

Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm

Yves MOUAFO

<u>Supervisors</u>

A. CHOQUET-GENIET, G. LARGETEAU-SKAPIN

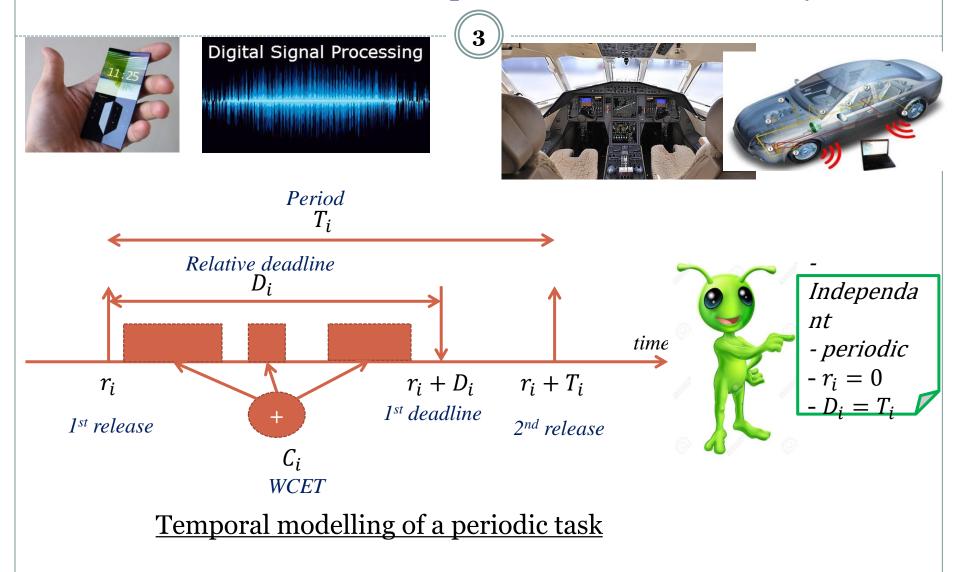
OUTLINES

2

- 1. Context and Problematic
- 2. State of the art
- 3. Different scenarios
- 4. First feasibility result
- 5. Second feasibility result
- 6. Future works

The Context

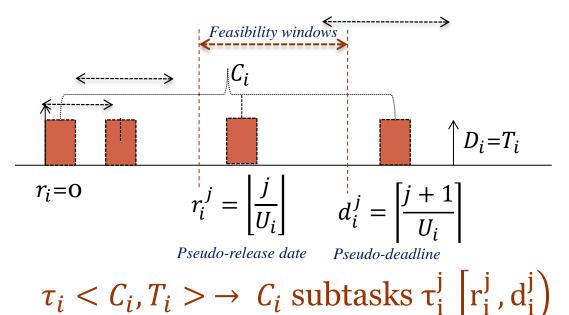
Increased use of multicore platforms in Real-Time System



