

Laboratoire d'Informatique et d'Automatique pour les Systèmes

Towards an open collective knowledge base in testing results

Lahcène BRAHIMI

Sous la direction de: M. Ladjel BELLATRECHE

Lahcene.brahimi@ensma.fr

www.lias-lab.fr/members/lahcenebrahimi

- **1- Context and problematic**
- 2- Initiative of DBMS selection
- **3- Testing Types and methods**
- 4- Our test repository
 - Storage User interface
- 5- Searching usage of our test repository
 - Recommender system Algorithm Usage

Context and problematic

Mode [Golfarelli 11, J	Modèle Conceptuel Modèle Logique Modèle Physique								
Phase	Specification	Criteria	Evaluation tools						
Conceptual design	- Requirements, data analysis, modeling, workloads	- Security, quality, understandability (usability)	 Expert \& End-users (Syntax checking , mini DB, back to users, validation rules) 						
Deployment design (DBMS selection)	 System cost, features, portability, requirements, Hardware 	- Performance	Evaluation tools						
Logical design	- Data structure, data type, attribute domain	- Normalization	- Prototype check						
Physical design	- Hardware, storage structure, access methods	- Performance, response time, energy consumption	- Cost model, benchmarking						
Implementation	 Special storage, storage group, data files, data loading 	 Performance, integrity, concurrent access, security 	- Tuning (Integrated tools in the DBMS)						
Exploitation	 New data, access by users, new business requirements 	- Maintenance	 Audit, tuning (Integrated tools in the DBMS) 						

LIAS DBMS Selection and evaluation

J. Ron Phillips, Project Manager

B.F. Goodrich Company, Chemical Division

<u>.</u>....

Management Information Services

Cleveland, Ohio

DBMS SELECTION AND EVALUATION: PERSPECTIVES AND PRACTICAL ISSUES

DBMS SELECTION AND EVALUATION: PERSPECTIVES AND PRACTICAL ISSUES

Wednesday, May 31, 1978 4:00 p.m. to 5:30 p.m.

F. Brett Berlin, Captain, USAF - Panel Chairman Directorate of System Evaluation Federal Computer Performance Evaluation and Simulation Center (FEDSIM) Washington, D.C.

James R. Deline Vice President DBD Systems, Inc.

Wanda A. Reynolds, Supervisor Data Base Administration Texas State Comptroller Austin. Texas

As management information systems become more and more "data centered", the software chosen to handle the data becomes more crucial to the system's overall successful operation. But how does a user procure a DBNS that is right for his or her needs? What are the questions that the user should be asking the vendor, and how should the vendor answers be evaluated? These are the central issues to be considered by this panel session. In this session, therefore, panel members will consider the DBMS user's problems in selecting DBNS software. Based upon personal experience and insight in this area, each panel member will seek to identify the central issues which must be considered in the DBMS selection process, including such problems as benchmarking and other pre-selection testing, general selection criteria, cost evaluation, transportability, security, conversion, and reliability. After presenting some of the basic issues, the panel will come to some conclusions as to how managers in industry and government can approach their own DBMS procurements.

The panel will open with a short presentation by the session chairman, in which he will attempt to set the stage for the panel discussion. In particular, the presentation will deal with the following issues:

- 1. Why are these issues so important to the practitioner?
- How do the DBMS vendors view the selection/evaluation criteria currently used by many of its customers?
- What does the DBMS vendor see as the most important issue in a DBMS selection?
- 4. How much does the DBMS selection process cost?

1. Why are these issues so important to the practitioner?

2. How do the DBMS vendors view the selection/evaluation criteria currently used by many of its customers?

3. What does the DBMS vendor see as the most important issue in a DBMS selection?

4. How much does the DBMS selection process cost?

DB-Engines DBMS Ranking

[http://db-engines.com/en/ranking]

299 systems in ranking, March 2016

Rank							
Mar 2016	Feb 2016	Mar 2015	DBMS	Database Model	Mar 2016	Feb 2016	Mar 2015
1.	1.	1.	Oracle	Relational DBMS	1472.01	-4.13	+2.93
2.	2.	2.	MySQL 🗄	Relational DBMS	1347.71	+26.59	+86.62
3.	3.	3.	Microsoft SQL Server	Relational DBMS	1136.49	-13.73	-28.31
4.	4.	4.	MongoDB 🗄	Document store	305.33	-0.27	+30.32
5.	5.	5.	PostgreSQL	Relational DBMS	299.62	+10.97	+35.19
6.	6.	6.	DB2	Relational DBMS	187.94	-6.55	-10.91
7.	7.	7.	Microsoft Access	Relational DBMS	135.03	+1.95	-6.66
8.	8.	8.	Cassandra 🗄	Wide column store	130.33	-1.43	+23.02
9.	↑ 10.	1 0.	Redis 🛨	Key-value store	106.22	+4.14	+9.17
10.	4 9.	4 9.	SQLite	Relational DBMS	105.77	-1.01	+4.06

The popularity of DBMS is based on the following parameters:

- 1- Number of mentions of the system on websites (google, bing)
- 2- Frequency of technical discussions about the system on websites (Stack Overflow and DBA Stack Exchange)
- 3- Number of job offers
- 4- Number of profiles in professional networks (LinkedIn)

Research

Landscape DBMS

Data Platforms Landscape Map

CIAS Testing – Functional and non-functional

requirements

Functional requirements :

In the database field, the functional requirements describe :

- the functionalities
- the functioning

They are specifying : the calculation, data manipulation and processing, identification, creation, insert, delete, update and others.

