

BUFFER DIMENSIONING IN THE AFDX CONTEXT

Benammar Nassima, Henri Bauer, Frédéric Ridouard, Pascal Richard July 5, 2016

LIAS/ISAF-ENSMA - Université de Poitiers

TABLE OF CONTENTS

Motivations

Problematic

Buffer Dimensioning

Experimentation

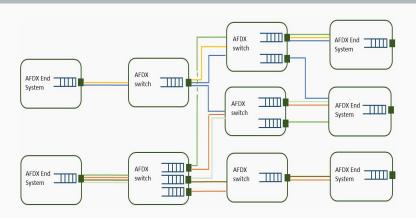
Case Study

Results

MOTIVATIONS

MOTIVATIONS

Motivations


Droblomatic

Dimensioning

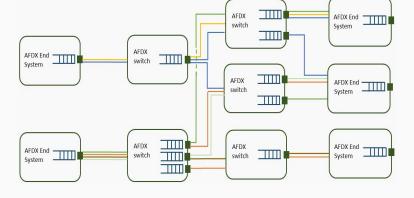
Dimensioning

Case Study

Conclusion

· Asynchronous components \rightarrow Competing frames in each buffer.

MOTIVATIONS


Motivations

Oroblomatic

Dimensioning

Case Study

Results

- Asynchronous components → Competing frames in each buffer.
- · Buffer dimensioning for certification reasons

BUFFER DESIGN

Motivations

Problematio

Buffer

Dimensioning

Experimentation

case stu

Conclusio

· In terms of bits: dynamic memory allocation.

BUFFER DESIGN

Motivations

Problemati

Butter Dimensionin

Experimentation

case stu

Conclusio

· In terms of bits: dynamic memory allocation.

· In terms of number of frames: fixed size buffer slots (static design).

NAIVE METHOD

Motivations

Problemation

Dimensioning

Experimentatio

Case Study

Results

Conclusion

Buffer occupancy in terms of bits.

Buffer occupancy in terms of number of frames.

ABOUT BUFFER DIMENSIONING

Motivations

Problematic

Buffer

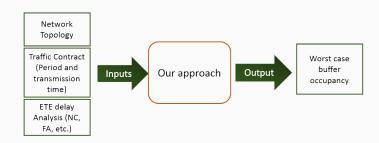
Experimentation

Daniela

- · Buffer size requirements derived from an ETE delay Method (Network Calculus (NC) [Boudec and Thiran, 2001]).
- Buffer occupancy in terms of number of competing frames using the Trajectory Approach (ETE Delay Analysis) with fixed frame sizes [Coelho et al., 2015].

BUFFER DIMENTIONING INPUTS

Motivations


Problematic

Buffer Dimensionin

Experimentat

Case Study

Conclusion

Note: Forward ETE Delay Analysis (FA) [Kemayo et al., 2014].

PROBLEMATIC

The maximum number of frames is not necessarily obtained at time when the backlog is maximized:

Motivations

Problematic

Dimensioning

Experimentatio

Case Stud

Conclusio

9

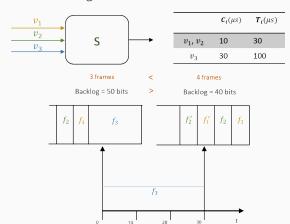
PROBLEMATIC

The maximum number of frames is not necessarily obtained at time when the backlog is maximized:

	$C_i(\mu s)$	$T_i(\mu s)$
v_1, v_2	10	30
v_3	30	100

Problematic

Buffer Dimensioning


Experimentatio Case Study

Conclusio

9

PROBLEMATIC

The maximum number of frames is not necessarily obtained at time when the backlog is maximized:

Note: the servicing rate is 1 bit/ μ s.