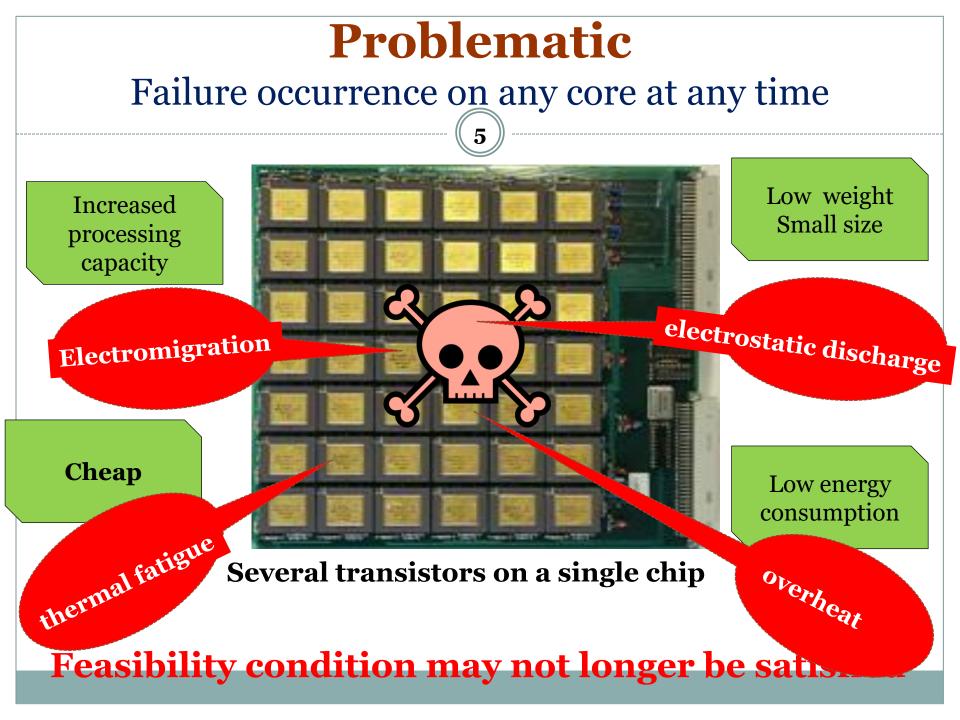
Context

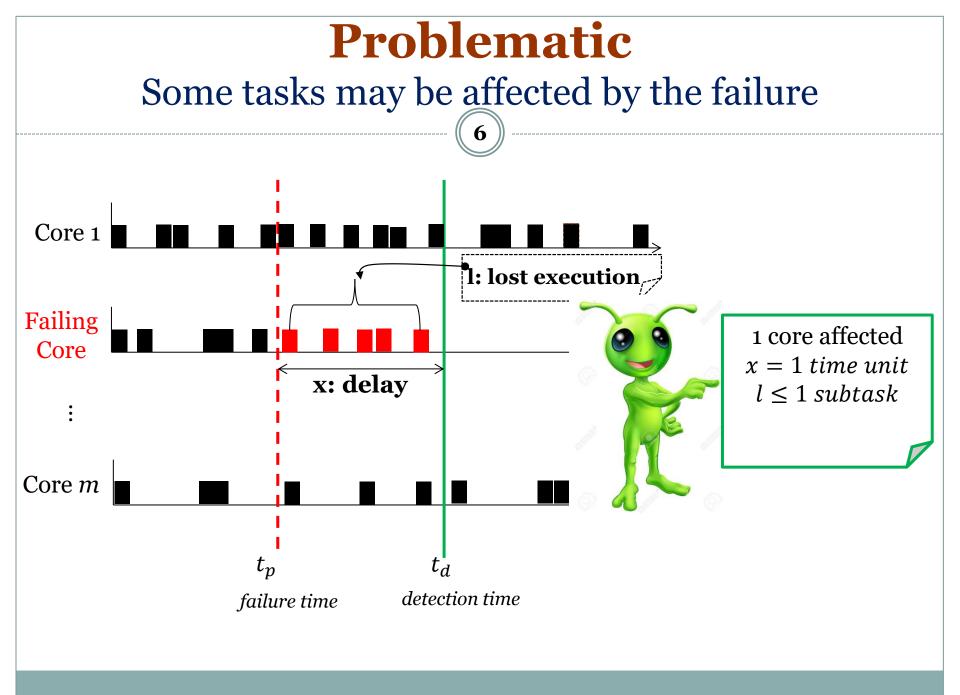
Scheduling by the Pfair algorithm PD2

- Optimal in our context
- Feasibility condition on *m*-cores : $U = \sum (U_i = \frac{C_i}{T_i}) \le m$



- Priority order: increasing pseudo-deadlines + rules for ex-aequo.





