
Failure Tolerance of Multicore Real-Time

Systems scheduled by a Pfair Algorithm

Yves MOUAFO

Supervisors
A. CHOQUET-GENIET, G. LARGETEAU-SKAPIN

OUTLINES

1. Context and Problematic

2. State of the art

3. Different scenarios

4. First feasibility result

5. Second feasibility result

6. Future works

2

The Context
Increased use of multicore platforms in Real-Time System

3

IMA Design X-by-wire

+

𝑇𝑖

𝐷𝑖

𝑟𝑖

𝐶𝑖

𝑟𝑖 + 𝐷𝑖 𝑟𝑖 + 𝑇𝑖

1st release
1st deadline

2nd release

Relative deadline

Period

WCET

time

Temporal modelling of a periodic task

-
Independa
nt
- periodic
- 𝑟𝑖 = 0
- 𝐷𝑖 = 𝑇𝑖

Context
Scheduling by the Pfair algorithm PD2

4

- Optimal in our context

- Feasibility condition on m-cores : 𝑈 = (𝑈𝑖=
𝐶𝑖

𝑇𝑖
) ≤ 𝑚

𝜏𝑖 < 𝐶𝑖 , 𝑇𝑖 > → 𝐶𝑖 subtasks τi
j
 ri

j
, di

j

𝑟𝑖=0

𝐷𝑖=𝑇𝑖

𝐶𝑖

𝑟𝑖
𝑗
=

𝑗

𝑈𝑖
 𝑑𝑖

𝑗
=

𝑗 + 1

𝑈𝑖

Feasibility windows

Pseudo-release date Pseudo-deadline

- Priority order: increasing pseudo-deadlines +
 rules for ex-aequo.

Problematic
Failure occurrence on any core at any time

5

Several transistors on a single chip

Feasibility condition may not longer be satisfied

Increased
processing

capacity

Cheap

Low weight
Small size

Low energy
consumption

Problematic
Some tasks may be affected by the failure

6

Core 1

Failing
Core

Core m

…

𝑡𝑑 𝑡𝑝

x: delay

l: lost execution

failure time detection time

1 core affected
𝑥 = 1 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡
𝑙 ≤ 1 𝑠𝑢𝑏𝑡𝑎𝑠𝑘

State of the art
Existing techniques are not suitable

7

 Classical approaches

 Hardware redundancy [Pradhan 1996]

 Provide each core with a spare or a twin

 => Over redundant cores as needed

 Software redundancy [Koren et al, 2007]

 Provide to each task 2 copies: a primary and a backup

 => Increase of system load

 Time redundancy [Kopetz et al. 2003]

 Exploit the slack between task completion and deadline

 => similar to our approach

 => useful only for transient and intermittant failures

 Most used in partitioned scheduling

Our goals
Avoid the limitations of the classical techniques

8

 Provide strictly the number of cores needed

 𝑚 = 𝑈 + 1

 Limit the hardware redundancy to one core

 Avoid the use of backup copies

 Resume only the lost execution

Different scenarios

 At any time, a failure may occur on any of the cores

9

Two Possible Scenarios
Allocate or not additional time to affected tasks

10

 No task is affected

 Continue the execution

 One affected task

 Partial completion is acceptable

No further time allocation

eg. iterative tasks

 Full completion is needed

Additional time allocation

[RTNS 2015]

[VECOS 2016]

No Further Time Allocation
Limited Hardware Redundancy

11

 Provide an additional core

𝑼 ≤ 𝒎

0 𝑡𝑖𝑚𝑒
𝒎 + 𝟏
𝒄𝒐𝒓𝒆𝒔

𝒎
𝒄𝒐𝒓𝒆𝒔

𝑡𝑝

First Feasibility Result
Limited Hardware Redundancy provide a valid schedule

12

 Notations

- 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 : PD2 schedule of S with limited hardware redundancy

