LARODEC-ISG, Tunis (Tunisia) / LIAS-ENSMA, Poitiers (France)

Advanced Models for Graph Data Exploitation and Analysis

PhD. Student: Amna ABIDI

LIAS, IDD Seminar, 18th May., 2017

< ロ > < 同 > < 回 > < 回 > < 回

æ

Under the guidance of

LARODEC, ISG, Tunis

- Mohamed Anis BACH TOBJI, Univ. Manouba, ESEN. Tunisia.
- Boutheina BEN YAGHLANE, University of Carthage, IHEC, Tunisia.

LIAS, ENSMA, Poitiers

• Allel HADJALI, University of Poitiers, ENSMA, France.

Outline

- 3 Trust-Skyline model
- Possibilistic RDF data
- 5 Conclusion and perspectives

Due to the openness of the web and variety of sources in internet, the reliability of collected data is questioned.

- Several researchers enriched the basic RDF data model with trust information (Hartig, 2009; Tamaszuk et al., 2012; Fionda and Greco, 2015).
- To reason in presence of trust information, we need new methods to query RDF data.
- Skyline operator is the most used preference queries when data are perceived with uncertainty.

- Several researchers enriched the basic RDF data model with trust information (Hartig, 2009; Tamaszuk et al., 2012; Fionda and Greco, 2015).
- To reason in presence of trust information, we need new methods to query RDF data.
- Skyline operator is the most used preference queries when data are perceived with uncertainty.

- Several researchers enriched the basic RDF data model with trust information (Hartig, 2009; Tamaszuk et al., 2012; Fionda and Greco, 2015).
- To reason in presence of trust information, we need new methods to query RDF data.
- Skyline operator is the most used preference queries when data are perceived with uncertainty.

Trust-RDF data Skyline model

- RDF is a W3C framework to represent information in the Web in a meaningful (semantic) way.
- An RDF statement is a triple < subject, predicate, object > or < s, p, o >.

イロト イポト イヨト イヨト

3

Trust-RDF data Skyline model

Figure: Meaning of trust values (inspired from Hartig. O, 2009).

イロン 不同 とくほ とくほ とう

3

Trust-RDF data Skyline model

RDF SPOT

An RDF SPOT *X* is a quadruple $\langle s, p, o, t \rangle$, where *o* is a value of a predicate *p* related to a subject *s*, with a trust *t*. The triple $\langle s, p, o \rangle$ is denoted by *X*^{*}.

Trust-RDF data Skyline model

The Skyline operator

Pareto Dominance: A key notion

Let *P* and *Q* be two points in a set of points denoted *O* with *n* attributes. A point *Q* dominates a point *P* denoted by $Q \succ P$, if $\forall i \in [1, n] q_i \leq p_i \land \exists j, q_j < p_j$.

$$Q \succ P = \bigwedge (\bigwedge_{1 \le i \le n} q_i \le p_i, \bigvee_{1 \le i \le n} q_i < p_i)$$

イロト イポト イヨト イヨト

æ

Trust-RDF data Skyline model

The Skyline preference relation

Skyline operator

The skyline is the set of points that are dominated by no other points (Börzsönyi, 2001).

Skyline operator

Let O be a set of points having n attributes. The skyline of O denoted by S is defined as:

 $S = \{P \in O / \nexists Q \in O, Q \succ P\}$

イロン イボン イヨン イヨン

Trust-RDF data Skyline model

The Skyline preference relation

Skyline operator

The skyline is the set of points that are dominated by no other points (Börzsönyi, 2001).

Skyline operator

Let O be a set of points having n attributes. The skyline of O denoted by S is defined as:

$$oldsymbol{S} = \{oldsymbol{P} \in oldsymbol{O}, oldsymbol{Q} \succ oldsymbol{P}\}$$

Trust-RDF data Skyline model

Table: Example: hotel properties

	Price	Distance		
h_1	20	100		
h_2	30	110		
h_2	20	100		
h_2	10	110		
h_2	40	120		

- $h_1 \succ h_2 = 1 \Rightarrow h_2$ is pruned.
- $h_1 \succ h_3 = 0$
- Skyline: $S = \{h_1, h_3, h_4\}$

イロト イポト イヨト イヨト

æ

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

Trust Dominance

Trust dominance degree

Let *P* and *Q* be two subjects having *n* properties p_i and q_i , respectively with $1 \le i \le n$. The degree of dominance between *P* and *Q*, denoted by $d(Q \succ P)$.

 $d(\mathbf{Q} \succ \mathbf{P}) = min(\min_{1 \le i \le n} Trust(q_i \le p_i), \max_{1 \le i \le n} Trust(q_i < p_i))$

ヘロト 人間 ト ヘヨト ヘヨト

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

Table: Example of hotels properties.