Non-functional requirements: describe how the system will do:

- the security,
- the performance (response time, refresh time, processing time, data import/export, load time),
- the capacity (bandwidth transactions per hour, memory storage),
- the availability,
- the data integrity,
- the scalability
- the energy, etc.

Non-functional requirements are difficult to test.

Testing – Types and methods

[Golfarelli 11, Tort 11, Haftmann 07]

Туре	Actor	Objective	Specification
Structural testing	Designer / developer	Testing all phases of the life cycle of the database design	- Coceptual - Logical - Physical - Exploitation
Functional testing	End users	Testing a database as a final product	 Checking data integrity and consistency
Non-functional testing	Developper/ Administrator	Testing the interaction between the applications and their underlying databases	- Performance

Two testing methods exist to answer the question above:

1- Simulation

- Mathematical cost model - Formal methods

is based on parameters related to the principal dimensions of the database :

- Schema (length of an attribute)
- Platform (disk page size)
- Workload (selectivity factors)
- DBMS Operating system
- Access methods and algorithms
- Metrics

2- Hardware experimentation

Hardware experimentation

Testing environment

		[Roukh 2015]
Laboratory	LIAS/ENSMA	1
Time	14/05/2015	
Platform	Marque: Dell precision T1500	
	CPU: Intel Core i5 2.27GHz	
	Memory: 4GB of DDR3	
Operating System	Ubuntu 14.04 LTS kernel 3.13	
Deployment	Centralized	
DBMS	Oracle 11gR2	
Dataset	Star Schema Benchmark (SSB) datasets	
	Size: 100 GB	
Workload	SSB queries	
Access methods	Materialized views	
Algorithm	Nondominated Sorting Genetic Algorithm NSGA II	
Metrics	Response time CPU_Cost IO_Cost Energy	
Hypothesis	Without cache	

The same dimensions that are repeated in the testing (Platform, DBMS, operating system, workload, dataset, metrics ...)

2. TPC (The Transaction Processing Performance Council)

These tests are stored in websites of TPC such as TPC-H benchmarking It uses the same dimensions The tests are not really usable

1- Storage: Test repository allowing persisting all environment of testing results;
2- Usage : Repository exploitation in order to deal with the problem of DBMS and platform selection.

Test repository – User interface

Manifest:

CIASExcerpt of the test repository meta-model

Basic concepts

Query-per-Hour Performance (QphH@size): This metric represents the number of queries executed for one hour relative to the size of the database.

Similarité: It is a comparison between two objects to determine the most important and useful relationships between them.

Distance Euclidienne:

$$D_E = \sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Normalisation: Resize all the attributes of data in the range 0-1

 $S_{i} = \frac{X_{i} - MIN(X_{i})}{MAX(X_{i}) - MIN(X_{i})}$

Searching usage of our test repository

Our recommender system:

Our algorithm:

Step1- analyzing of the company manifest to identify the presence of dimensions;

Step2- getting a fragment of the data cube satisfying these dimensions (using Slice and Dice);

Stap3- normalizing all the dimension's values using formula (2);

Step4- computing the similarity between the company manifest and each instance of the data cube fragment. Note that an instance represents a test;

Step5- selecting the best propositions based on the result of sorting. Indeed, tests are sorted in relation to similarity results for each DBMS.

Step6- the company can choose it favorite DBMS based on its requirements such as price.

Example: Process of our recommender system (1)

Algorithm's steps	Example	Result					
Step 1	 Organism My Company Platform CPU: 2.8 Ghz - Memory: 768 Gbytes DBMS ?Unknown Data Set TPC-H datasets -Size : 800 GB Mteric QphH 	- P - D - D - D - N			imens ensio nensi nensi	iion n on on	
		DBMS	Test	Size	CPU	Memory	QphH
			Test1	1000	2,8	1536	588831
	Dim_08H5 Dim_Metrics Dim_Platform +iD_Din_D6H5 +iD_Dm_Metrics Dim_Platform +iD_Dm_Metrics	1001 0	Test2	3000	2,5	3072	725686
		MSQL Server	Test3	3000	2,5	3072	700392
			Test4	10000	2,0	4096	401037
			Test6	10000	1.5	64	9853
	Dim_Deployment D Dim_Deployment D Dim_Core		Test7	3000	2,88	512	198907
Step 2	10_0m_Dep 10_Din_Gateset +10_Din_Query	Oracle	Test8	3000	3	1024	205792
	Dim_Hypothesis D_Dim_AM Dim_AccessMethods D_Dm_Hypo D_Dim_Hypo D_Dim_AM D_Dim_Hypo D_Dim_Time D_Dim_AM		Test9	10000	1,5	288	108099
			Test10	30000	1,6	1024	156960
	Pert_Measure		Test11	100	3,6	4	1894
	レージャーシー Dim_Laboratory Dim_Time Dim_Algorithms		Test12	300	3	32	10165
	ID_Dim_Lob ID_Dim_Time ID_Dim_Algo	DB2	Test13	1000	1,7	32	20221
			Test14	1000	1,9	32	26156
			Test15	3000	2,6	16	38672