 Theorem

∀𝜏𝑖

𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 < 𝑑𝑖
𝑗

The resulting schedule 𝑺𝒄𝒉𝒆𝒅 𝒎+𝟏 →𝒎
𝑺 is valid and fair

- 𝑈 ≤ 𝑚 => 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆 and 𝑆𝑐ℎ𝑒𝑑𝑚+1

𝑆 are valid and fair

- 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆 : PD2 schedule of S on a m-core processor

 Assumption

- 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝑆𝑐ℎ𝑒𝑑, 𝑡) : List of pending subtasks in schedule 𝑆𝑐ℎ𝑒𝑑 at time t

- 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑) : Execution time of subtask 𝜏𝑖

𝑗
 in schedule 𝑆𝑐ℎ𝑒𝑑

Proof
Based on two lemmas

13

 Lemma 1
At any time, subtasks pending in are 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 also pending in 𝑆𝑐ℎ𝑒𝑑𝑚
𝑆

𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆) ⊆ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆)

 Proof of the theorem

 Lemma 2

Any subtask is scheduled earlier in 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆 than in 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆

∀𝜏𝑖
𝑗
, 𝐸𝑥𝑒𝑐(𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆) ≤ 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆)

- At 𝑡 ≤ 𝑡𝑝 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆 = 𝑆𝑐ℎ𝑒𝑑 𝑚+1

𝑆 valid and fair

- At 𝑡𝑝 ≤ 𝑡 ≤ 𝐻, ∀𝜏𝑖
𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚

𝑆 ≤ 𝐸𝑥𝑒𝑐(𝜏𝑖
𝑗
, 𝑆𝑐ℎ𝑒𝑑𝑚

𝑆) < 𝑑𝑖
𝑗

(lemma2)