Hotels	case 1		case 2		case 3		case 4	
	price	distance	price	distance	price	distance	price	distance
h ₁	20(0.2)	100(0.4)	20(0.6)	80(0.7)	20(0.3)	100(0.5)	20(0.3)	70(0.5)
h ₂	30(0.3)	110(0.5)	25(0.3)	70(0.1)	20(0.4)	100(0.6)	25(0.4)	70(0.5)

We proceed on computing the Trust-Skyline over those cases:

- case 1: $d(h_1 \succ h_2) = \min(\min(0.2, 0.4), \max(0.2, 0.4)) = 0.2$
- case 2: $d(h_1 \succ h_2) = \min(\min(0.3, -1), \max(0.3, -1)) = -1$
- case 3: $d(h_1 \succ h_2) = \min(\min(0.3, 0.5), \max(-1, -1)) = -1$
- case 4: $d(h_1 \succ h_2) = \min(\min(0.3, 0.5), \max(0.3, -1)) = 0.3$

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

Table: Example of hotels properties.

Hotels	case 1		case 2		case 3		case 4	
	price	distance	price	distance	price	distance	price	distance
h ₁	20(0.2)	100(0.4)	20(0.6)	80(0.7)	20(0.3)	100(0.5)	20(0.3)	70(0.5)
h ₂	30(0.3)	110(0.5)	25(0.3)	70(0.1)	20(0.4)	100(0.6)	25(0.4)	70(0.5)

We proceed on computing the Trust-Skyline over those cases:

- case 1: $d(h_1 > h_2) = \min(\min(0.2, 0.4), \max(0.2, 0.4)) = 0.2$
- case 2: $d(h_1 \succ h_2) = \min(\min(0.3, -1), \max(0.3, -1)) = -1$
- case 3: $d(h_1 \succ h_2) = \min(\min(0.3, 0.5), \max(-1, -1)) = -1$
- case 4: $d(h_1 \succ h_2) = \min(\min(0.3, 0.5), \max(0.3, -1)) = 0.3$

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

Trust Dominance

Trust of a point

Given an RDF point *P* with *n* properties p_i such that $1 \le i \le n$. Each property is associated with a trust value t_i . The trust of a point, denoted by *P*. t^- is the minimum trust degree among all its properties.

$$P.t^- = \min_{1 \le i \le n} (p_i.t)$$

Dominance degree

Given two points *P* and *Q* having the trusts $Q.t^-$ and $P.t^-$.

$$d(Q \succ P) = \left\{ egin{array}{cc} min(Q.t^-, P.t^-) & \textit{if } Q* \succ P* \ -1 & \textit{else} \end{array}
ight.$$

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

Dominance degree

Dominance degree properties

The trust dominance is transitive. Given two RDF triples *P* and *Q*, and a threshold $\alpha \in [-1, 1]$

if $d(\mathbf{R} \succ \mathbf{Q}) > \alpha$ and $d(\mathbf{Q} \succ \mathbf{P}) > \alpha$; $\longrightarrow d(\mathbf{R} \succ \mathbf{P}) > \alpha$

Dominance degree properties

The trust dominance is asymmetric. Given two RDF triples *P* and *Q*, and a threshold $\alpha \in [-1, 1]$ $d(Q \succ P) > \alpha$ Then $d(P \succ Q) = -1$

イロト 不得 とくほ とくほ とう

ъ

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

Dominance degree

Dominance degree properties

The trust dominance is transitive. Given two RDF triples *P* and *Q*, and a threshold $\alpha \in [-1, 1]$

if $d(\mathbf{R} \succ \mathbf{Q}) > \alpha$ and $d(\mathbf{Q} \succ \mathbf{P}) > \alpha$; $\longrightarrow d(\mathbf{R} \succ \mathbf{P}) > \alpha$

Dominance degree properties

The trust dominance is asymmetric. Given two RDF triples *P* and *Q*, and a threshold $\alpha \in [-1, 1]$ $d(Q \succ P) > \alpha$ Then $d(P \succ Q) = -1$

イロン 不得 とくほ とくほ とうほ

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

Trust-Skyline

Definition

The T-Skyline of a data set *D*, denoted by $T - Sky^{\alpha}$, contains each point *P* in *D* such there is no point *Q* that dominates *P* with a trust degree greater than a user defined threshold $\alpha \in [-1, 1]$.

$$m{T} - m{sky}^lpha = \{m{P} \in m{D} / \nexists m{Q} \in m{D}, m{d}(m{Q} \succ m{P}) \geq lpha \}$$

