Time

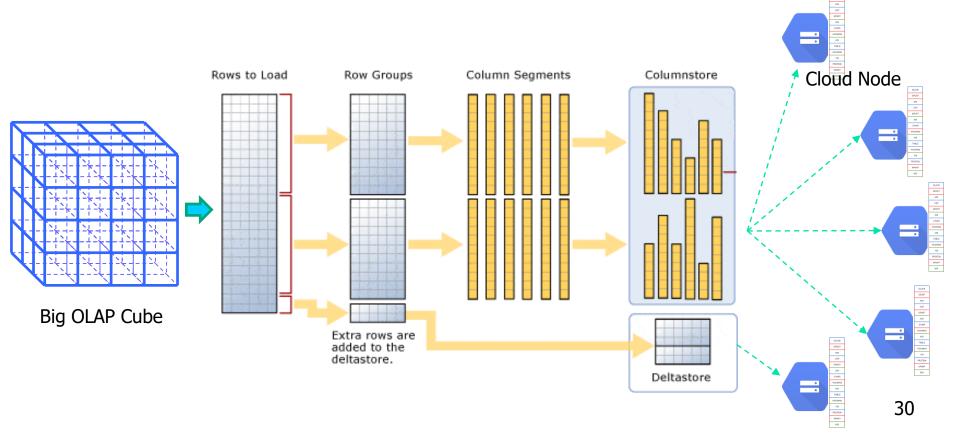
- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions


Idea: using a column-store representation

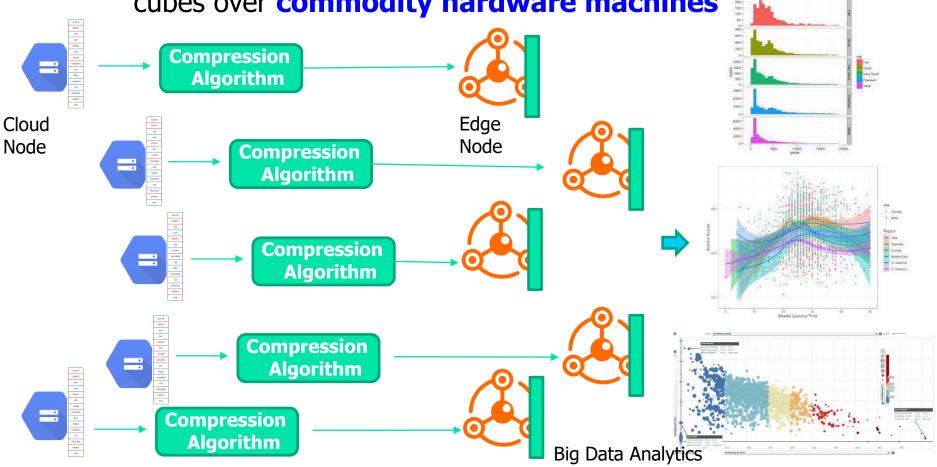
- In row store data are stored in the disk tuple by tuple.
- Where in column store data are stored in the disk column by column



Example


Used in: Oracle, SQL Server, DB2, Netezza,...

Cloud-based representation over multiple nodes


Cloud-based partitioned representation of big OLAP data cubes over commodity hardware machines

- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions

Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud

Cloud-based partitioned representation of big OLAP data cubes over **commodity hardware machines**

- Across 10 years, we propose a set of compression techniques for OLAP data cubes:
 - ∆-Syn, an analytical synopsis data structure that introduces a polynomial approximation technique for OLAP data cubes;
 - K_{LSA}, which further extends the proposal in order to provide accuracy control over compressed OLAP data cubes;
 - LCS-Hist, a histogram-based complex methodology for compressing massive-in-size high-dimensional OLAP data cubes.

- Big Data Principles
- Context Example: Big Data Analytics on IoT
- OLAP: Problem Statement
- Big OLAP Data Cubes on the Cloud
- Multidimensional Big Data Analytics
- Case Study: Booking.com
- Column-Oriented Representation of Big OLAP Data Cubes on the Cloud
- Innovation: Column-Based Big OLAP Data Cube Compression on the Cloud
- Conclusions

Conclusions

- An innovative paradigm for supporting multidimensional big data analytics over big OLAP cubes, deployed on Clouds
- Scalable compression of multidimensional data cubes for supporting multidimensional big data analytics
- Comprehensive approach that can be integrated in next-generation big data analytics systems
- Nice integration with the wide family of opensource tools (e.g., Apache)

Big OLAP Data Cubes in Multidimensional Big Data Analytics: A Shift-Paradigm for Next-Generation Big Data Analytics

Alfredo Cuzzocrea

iDEA Lab, University of Calabria, Italy & Dept. of CS, University of Paris City, France SEMINAR @ LIAS-ENSMA

Thanks for your attention!