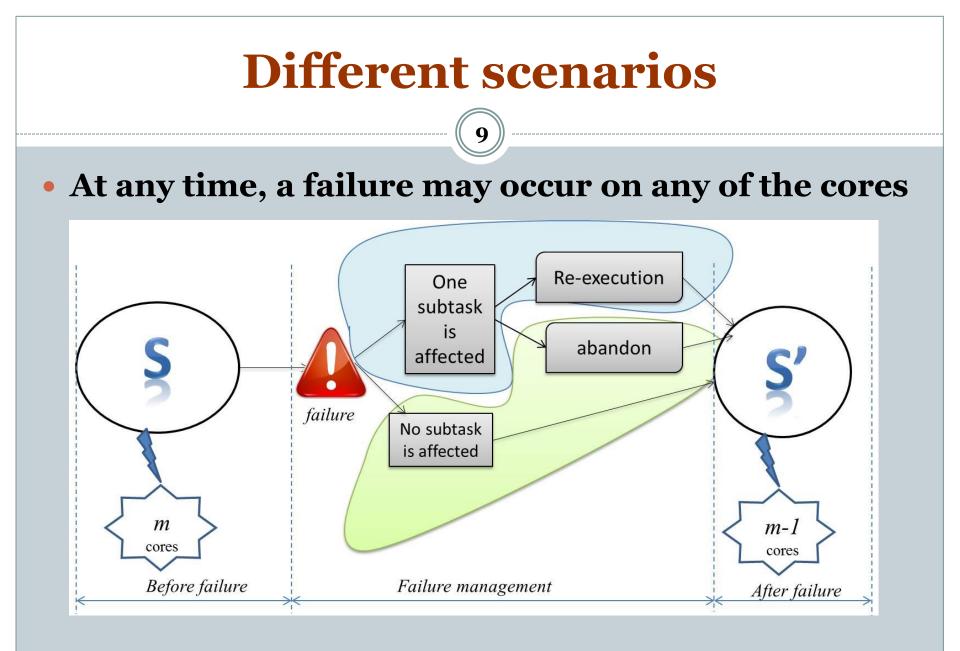
State of the art Existing techniques are not suitable

Classical approaches

- Hardware redundancy [Pradhan 1996]
 - × Provide each core with a spare or a twin
 - => Over redundant cores as needed
- Software redundancy [Koren et al, 2007]
 - × Provide to each task 2 copies: a primary and a backup
 - => Increase of system load
- Time redundancy [Kopetz et al. 2003]
 - × Exploit the slack between task completion and deadline
 - => similar to our approach
 - => useful only for transient and intermittant failures
- Most used in partitioned scheduling

Our goals Avoid the limitations of the classical techniques

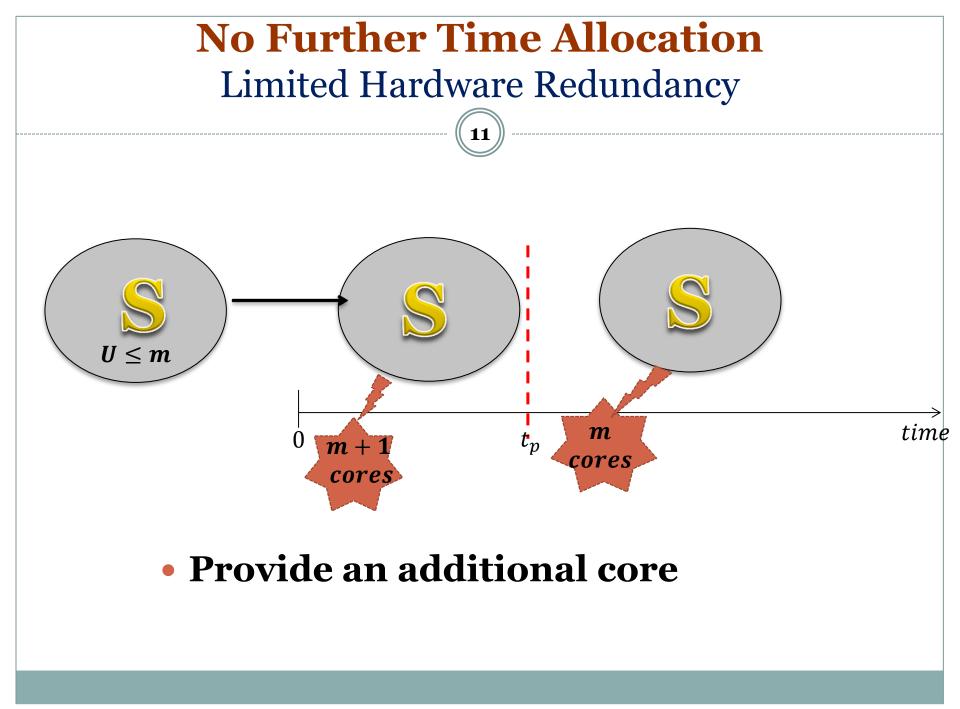
- Provide strictly the number of cores needed
 - $\times m = \lfloor U \rfloor + 1$
- Limit the hardware redundancy to one core
- Avoid the use of backup copies
- Resume only the lost execution



Two Possible Scenarios Allocate or not additional time to affected tasks

10

• No task is affected • Continue the execution • One affected task • Partial completion is acceptable × No further time allocation × eg. iterative tasks • Full completion is needed × Additional time allocation