- At 𝑡 > 𝐻 𝑆𝑐ℎ𝑒𝑑 𝑚+1 →𝑚
𝑆 = 𝑆𝑐ℎ𝑒𝑑 𝑚

𝑆 valid and fair

Additional Time Allocated
Two combined techniques

14

 Limited hardware redundancy

 Constrain and release

Before the failure detection After the failure detection

𝑟𝑖=0 𝑇𝑖

𝐶𝑖

𝐷𝑖 𝑟𝑖=0 𝐷𝑖=𝑇𝑖

𝐶𝑖

Tolerance
margin

Deadlines computation
Ghost subtasks method

15

1. Add one ghost subtask

2. Compute the feasibility
windows with the ghost
subtasks

3. Task deadline = pseudo-
deadline of the subtask
before the last

Dynamic Reconfiguration
Subtasks switch from one system parameters to another

16

 Involved systems

 - Initial System 𝑆: 𝝉𝒊 < 𝑪𝒊, 𝑫𝒊 = 𝑻𝒊 >

- Constrained System 𝑆′: 𝝉𝒊
′ < 𝑪𝒊, 𝑫′𝒊 < 𝑻𝒊 >

- Intermediate System 𝑆𝑖0: 𝝉𝒊≠𝒊𝟎 < 𝑪𝒊, 𝑫𝒊 = 𝑻𝒊 >,
 𝜏𝑖0 < 𝐶𝑖0 + 1,𝐷𝑖0 = 𝑇𝑖0 >

Resulting system notation: 𝑺′ →𝒕𝒑 𝑺𝒊𝟎

𝑡𝑝 𝑡 𝑁𝑒𝑥𝑡𝐻 0

m cores m+1 cores

𝑡𝑑

S’ S 𝑺𝒊𝟎

Non-affected tasks Affected task

− 𝑼𝑺 =
𝑪𝒊

𝑻𝒊
≤ 𝒎

− 𝑪𝑯𝑺′ =
𝑪𝒊

𝑫′
𝒊
≤ 𝒎 + 𝟏

− 𝑼𝑺𝒊𝟎
=

𝑪𝒊

𝑻𝒊
𝒊≠𝒊𝟎

+
𝑪𝒊𝟎 + 𝟏

𝑻𝒊𝟎

≤ 𝒎

Example
𝑡𝑝 = 1, x=1, 𝜏𝑖0

𝑗0
= 𝜏3

1
17

- 𝑆: 𝜏1 < 1, 3 >, 𝜏2 < 3, 6 >, 𝜏3 < 3, 4 >, 𝜏4 < 5, 12 >, 𝜏5 < 7, 12 >

Scheduling analysis
Comparison between 𝑺′ →𝒕𝒑 𝑺𝒊𝟎 and 𝑺𝒊𝟎 schedules

18

𝑡𝑝 𝑡 𝑁𝑒𝑥𝑡𝐻 0

m+1 cores

𝑡𝑑

S’ S 𝑺𝒊𝟎

m cores

𝑼𝑺 =
𝑪𝒊

𝑻𝒊
≤ 𝒎 𝑪𝑯𝑺′ =

𝑪𝒊

𝑫′
𝒊
≤ 𝒎 + 𝟏

Valid and fair Valid and fair

Analysis area

𝑺𝒊𝟎

m cores

𝑡 𝑁𝑒𝑥𝑡𝐻

𝑼𝑺𝒊𝟎
=

𝑪𝒊

𝑻𝒊
𝒊≠𝒊𝟎

+
𝑪𝒊𝟎 + 𝟏

𝑻𝒊𝟎
≤ 𝒎

Valid and fair

An issue
Subtasks priority inversion

19

 2 kinds of subtasks at 𝒕𝒅

- Pending subtasks at t=0

• 𝑆′: 𝜏3
0 𝜏2

0 𝜏5
0 𝜏1

0 𝜏4
0

• 𝑆𝑖0: 𝜏3
0 𝜏5

0 𝜏2
0 𝜏4

0 𝜏1
0

In S’ In 𝑺𝒊𝟎

𝜏2
0 >𝑃𝐷2 𝜏5

0

𝜏5
0 >𝑃𝐷2 𝜏2

0

𝜏1
0 >𝑃𝐷2 𝜏4

0

𝜏4
0 >𝑃𝐷2 𝜏1

0

>𝑷𝑫𝟐 i.e has higher priority over

𝑺𝒊𝟎

𝑆′ →𝑡𝑝 𝑺𝒊𝟎

𝑥

𝑡𝑝 𝑡𝑑

𝑡𝑑 + 1
anticipated

𝑡 𝑡 + 1

Staggered

No staggered subtasks
- Swich directly from 𝑆′𝑡𝑜 𝑆𝑖0

Otherwise
- Transient period needed

Example 1
Without staggered subtasks

20

𝑆: 𝜏1 < 1, 3 >,

𝜏2 < 3, 6 >,

𝜏3 < 3, 4 >,

 𝜏4 < 5, 12 >,

𝜏5 < 7, 12 >

Remark 1: No staggered
At 𝑡 ≥ 𝑡𝑝 : a subtask is scheduled in

𝑆′ → 𝑆𝑖0at the same time than in 𝑆𝑖0 or

earlier

anticipated

Staggered

affected

Example 2
With staggered subtasks

21
𝑺𝟏:
 𝜏0−3 < 1, 20 >,
𝜏4−7 < 1, 36 >,
𝜏8−47 < 2, 38 >.

𝑺𝟏′:
𝜏0−3 < 1, 10,20 >,
𝜏4−7 < 1, 18,36 >,
𝜏8−47 < 2, 26,38 >.

𝑺𝟏𝒊𝟑:

𝜏0−2 < 1, 20 >,
𝜏3 < 2, 20 >,
𝜏4−7 < 1, 36 >,

𝜏8−47 < 2, 38 >.

Remarks 2: There are some staggered at 𝒕𝒅
- 2 staggered =>3 anticipated
- Staggered are scheduled at time 𝑡𝑑 => subtask postponement
- Postponed at t => scheduled at t+1
- 2 anticipated are schedules in 𝑆𝑖0 =>postponement ends and

Remark 1 is verified.

