
Failure Tolerance of Multicore Real -Time

Systems scheduled by a Pfair Algorithm

Yves MOUAFO

Supervisors
A. CHOQUET-GENIET, G. LARGETEAU-SKAPIN

OUTLINES

1. Context and Problematic

2. State of the art

3. Different scenarios

4. First feasibility result

5. Second feasibility result

6. Future works

2

The Context
Increased use of multicore platforms in Real-Time System

3

IMA Design X-by-wire

+

Ὕ

Ὀ

ὶ

ὅ

ὶ Ὀ ὶ Ὕ

1st release
1st deadline

2nd release

Relative deadline

Period

WCET

time

Temporal modelling of a periodic task

-
Independa
nt
- periodic
- ὶ π
- Ὀ Ὕ

Context
Scheduling by the Pfair algorithm PD2

4

- Optimal in our context

- Feasibility condition on m-cores : Ὗ ВὟ ά

† ὅȟὝ O ὅ subtasks ʐ ÒȟÄ

ὶ=0

Ὀ=Ὕ

ὅ

ὶ
Ὦ

Ὗ
 Ὠ

Ὦ ρ

Ὗ

Feasibility windows

Pseudo-release date Pseudo-deadline

- Priority order: increasing pseudo-deadlines +
 rules for ex-aequo.

Problematic
Failure occurrence on any core at any time

5

Several transistors on a single chip

Feasibility condition may not longer be satisfied

Increased
processing
capacity

Cheap

Low weight
Small size

Low energy
consumption

Problematic
Some tasks may be affected by the failure

6

Core 1

Failing
Core

Core m

é

ὸ ὸ

x: delay

l : lost execution

failure time detection time

1 core affected
ὼ ρ ὸὭάὩ όὲὭὸ
ὰ ρ ίόὦὸὥίὯ

State of the art
Existing techniques are not suitable

7

·Classical approaches

¹ Hardware redundancy [Pradhan 1996]

ėProvide each core with a spare or a twin

º => Over redundant cores as needed

¹ Software redundancy [Koren et al, 2007]

ėProvide to each task 2 copies: a primary and a backup

º => Increase of system load

¹ Time redundancy [Kopetz et al. 2003]

ėExploit the slack between task completion and deadline

º => similar to our approach

º => useful only for transient and intermittant failures

·Most used in partitioned scheduling

Our goals
Avoid the limitations of the classical techniques

8

¹ Provide strictly the number of cores needed

ėά ỗὟỘ ρ

¹ Limit the hardware redundancy to one core

¹ Avoid the use of backup copies

¹ Resume only the lost execution

Different scenarios

·At any time, a failure may occur on any of the cores

9

Two Possible Scenarios
Allocate or not additional time to affected tasks

10

·No task is affected

¹Continue the execution

·One affected task

¹Partial completion is acceptable

ėNo further time allocation

ėeg. iterative tasks

¹ Full completion is needed

ėAdditional time allocation

[RTNS 2015]

[VECOS 2016]

No Further Time Allocation
Limited Hardware Redundancy

11

·Provide an additional core

╤ □

π ὸὭάὩ
□
╬▫►▄▼

□
╬▫►▄▼

ὸ

First Feasibility Result
Limited Hardware Redundancy provide a valid schedule

12

·Notations

- ὛὧὬὩὨᴼ : PD2 schedule of S with limited hardware redundancy

·Theorem

†ᶅȟ ὶ ὉὼὩὧ†ȟὛὧὬὩὨᴼ Ὠ

The resulting schedule ╢╬▐▄▀□ □O
╢ is valid and fair

- Ὗ ά => ὛὧὬὩὨ and ὛὧὬὩὨ are valid and fair

- ὛὧὬὩὨ : PD2 schedule of S on a m-core processor

·Assumption

- ὖὩὲὨὭὲὫὛὧὬὩὨȟὸ : List of pending subtasks in schedule ὛὧὬὩὨ at time t

- ὉὼὩὧ†ȟὛὧὬὩὨ : Execution time of subtask † in schedule ὛὧὬὩὨ

Proof
"ÁÓÅÄ ÏÎ Ô×Ï ÌÅÍÍÁÓ

13

·Lemma 1
At any time, subtasks pending in are ὛὧὬὩὨᴼ also pending in ὛὧὬὩὨ

ὖὩὲὨὭὲὫ†ȟὛὧὬὩὨᴼ Ṗ ὖὩὲὨὭὲὫ†ȟὛὧὬὩὨ)