Problematic

Dimensioning

Case Study

Results

BUFFER DIMENSIONING PROBLEMATIC

Motivations

Buffer

Dimensioning

Case Study

Results

Conclusion

Using the **FIFO** policy is difficult to maximize the number of pending frames :

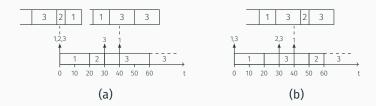
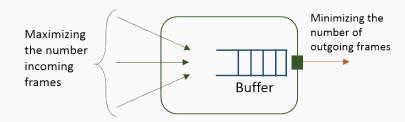


Figure: Arrival scenarios considering FIFO buffer.

PRINCIPLE


Motivations

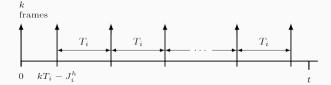
Problematio

Buffer Dimensioning

Experimentatio

Posults

INCOMING FRAMES


For every flow v_i crossing a node h, the incoming frames follow the scenario bellow:

Motivations

Problemation

Buffer Dimensioning

Case Study

INCOMING FRAMES

For every flow v_i crossing a node h, the incoming frames follow the scenario bellow:

Motivations

Problemation

Buffer Dimensioning

Experimentatio

Case Study

Results

Conclusion

frames
$$T_i \qquad T_i \qquad T_i$$

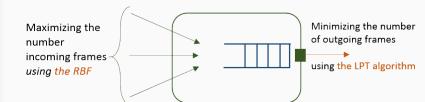
$$0 \quad kT_i - J_i^h$$

$$\cdot \ RBF_i^h(t) = \left(1 + \left\lfloor \frac{t + J_i^h}{T_i} \right\rfloor \right) C_i, \ RBF_i^h(0) = \underbrace{\left(1 + \left\lfloor \frac{J_i^h}{T_i} \right\rfloor \right)}_{k \ frames} C_i;$$

- $\cdot (k-1)T_i \leq J_i^h < kT_i;$
- · After that, all the frames arrive periodically.

The jitter J_i^h is obtained using an ETE delay analysis.

OUTGOING FRAMES


Motivations

Problematio

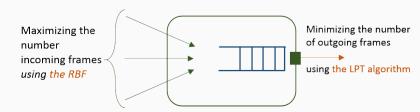
Buffer Dimensioning

Case Study

Results

OUTGOING FRAMES

Motivations


Problematic

Buffer Dimensioning

Case Study

Results

Conclusion

The Longest Processing Time algorithm [Graham, 1969] is optimal to minimize the number of the outgoing frames (proof: interchanged argument).

COMPUTATION

Motivations

, robicinatic

Buffer Dimensionin

Case Study

Recults

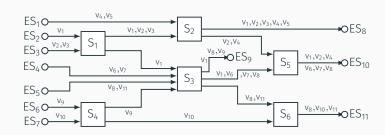
Conclusio

The number of frames present simultaneously at each time equals the Vertical Distance between two curves:

- Cumulative arrival curve following the scenario of incoming frames (RBF).
- · Service curve following the algorithm LPT.

TOPOLOGY

wotivations


Problematio

Buffer

Experimentat

Case Study

TRAFFIC CONTRACT

Notivations

Droblomatic

Buffer Dimensioning

Experimentation

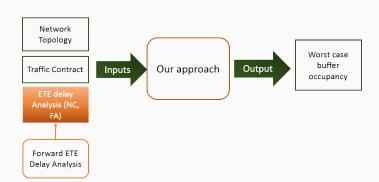
Case Study

	V_1,\ldots,V_5	V ₆	V ₇	V ₈	V9	V ₁₀	V ₁₁
Ci	10	38	12	22	64	22	22
T _i	60	320	150	80	126	48	320