First Feasibility Result

Limited Hardware Redundancy provide a valid schedule

12)

Notations

- $Sched_m^S$: PD2 schedule of S on a m-core processor
- $Sched_{(m+1)\rightarrow m}^{S}$: PD2 schedule of S with limited hardware redundancy
- *Pending(Sched, t)* : List of pending subtasks in schedule *Sched* at time t
- $Exec(\tau_i^j, Sched)$: Execution time of subtask τ_i^j in schedule Sched

Assumption

- $U \le m => Sched_m^S$ and $Sched_{m+1}^S$ are valid and fair

• Theorem

The resulting schedule $Sched_{(m+1)\to m}^S$ is valid and fair

$$\forall \tau_i^j, \quad r_i^j \leq Exec(\tau_i^j, Sched_{(m+1) \to m}^S) < d_i^j$$

Proof Based on two lemmas

• Lemma 1

At any time, subtasks pending in are $Sched_{(m+1)\to m}^{S}$ also pending in $Sched_{m}^{S}$ $Pending(\tau_{i}^{j}, Sched_{(m+1)\to m}^{S}) \subseteq Pending(\tau_{i}^{j}, Sched_{m}^{S})$ **Lemma 2**

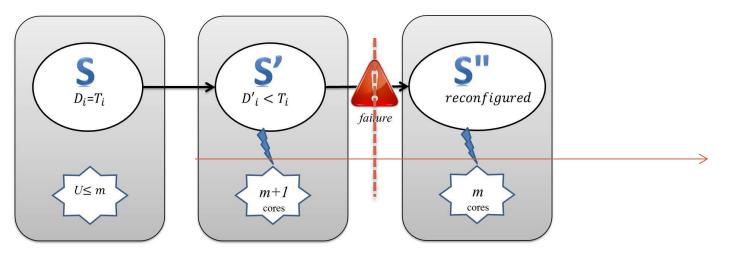
Any subtask is scheduled earlier in $Sched_{(m+1)\to m}^{S}$ than in $Sched_{m}^{S}$ $\forall \tau_{i}^{j}, Exec(\tau_{i}^{j}, Sched_{(m+1)\to m}^{S}) \leq Exec(\tau_{i}^{j}, Sched_{m}^{S})$ • **Proof of the theorem**

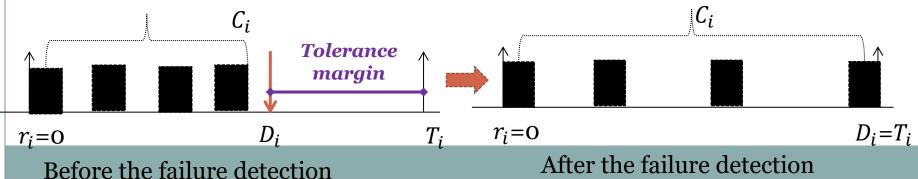
- At $t \leq t_p Sched_{(m+1) \rightarrow m}^S = Sched_{(m+1)}^S$ valid and fair
- $-\operatorname{At} t_p \leq t \leq H, \forall \tau_i^j, r_i^j \leq \operatorname{Exec}\left(\tau_i^j, \operatorname{Sched}_{(m+1) \to m}^S\right) \leq \operatorname{Exec}\left(\tau_i^j, \operatorname{Sched}_m^S\right) < d_i^j$