Example: Process of our recommender system (2)

		DBMS	Test	Size	N1	CPU	N2	Memory	N3	QphH	Distance	Ν	
			Test1	1000	0,03	2,8	0,62	1536	0,37	588831	0,19	0,17	
			Test2	3000	0,10	2,5	0,48	3072	0,75	725686	0,59	0,52	
	Table in above with the following formulas:	MSQL Server	Test3	3000	0,10	2,5	0,48	3072	0,75	700392	0,59	0,52	
			Test4	3000	0,10	2,8	0,62	3072	0,75	461837	0,57	0,50	
	$N_{e} = Size_{Test1} - Min(Size)$		Test5	10000	0,33	2,8	0,62	4096	1,00	652239	0,87	0,77	
	$M_1 = \frac{1}{Max(Size) - Min(Size)}$		Test6	1000	0,03	1,5	0,00	64	0,01	9853	0,64	0,57	
			Test7	3000	0,10	2,9	0,66	512	0,12	198907	0,10	0,09	
Step 3	$N_{Test_1} = \frac{Distance_{Test_1} - Min(Distance)}{Man(Distance) - Min(Distance)}$	Oracle	Test8	3000	0,10	3	0,71	1024	0,25	205792	0,14	0,12	
	Max(Distance) – Min(Distance)		Test9	10000	0,33	1,5	0,00	288	0,07	108099	0,70	0,62	
			Test10	30000	1,00	1,6	0,05	1024	0,25	156960	1,13	1,00	
	Distance		Test11	100	0,00	3,6	1,00	4	0,00	1894	0,42	0,37	
	$Distance_{Test_1} =$		Test12	300	0,01	3	0,71	32	0,01	10165	0,20	0,18	
	$\frac{Distance_{Test_1}}{\sqrt{\sum_{i=1}^{3} (Ni_{Manifest} - Ni_{Test_1})^2}}$	DB2	Test13	1000	0,03	1,7	0,10	32	0,01	20221	0,55	0,49	
			Test14	1000	0,03	1,9	0,19	32	0,01	26156	0,46	0,41	
			Test15	3000	0,10	2,6	0,52	16	0,00	38672	0,22	0,19	
			MANIFEST	800	0,02	2,8	0,62	768	0,19		0,00	0,00	
					DBMS	;	Qp	hH N	1				
Store 4				MSQ	L Se	rver	588	831 0,1	17				
Sich 4				0	racle	•	198	907 0,0	99				
					DB2		10	165 0,	18				

A Case study

	10 I I I I I I I I I I I I I I I I I I I	R. R.			· · · · · · · · · · · · · · · · · · ·		8
		Dataset	Wor	kload	Platform	DBMS	
	Case 1	✓	✓		 ✓ 	?	7
	Case 2	✓	✓		?	?	
Case1					Case 2		
Manifest 1				Mar	nifest 2		
Metric Result ?Unknown? of Respons	eTime metric			_ ∢	Metric Resu	ilt ?Unknown	of ResponseTime metric
💠 Organism My Company				♦ 0)rganism My (Company	
Platform CPU : 2.8 Ghz - Thread : 60 - F	rocessor : 4 - Core : 2	24 - Memory : 768 G	bytes	♦ P	latform ?Unkr	nown?	
Dbms ?Unknown?				♦ D	bms ?Unknov	vn?	
Data Set TPC-H datasets - Size: 800 GB				♦ D	ata Set TPC-	H datasets -	Size: 800 GB
Warkland TPC II swaring (O2, O7, O10)				♦ N	Vorkload TPC-	-H queries (C	23, Q7, Q19)
WORKIDAD I PC-H queries (Q3, Q7, Q19)				- N	Antric Pesnon	eeTime	

Metric ResponseTime

weind Responserine

	Oracle	MSQL Server	DB2	Sybase
Q3	1300.74	29.94	162.45	177.4
Q7	1327.01	36.69	1110.05	167.19
Q19	1124.39	10.07	1627.62	98.39

ιò

115	Oracle	MSQL Server	DB2	Sybase
CPU	1.3	2.8	1.9	2.8
Proc	64	4	8	2
Threads	64	120	32	4
Cores	64	60	16	4
Memory	256	1536	32	16
Q3	143.68	41.32	159.55	4357.91
Q7	528.36	33.57	861.13	2792
Q19	376.78	3.01	1081	929.72

Summary

- □ Warehouse covering different aspects of the testing environment (12 dimensions).
- □ Recommender system dedicating to recommend DBMS and platform for given requirements.
 - Storage part (Dimensions détails)
 - Usage part (Query similarity)