ETE DELAY ANALYSIS

Motivations

Droblomati


Buffer

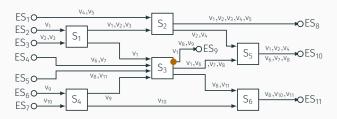
Dimensionin

Experimentati

Case Study

Results

ILLUSTRATION: MAXIMUM NUMBER OF PENDING FRAMES IN THE OUTPUT BUFFER OF PORT 1 FROM SWITCH 3


Motivations

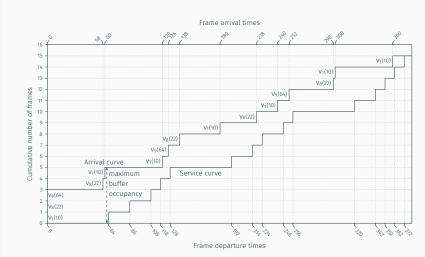
Problematio

Buffer Dimensionin

Case Study

Case Study

Illustration: maximum number of pending frames in the node $S_{31}\,$


Notivations

Problomatic

Buffer Dimensioning

Case Study

Results

Antivations

roblematic

BUTTER Dimensioning

Experimentatio

Case Study

Results

Conclusio

	Naive a	pproach	Our approach
Node	Backlog (bits)		Backlog (frames)
	(,		
ES_1	2000	2	2
ES_2	1000	1	1
ES_3	2000	2 5	2
ES ₄	5000		2
ES ₅	4400	2	2 2 2 1
ES ₆	6400	1	1
ES ₇	2200	1	1
S ₁₁	3000	3	3
S ₁₂	1000	1	1
S ₂₁ S ₂₂	5000	5	1 5 2 5
S ₂₂	2000	2	2
S ₃₁	9600	10	5
S ₃₂	8200	9	4 2
S ₃₃	4400	2	2
S ₄₁	6400	1	1
S ₄₂	2200	1	1
S ₅₁	13400	14	13
S ₆₁	6600	3	3

Table: Per bits and per frames approaches for buffer dimensioning in the configuration from using the FA method.

Antivations

Problematic

Butter Dimensioning

Experimentatio

Case Study

Results

Conclusio

	Naive a	pproach	Our approach
Node	Backlog (bits)		Backlog (frames)
ES ₁ ES ₂ ES ₃ ES ₄ ES ₅ ES ₆ ES ₇ S ₁₁ S ₁₂ S ₂₁ S ₂₂ S ₃₁ S ₃₂ S ₃₃ S ₄₁ S ₄₂ S ₅₁ S ₆₁	2000 1000 2000 5000 4400 2200 3000 1000 5000 9600 8200 4400 6400 2200 13400 6600	2 1 2 5 2 1 1 3 1 5 2 10 9 9 2 1 1 1 1 1 3	2 1 2 2 2 1 1 3 3 1 5 5 4 4 2 1 1 1 1 3 3 3 3 3 3 3 3 3 4 1 1 1 1 1 1

Table: Comparison of the two approaches for determining worst-case buffer occupancy in terms of frames.

Antivations

Problematic

Butter Dimensioning

Experimentation

Case Study

Results

Conclusio

		Naive a	pproach	Our approach
Node		Backlog (bits)	Backlog (frames)	Backlog (frames)
	ES ₁ ES ₂ ES ₃ ES ₄ ES ₅ ES ₆ ES ₇ S ₁₁ S ₁₂ S ₂₁ S ₂₂ S ₃₁ S ₃₂ S ₃₃ S ₄₁ S ₄₂ S ₅₁ S ₆₁	2000 1000 2000 5000 4400 2200 3000 1000 5000 9600 8200 4400 6400 2200 13400 6600	2 1 2 5 2 1 1 3 1 5 2 10 9 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2 2 2 1 1 3 3 1 5 5 5 4 4 2 1 1 1 1 3 3 3 3 3 3 3 4 4 1 1 1 1 1 1 1

Table: Comparison of the two approaches for determining worst-case buffer occupancy in terms of frames.

Antivations

Problematic

Butter Dimensioning

Experimentatio

Case Stud

Results

Conclusion

	Naive a	pproach	Our approach
Node	Backlog (bits)	Backlog (frames)	Backlog (frames)
ES ₁ ES ₂ ES ₃ ES ₄ ES ₅ ES ₆ ES ₇ S ₁₁ S ₁₂ S ₂₁ S ₂₁ S ₂₂ S ₃₁ S ₃₂ S ₃₃ S ₄₁ S ₄₂ S ₅₁ S ₆₁	2000 1000 2000 5000 4400 2200 3000 1000 5000 8200 4400 6400 2200 13400 6600	2 1 2 5 2 1 1 3 1 5 2 10 9 2 1 1 1 1 1 3	2 1 2 2 2 2 1 1 3 3 1 5 5 4 4 2 1 1 1 3 3 3 3 3 3 3 3 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table: Comparison of the two approaches for determining worst-case buffer occupancy in terms of frames.