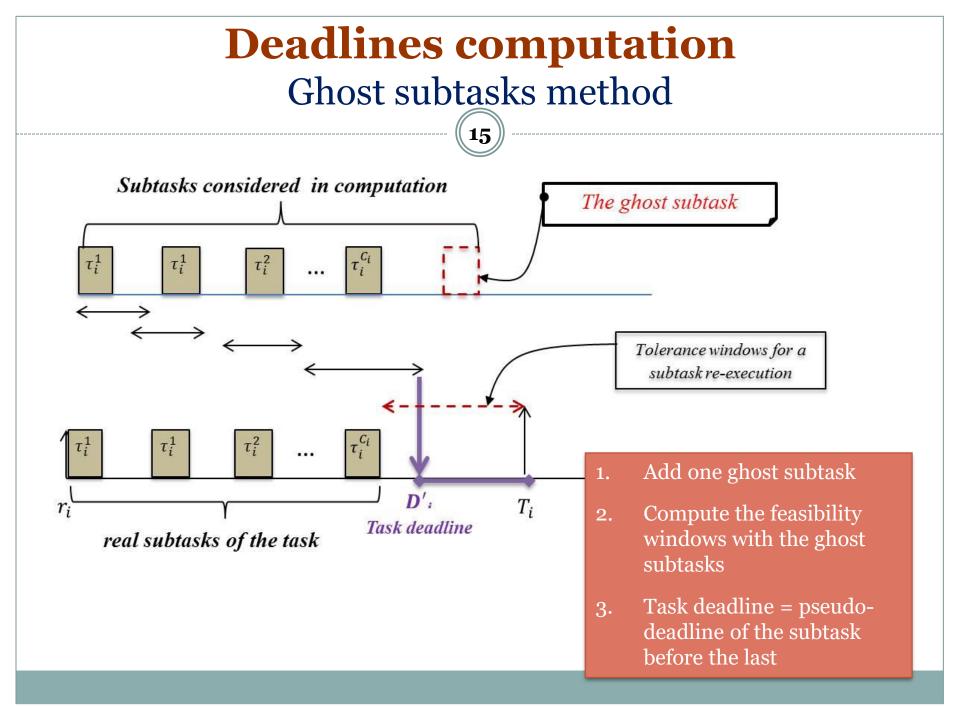
- At $t > H Sched_{(m+1) \to m}^{S} = Sched_{(m)}^{S}$ valid and fair