·Proof of the theorem

·Lemma 2

Any subtask is scheduled earlier in ὛὧὬὩὨᴼ than in ὛὧὬὩὨ

†ᶅȟὉὼὩὧ†ȟὛὧὬὩὨᴼ ὉὼὩὧ†ȟὛὧὬὩὨ)

- At ὸ ὸ ὛὧὬὩὨᴼ = ὛὧὬὩὨ valid and fair

- At ὸ ὸ Ὄȟᶅ†ȟὶ ὉὼὩὧ†ȟὛὧὬὩὨᴼ ὉὼὩὧ†ȟὛὧὬὩὨ) Ὠ
(lemma2)

- At ὸ Ὄ ὛὧὬὩὨᴼ = ὛὧὬὩὨ valid and fair

Additional Time Allocated
Two combined techniques

14

·Limited hardware redundancy

·Constrain and release

Before the failure detection After the failure detection

ὶ=0 Ὕ

ὅ

Ὀ ὶ=0 Ὀ=Ὕ

ὅ

Tolerance
margin

Deadlines computation
Ghost subtasks method

15

1. Add one ghost subtask

2. Compute the feasibility
windows with the ghost
subtasks

3. Task deadline = pseudo-
deadline of the subtask
before the last

Dynamic Reconfiguration
Subtasks switch from one system parameters to another

16

·Involved systems

 - Initial System Ὓȡ Ⱳ░ ╒░ȟ╓░ ╣░

- Constrained System Ὓȡ Ⱳ░ ╒░ȟ╓ᴂ░ ╣░

- Intermediate System Ὓȡ Ⱳ░░ ╒░ȟ╓░ ╣░ ȟ
 † ὅ ρȟὈ Ὕ

Resulting system notation: ╢ᴂO◄▬╢░

ὸ ὸ ὔὩὼὸ π

m cores m+1 cores

ὸ

Sô S ╢░

Non-affected tasks Affected task

 ╤╢
╒░
╣░

□

 ╒╗╢
╒░
╓░

□

 ╤╢░
╒░
╣░

░░

╒░
╣░

□

Example
ὸ ρ, x=1, † †

17

- Ὓȡ † ρȟσ ȟ† σȟφ ȟ† σȟτ ȟ † υȟρςȟ† χȟρς

Scheduling analysis
Comparison between ╢ᴂO◄▬╢░ and ╢░ schedules

18

ὸ ὸ ὔὩὼὸ π

m+1 cores

ὸ

Sô S ╢░

m cores

╤╢
╒░
╣░

□ ╒╗╢
╒░
╓░

□

Valid and fair Valid and fair

Analysis area

╢░

m cores

ὸ ὔὩὼὸ

╤╢░
╒░
╣░

░░

╒░
╣░

□

Valid and fair

An issue
Subtasks priority inversion

19

·2 kinds of subtasks at ◄▀

- Pending subtasks at t=0

ÅὛ: † † † † †

ÅὛ : † † † † †

In Sô In ╢░

† †

† †

† †

† †

╟╓ i.e has higher priority over

╢░

ὛᴂO ╢░

ὼ

ὸ ὸ

ὸ ρ
anticipated

ὸ ὸ ρ

Staggered

No staggered subtasks
- Swich directly from Ὓὸέ Ὓ

Otherwise
- Transient period needed

Example 1
Without staggered subtasks

20

Ὓȡ † ρȟσ ȟ

† σȟφ ȟ

† σȟτ ȟ

 † υȟρςȟ

† χȟρς

Remark 1 : No staggered
At ὸ ὸ : a subtask is scheduled in

ὛᴂOὛat the same time than in Ὓ or

earlier

anticipated

Staggered

affected

Example 2
With staggered subtasks

21
╢ȡ
 † ρȟςπȟ
† ρȟσφȟ
† ςȟσψȢ

╢ ȡ
† ρȟρπȟςπ ȟ
† ρȟρψȟσφȟ
† ςȟςφȟσψȢ

╢░ȡ

† ρȟςπȟ
† ςȟςπȟ
† ρȟσφȟ

† ςȟσψ .

Remarks 2: There are some staggered at ◄▀
- 2 staggered =>3 anticipated
- Staggered are scheduled at time ὸ => subtask postponement
- Postponed at t => scheduled at t+1
- 2 anticipated are schedules in Ὓ =>postponement ends and

Remark 1 is verified .

Postponed anticipated Staggered affected