SUMMARY

Motivations

Problemand

Dimensioning

Case Study

- Buffer dimensioning for AFDX switch buffers in terms of frames, given different frame sizes.
- · Our approach requires: a network topology, traffic contracts and an ETE delay Analysis.
- Using FIFO, it is difficult to maximize the number of frames
 → analyzing the incoming frames and the outgoing frames
 separately using resp. the RBF and the LPT algorithm.
- Experimentation → Tighter results besides the Naive computation.

REFERENCES I

4otivations

Problemati

Dimensioning

Case Study

Kesuits

Boudec, J.-Y. L. and Thiran, P. (2001). Network calculus: A Theory of Deterministic Queuing Systems for the Internet. Springer Verlag.

Coelho, R., Fohler, G., and Scharbarg, J.-L. (2015).

Dimensioning buffers for afdx networks with multiple priorities virtual links.

In Digital Avionics Systems Conference (DASC), 2015

In Digital Avionics Systems Conference (DASC), 2015 IEEE/AIAA 34th. IEEE.

Graham, R. L. (1969).

Bounds on multiprocessing timing anomalies.

SIAM Journal on Applied Mathematics, 17(2):416–429.

REFERENCES II

Motivations

Problemation

Butter Dimensioning

Evnerimenta

Case Study

Conclusion

Kemayo, G., Ridouard, F., Bauer, H., and Richard, P. (2014). A forward end-to-end delays analysis for packet switched networks.

In 22nd International Conference on Real-Time Networks and Systems. RTNS 2014.

ANNEX (1)

Motivations

Problemati

Buffer Dimensioning

Experimentatio

Case Study

Results

Conclusio

The Request Bound Function computes the amount of backlog generated by flow v_i crossing a node S:

$$RBF_{i}^{s}(t) = \left(1 + \left\lfloor \frac{t + J_{i}^{s}}{T_{i}} \right\rfloor\right) C_{i}$$
 (1)

For a non-preemptive sporadic flow v_i , the maximum number of frames generated during $[t_0,t_1]$ (with $t_1-t_0=t$) is: $\left(1+\left\lfloor\frac{t_1-t_0}{T_i}\right\rfloor\right)$. However, if $[t_0,t_1]$ is the time interval to consider in s, the corresponding interval in the source node of each flow v_i expands to: $[t_0-Smax_i^s,t_1-Smin_i^s]$, where $Smax_i^s$ and $Smin_i^s$ are respectively the longest and the shortest times needed for a frame from v_i to reach s from its source node. The jitter is defined as $J_i^s=Smax_i^s-Smin_i^s$.

ANNEX (2)

The worst-case traversal time of a flow from the source node to the destination node is split into two parts:

- · Constant part: propagation delay.
- Variable part: waiting time in the buffer due to interfering frames.
 The worst-case backlog computation in FA is based on the RBF of each flow, accounting the periodicity, the maximum frame size and the maximum jitter [Kemayo et al., 2014].

variable constant variable delay del

Figure: Element of ETE delay.

Motivations

Problematic

Dimensioning

Case Study

ANNEX (3)

Motivations

rioblematic

Dimensionin

Case Study

Conclusion

The iterative computation of the traversal time of a flow v_i to reach a node h+1, denoted $Smax_i^{h+1}$, depend on the worst-case traversal time to reach the previous node h, denoted $Bklg_i^h$, the waiting time in node h to be processed and the propagation delay L.

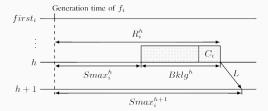


Figure: Iterative computation of the delay.

Note: R_i^h is the worst-case traversal delay for a frame of a flow v_i from its ingress node to a given node h.