Additional Time Allocated Two combined techniques

Limited hardware redundancy







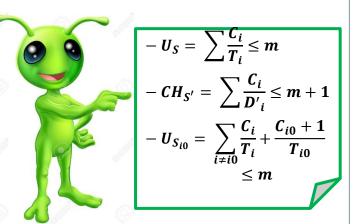
Dynamic Reconfiguration

Subtasks switch from one system parameters to another

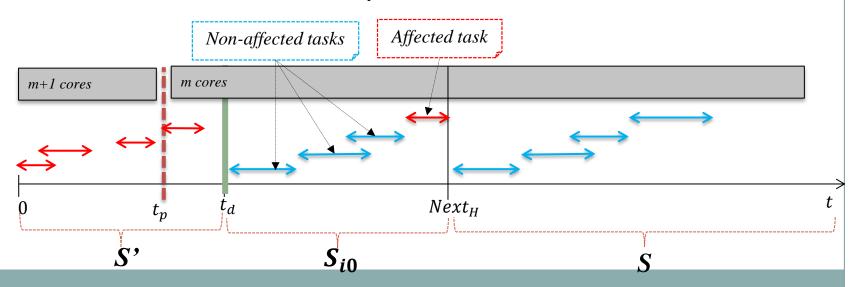
16

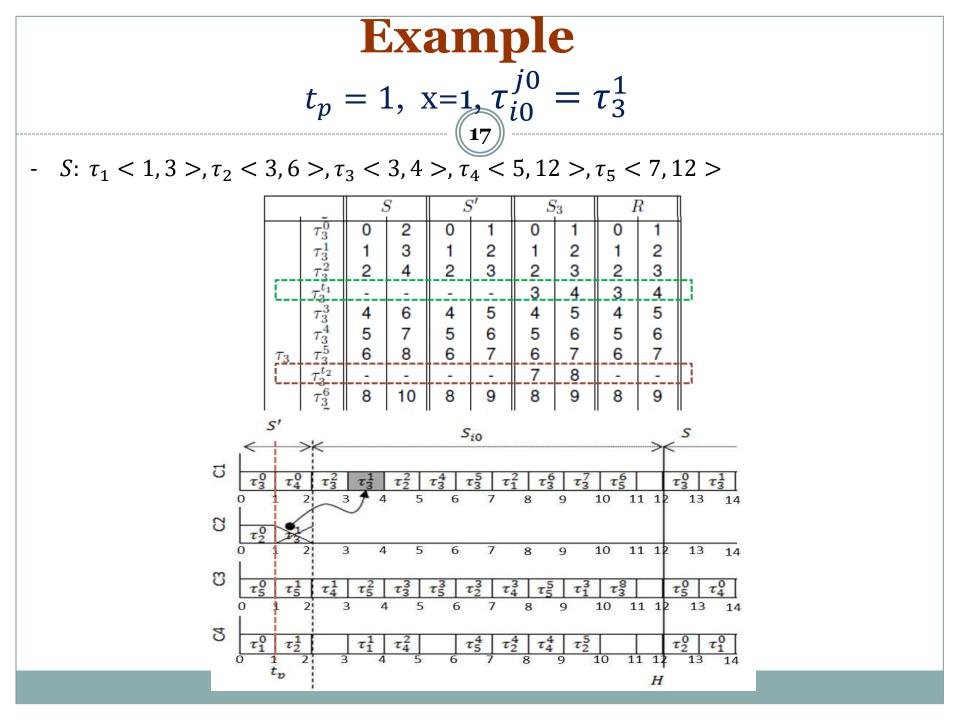
Involved systems

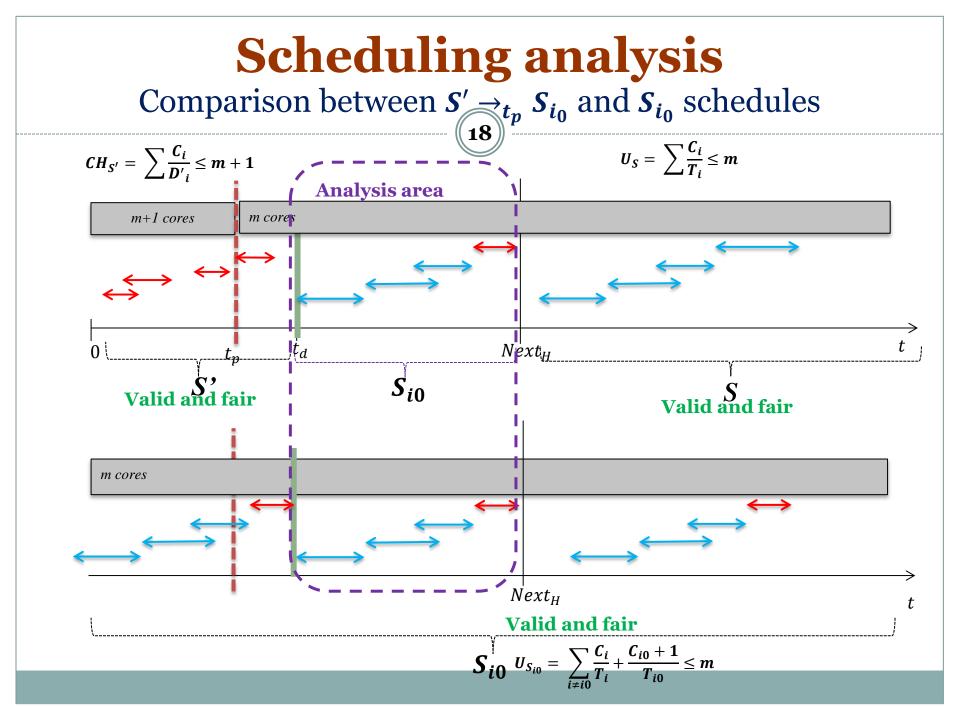
- Initial System S: $\tau_i < C_i, D_i = T_i >$
- Constrained System S': $\tau'_i < C_i, D'_i < T_i >$
- Intermediate System S_{i_0} : $\tau_{i \neq i_0} < C_i, D_i = T_i >$, $\tau_{i_0} < C_{i_0} + 1, D_{i_0} = T_i$

