
The chronos library

Contact: Brice Chardin
brice.chardin@liris.cnrs.fr

January 9, 2013

1 Introduction

This document gives an overview of the chronos API, and provides working examples for
each access method. For convenience, these examples are also collected in a single compilable
example.cc file in the doc directory, along with a simple Makefile.

Formore information on chronos design, principles andperformance, refer to [Chardin, 2011,
chapter 4].

2 License

Chronos is free software. It may be used, free of charge, for any purpose, including commercial
purposes. Chronos is distributed under the terms of the MIT License, reproduced here:

Copyright © 2012 LIRIS - INSA de Lyon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3 Chronos

Chronos is a software library providing an ordered key-value store. It is designed to efficiently
manage historization data on flashmemory, but is also able – possibly at the cost of performance
– to manage many kind of key-value data on many kind of devices, including hard disk drives.

1



To use chronos for its data management, an application has to deal with: databases (cf.
section 4), tables (cf. section 5), cursors (cf. section 6) and key-value pairs.

Key-value pairs are the fundamental data representation in chronos. These data elements
are not typed: chronos manages only sequences of bytes. However, the application can (and
should) establish a data structure to store multiple informations within a key or a value (cf.
section 6 for an example).

Chronos is written in C++, compiled and tested on Linux distributions. However, no known
limitation should prevent it to be compiled and run using other operating systems.

4 Chronos databases

A chronos database, represented by a chr_chronos object, is used to manage (create, drop,
open and close) one or several tables on a single flash device (or file).

4.1 Initialization

A chr_chronos object is initialized as follows:

chr_chronos(const char * flash_device_path,
const char * persistence_folder_path);

• flash_device_path is the path to the flash device. Chronos performs better on raw flash
devices or partitions (which appear as special files, such as /dev/sda2) , but allows any
file to be used to hold the database.

• persistence_folder_path is the path to a folder used by chronos to keep persistence-
related files. These files are:

– chronos.chr, which contains a description of the database with, for each table, its
name (unique string identifier), the size of its keys, the size of its values and its B-tree
root address.

– device.chr, which contains the list of free sectors for this device.

For example, to open (or create) a chronos database on the device /dev/sdb, with persis-
tence files /var/chronos/chronos.chr and /var/chronos/device.chr:

chr_chronos * chronos = new chr_chronos("/dev/sdb", "/var/chronos/");

Warning: if the device (in the example /dev/sdb) has a file system, every file it contains is
lost.

4.2 Deinitialization

The persistence files are only written when the database is closed. The information maintained
in these files can theoretically be rebuilt from the device’s data, but this functionality is currently
not implemented. It is therefore mandatory to properly close a database to retrieve its data on
a subsequent access. To close a database, the chr_chronos object has to be destroyed:

delete chronos;

2



5 Chronos tables

A chr_table_ctx is a public wrapper for chronos table objects (chr_table). Chronos tables
store fixed-size key-value pairs using B-trees.

Note: keys are sorted with a lexicographical comparator (memcmp). Consequently, integers
have to be stored in big-endian form to be compared accurately.

5.1 Creation

A new table can be created in a database:

chr_chronos::create_table(const char * table_id, size_t size_of_keys,
size_t size_of_values);

• table_id is a string used as a unique table identifier.
• size_of_keys and size_of_values are the fixed size (in bytes) of keys and values for
this table.

For example, to create a table named samples, whose key is the concatenation of a 32 bit
integer and a 64 bit integer, and value is a double:

chronos->create_table("samples", sizeof(uint32_t) + sizeof(uint64_t),
sizeof(double));

An SQL equivalent to create such a table would be:

CREATE TABLE samples (
sensor_id UNSIGNED INT NOT NULL,
timestamp UNSIGNED BIGINT NOT NULL,
value DOUBLE PRECISION NOT NULL,
PRIMARY KEY (sensor_id, timestamp)

)

5.2 Deletion

A table can be dropped, deleting all its content and reclaiming space on the device.
Note: table contents are not immediately erased when a table is dropped: its allocated sec-

tors are simply allowed to be overwritten, which will happen eventually.

chr_chronos::drop_table(const char * table_id);

• table_id is a string used as a unique table identifier.