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

Example

Table: Example of hotels candidate list of T-Sky, α =0.1

Hotel	Price	Distance		
h ₁	23 (0.5)	5 (0.3)		
h ₂	50 (0.2)	4 (0.6)		
h ₃	50 (0.7)	3 (0.5)		
h ₄	40 (0.1)	1 (0.3)		
h ₅	50 (0.6)	2 (0.4)		

- $d(h_1 \succ h_2) = 0.2 \ge \alpha, h_2$ is pruned.
- $d(h_1 \succ h_3) = 0.3$, thus h_3 is also pruned.
- $d(h_1 > h_4) = -1$ and $d(h_4 > h_1) = -1$, no pruning.
- $d(h_1 \succ h_5) = 0.3$. h_5 is pruned $\Rightarrow T Sky^{\alpha} = \{h_1, h_4\}$.

Trust Dominance Trust-Skyline model TRDF-Skyline Algorithm

TRDF-Skyline Algorithm

- SQL query
- Naive T-Skyline algorithm: optimization using α measure.
- TRDF-Skyline algorithm: a second optimization based on the transitivity property.

Conference Article

Skyline Modeling and Computing over Trust RDF Data, Proc. of the 19th International Conference on Enterprise Information Systems (ICEIS'2017), 26-29 April, 2017, Porto, Portugal. Best Paper Award, Area: Software Agents and internet Computing.

Possibility theory

- A possibility distribution is a function π: X → [0, 1] and π(a) expresses the degree to which a is a possible value for the considered variable.
- The normalization condition imposes that at least one of the values of the domain (a_0) is completely possible, i.e., $\pi(a_0) = 1$.
- $\Pi(E_1 \cup E_2) = \max(\Pi(E_1), \Pi(E_2))$
- Π(E₁ ∩ E₂)= min(Π(E₁), Π(E₂)) if E₁ and E₂ are logically independent.

イロト イポト イヨト イヨト

1

Possibility theory

- The sum of the degrees from a possibilistic distribution is different than 1 makes dealing with incompletely known distributions possible.
- Possibility theory constitutes an alternative to capture different kind of uncertainty of a qualitative nature.

20/28 Advanced Models for Graph Data Exploitation and Analysis

< □ > < 同 > < 回 > < 回

Possibilistic RDF database

- A possibilistic RDF database *D* is a set of possibilistic triples. Each triple *t* is associated with a possibility value *P*(*t*) indicating its ability to occur.
- In the possibilistic distribution we extend the RDF triple
 S, *P*, *O* > to a quadruple < *S*, *P*, *O*, *P_i* > where *O* is a value of a predicate *P* related to a subject *S*, with a possibility measure *P_i*.

Possibilistic RDF Graph Data

A possibilistic RDF graph data $\tilde{G}^{P}=(V, E, P)$ is a graph represented by the triple (V(G), E(G), P(G)), where:

- V(G) represents a finite set of vertices,
- *E*(*G*) is a finite set of edges *e*_{*ij*},
- P(G) is the possibility associated to each triple of *G*.

ヘロト 人間 ト ヘヨト ヘヨト

Figure: Graph representation of uncertain RDF data.

イロト イポト イヨト イヨ

э

Figure: Skyline over Possibilistic RDF data.

Conclusion and perspectives

- We have extended Skyline operator over trust weighted RDF data: Trust-skyline model.
- We investigated the extension of possibility theory over uncertain RDF data (redefinition of dominance relationship).

Conclusion and perspectives

- The RDF query language SPARQL is of declarative nature, we need to extend SPARQL into a possibility-aware query language.
- The subgraph solution are those having the most possibility to occur or to be part of the result.

26/28 Advanced Models for Graph Data Exploitation and Analysis

Published articles/ Journal paper

[C1] Amna Abidi, Mohamed Anis Bach Tobji, Allel Hadjali, Boutheina Ben Yaghlane, *Skyline Modeling and Computing over Trust RDF Data*, Proc. of the 19th International Conference on Enterprise Information Systems (ICEIS'2017), 26-29 April, 2017, Porto, Portugal.

[C2] Amna Abidi, Nassim Barhri, Mohamed Anis Bach Tobji, Allel Hadjali, Boutheina Ben Yaghlane, *First steps towards an electronic meta-journal platform based on crowdsourcing*, Proc. of the 2nd International Conference on Digital Economy, (ICDEc'2017), Springer-LNBIP, 04-06 May, 2017, Sidi Bou Said, Tunisia.

[J1] Amna Abidi, Sayda Elmi, Mohamed Anis Bach Tobji, Allel Hadjali, Boutheina Ben Yaghlane, *"Possibilistic Skyline queries over RDF data"*, International Journal of Approximate Reasoning (IJAR), under evaluation.

Thank you for your attention

イロン イロン イヨン イヨン

ъ