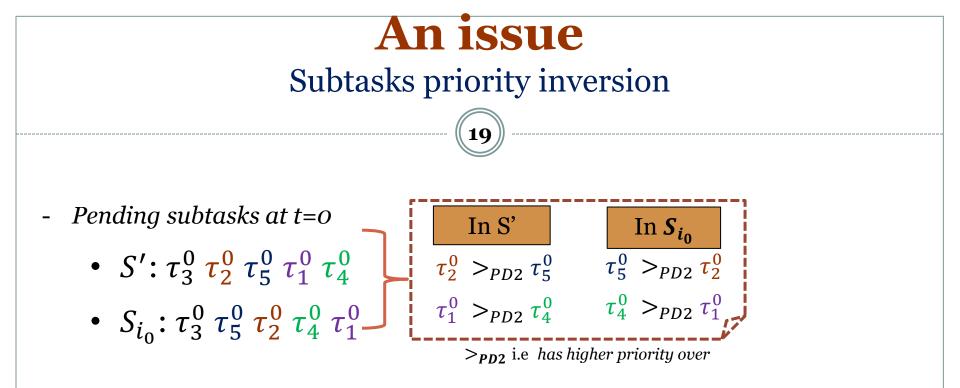


Resulting system notation: $S' \rightarrow_{t_p} S_{i_0}$

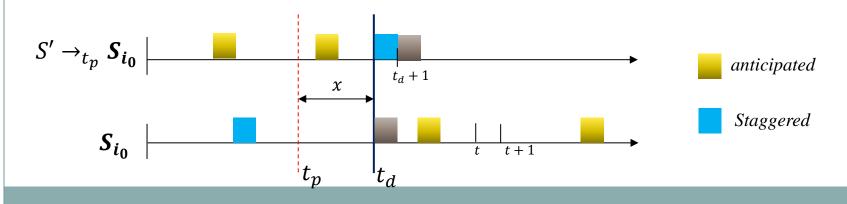


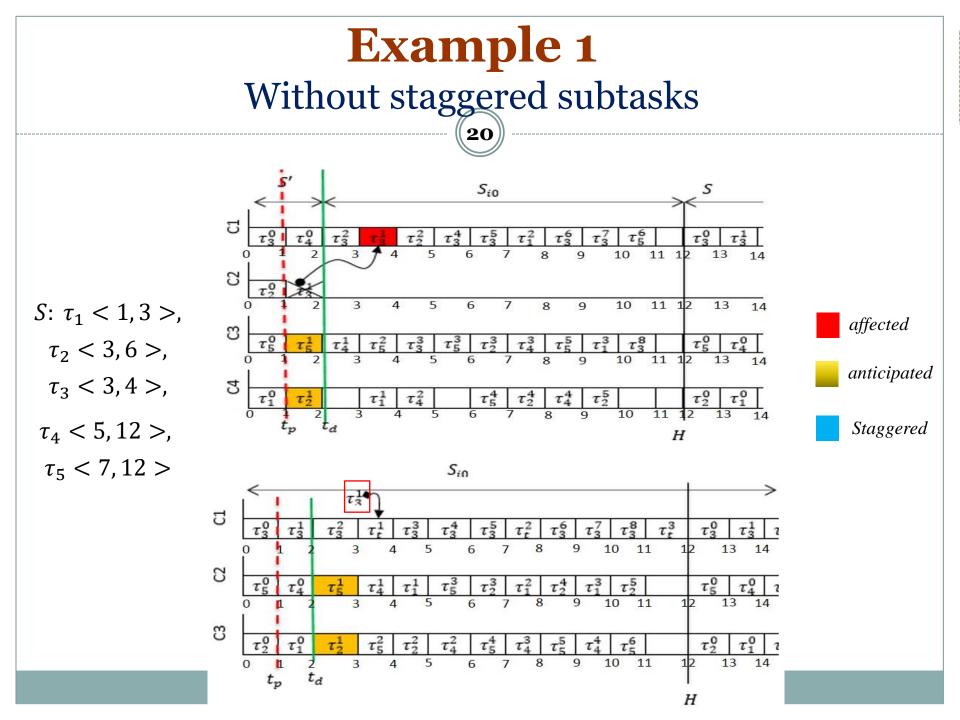


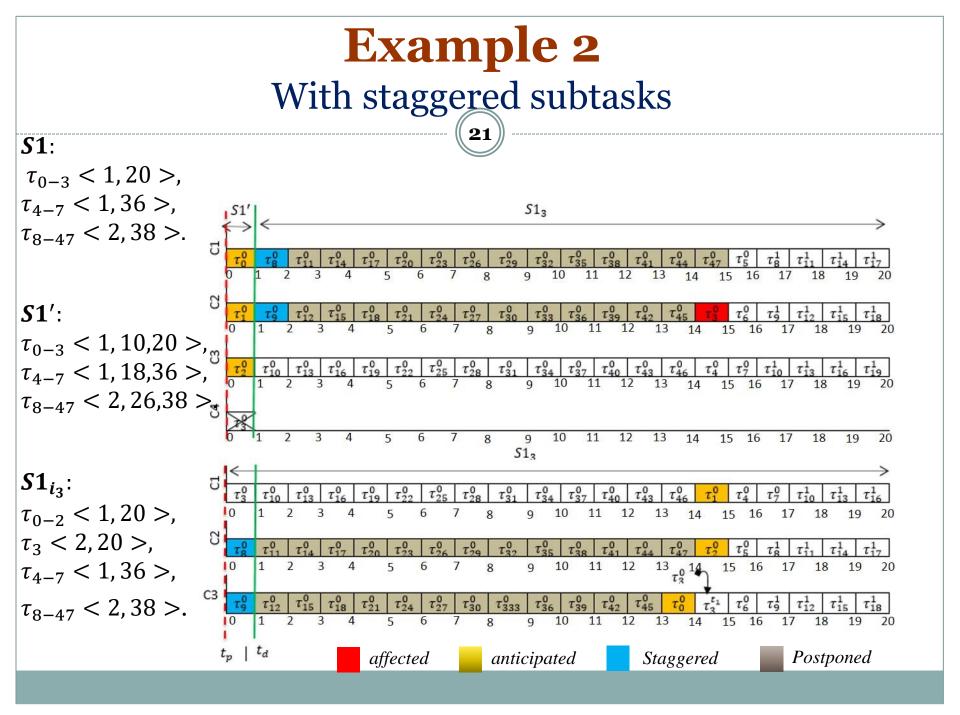




2 kinds of subtasks at t_d







Our Result

The resulting scheduling is valid and fair

22

Assumptions

- *S* is feasible on *m* cores
- *S'* is feasible on m+1 cores
- S_{i_0} is feasible on *m* cores
- There is no staggered subtask and t_p is arbitrary
- Or there are some staggered subtasks and $t_p = 0[H]$

Theorem

The resulting scheduling of $S' \rightarrow_{t_p} S_{i_0}$ on $(m + 1) \rightarrow m$ cores is valid and fair

$$\forall \tau_i^j, \qquad r_i^j \leq Exec\left(\tau_i^j, S' \rightarrow_{t_p} S_{i_0}\right) < d_i^j$$

Proof

For any t_p with no staggered subtasks

23

• **Proposition 1** (Remark 1)

R(t): a subtask is not scheduled later in $S' \rightarrow_{t_p} S_{i_0}$ than in S_{i_0}

Proof

At any time $t \ge t_p$:

- **Prop1(t)**: $Pending(\tau_i^j, S' \rightarrow_{t_p} S_{i_0}) \Rightarrow Pending(\tau_i^j, S_{i_0})$
- Prop2(t):

 {∃ k subtasks with higher priority than τ^j_i in S' →_{tp} S_{i0}}
 ⇒ {∃ ≥ k subtasks with higher priority than τ^j_i in S_{i0}}

 Conclusion