Postponed anticipated Staggered affected

Our Result
The resulting scheduling is valid and fair

22

 Assumptions

 - 𝑆 is feasible on m cores

 Theorem

∀𝜏𝑖
𝑗
, 𝑟𝑖

𝑗
≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 < 𝑑𝑖

𝑗

The resulting scheduling of 𝑆′ →𝑡𝑝 𝑆𝑖0 on (𝑚 + 1) → 𝑚 cores is valid and fair

- 𝑆′ is feasible on m+1 cores

- 𝑆𝑖0is feasible on m cores

- There is no staggered subtask and 𝑡𝑝 is arbitrary

- Or there are some staggered subtasks and 𝑡𝑝 = 0[𝐻]

Proof
For any 𝑡𝑝 with no staggered subtasks

23

 Proposition 1 (Remark 1)

 𝑟𝑖
𝑗

𝑆𝑖0 ≤ 𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 ≤ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆𝑖0 < 𝑑𝑖

𝑗
(𝑆𝑖0)

𝑅 𝑡 : a subtask is not scheduled later in 𝑆′ →𝑡𝑝 𝑆𝑖0 than in 𝑆𝑖0

Proof

- 𝐏𝐫𝐨𝐩𝟏 𝐭 : 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0) ⇒ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔(𝜏𝑖

𝑗
, 𝑆𝑖0)

- 𝐏𝐫𝐨𝐩𝟐 𝐭 :

∃ 𝑘 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡ℎ𝑎𝑛 𝜏𝑖
𝑗
𝑖𝑛 𝑆′ →𝑡𝑝 𝑆𝑖0

⇒ ∃ ≥ 𝑘 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑟 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡ℎ𝑎𝑛 𝜏𝑖
𝑗
𝑖𝑛 𝑆𝑖0

At any time 𝑡 ≥ 𝑡𝑝:

 Conclusion

Proof
For 𝑡𝑝 = 0[𝐻] with some staggered subtasks

24

 𝑟𝑖
𝑗

𝑆𝑖0 ≤ 𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 < 𝑑𝑖

𝑗
(𝑆𝑖0)

 Conclusion

 Proposition 2 (Remark 2)

 - 𝑥 staggered subtasks => 𝑥 + 1 anticipated subtasks

- The staggered subtasks meet their pseudo-deadlines

𝐸𝑥𝑒𝑐 𝜏𝑠
𝑔
, 𝑆′ →𝑡𝑝 𝑆𝑖0 = 𝑡𝑑 < 𝑑𝑠

𝑔
(𝑆𝑖0)

- The postponed subtasks meet their pseudo-deadlines

𝐸𝑥𝑒𝑐 𝜏𝑢
𝑝
, 𝑆𝑖0 = 𝑡 ⇒ 𝐸𝑥𝑒𝑐 𝜏𝑢

𝑝
, 𝑆′ →𝑡𝑝 𝑆𝑖0 = 𝑡 + 1 < 𝑑𝑢

𝑝
(𝑆𝑖0)

- When the postponement ends subtasks are scheduled earlier

If 𝐸𝑥𝑒𝑐 𝜏𝑖
𝑗
, 𝑆𝑖0 ≤ 𝑡 ⇒ 𝐸𝑥𝑒𝑐 𝜏𝑖

𝑗
, 𝑆′ →𝑡𝑝 𝑆𝑖0 ≤ 𝑡

Then 𝑅 𝑡 of Proposition 1 is true.

𝜏𝑠
𝑔
: staggered subtask 𝜏𝑢

𝑝
: postponed subtask

 Notations

 𝜏𝑖
𝑗
: any subtask

Future works
Complete the proof and explore other situations

25

 Proof: 𝑡𝑝 ≠ 𝐻 and there are staggered subtasks

 The failure detection delay x is larger

 Use an aperiodic flow

 Several cores are affected

 Reduce the system load (delete tasks or subtasks)

26