$$r_i^j(S_{i_0}) \le Exec\left(\tau_i^j, S' \rightarrow_{t_p} S_{i_0}\right) \le Exec\left(\tau_i^j, S_{i_0}\right) < d_i^j(S_{i_0})$$

Proof

For $t_p = 0[H]$ with some staggered subtasks

24

Notations

 τ_s^g : staggered subtask τ_u^p : postponed subtask τ_i^j : any subtask

• **Proposition 2** (Remark 2)

- x staggered subtasks => x + 1 anticipated subtasks
- The staggered subtasks meet their pseudo-deadlines $Exec(\tau_s^g, S' \rightarrow_{t_p} S_{i_0}) = t_d < d_s^g(S_{i_0})$
- The postponed subtasks meet their pseudo-deadlines $\{Exec(\tau_u^p, S_{i_0}) = t\} \Rightarrow \{Exec(\tau_u^p, S' \rightarrow_{t_p} S_{i_0}) = t + 1 < d_u^p(S_{i_0})\}$
- When the postponement ends subtasks are scheduled earlier $\underbrace{\text{If } \left\{ Exec(\tau_i^j, S_{i_0}) \leq t \right\}}_{\text{Then } R(t) \text{ of Proposition 1 is true.}} S_{i_0} \leq t \\$

Conclusion

 $r_i^j(S_{i_0}) \le Exec\left(\tau_i^j, S' \to_{t_p} S_{i_0}\right) < d_i^j(S_{i_0})$

Future works

Complete the proof and explore other situations

25

- Proof: $t_p \neq H$ and there are staggered subtasks
- The failure detection delay *x* is larger
 - \checkmark Use an aperiodic flow
- Several cores are affected
 - ✓ Reduce the system load (delete tasks or subtasks)