For example, to drop the table samples:

chronos->drop_table("samples");

5.3 Initialization

Tomanage data in a table, it first has to be opened (and subsequently closed to correctly release
resources).

Note: a table can be opened multiple times, but each context has to be closed.

chr_table_ctx * chr_chronos::open_table(const char * table_id);

• table_id is a string used as a unique table identifier.

3



For example, to open the table samples:
chr_table_ctx * samples_ctx = chronos->open_table("samples");

5.4 Deinitialization

The table context created with open_table has to be eventually closed to flush the B-tree root
on disk and later correctly update the table’s informations in the persistence file chronos.chr.

chr_chronos::close_table(chr_table_ctx * ctx);

For example:
chronos->close_table(samples_ctx);

6 Chronos cursors

In chronos, data is managed using cursors. A table context can be used to open and close such
cursors.

6.1 Initialization

Multiple cursors can be opened concurrently for one or several tables. To open a cursor:
chr_table_ctx::open_cursor(const unsigned char * key, chr_pos_type type);

• type can be:
– CHR_KEY to open a cursor on a specific key,
– CHR_FIRST to open a cursor on the first key of the table (key should be NULL),
– CHR_LAST to open a cursor on the last key of the table (key should be NULL).

For example, to open a cursor on sensor_id=10 and timestamp="2008-10-21 14:15:16.123"
(converted by the application in 1224598516123, as a unix timestamp with milliseconds):

unsigned char * key = (unsigned char *) malloc(sizeof(uint32_t) +
sizeof(uint64_t));

/* assign values to key, in big-endian form */

*((uint32_t*) key) = htobe32(10);

*((uint64_t*) key+sizeof(uint32_t)) = htobe64(1224598516123);
chr_cursor * cur = samples_ctx->open_cursor(key, CHR_KEY);

Note: it can be useful to define utilities – such as preprocessor macros – to access key and
value elements individually.

#define SENSOR_ID(key) (*((uint32_t*) ((unsigned char*)(key))))
#define TIMESTAMP(key) (*((uint64_t*) (((unsigned char*)(key))

+ sizeof(uint32_t))))
#define VALUE(value) (*((double*) ((unsigned char*)(value))))

unsigned char * key = (unsigned char *) malloc(sizeof(uint32_t) +
sizeof(uint64_t));

SENSOR_ID(key) = htobe32(10);
TIMESTAMP(key) = htobe64(1224598516123);
chr_cursor * cur = samples_ctx->open_cursor(key, CHR_KEY);

4



6.2 Deinitialization

A cursor has to be closed to release resources:

chr_table_ctx::close_cursor(chr_cursor * cursor);

For example:

samples_ctx->close_cursor(cur);

6.3 Move

Once opened, a cursor can bemoved to a specific key. A cursor is initially positioned just before
the key specified during its opening.

chr_cursor::move(const unsigned char * key, chr_pos_type type,
chr_pos_where where);

• type can be:
– CHR_KEY to open a cursor on a specific key,
– CHR_FIRST to open a cursor on the first key of the table (key should be NULL),
– CHR_LAST to open a cursor on the last key of the table (key should be NULL).

• where can be:
– CHR_BEFORE to move the cursor just before the key,
– CHR_AFTER to move the cursor just after the key,
– CHR_ON to move the cursor on the key.

For example, to position cur just before the first key of the table:

cur->move(NULL, CHR_FIRST, CHR_BEFORE);

6.4 Insertion

Tomaximize performances, keys subsequently insertedwith the same cursor should be increas-
ing. Otherwise, the cursor performs a move transparently before the insertion. In both cases,
the cursor is moved just after the inserted key.

Note: chronos does not allow duplicate keys within a table.

chr_cursor::insert(const unsigned char * key,
const unsigned char * value);

For example:

unsigned char * key = (unsigned char *) malloc(sizeof(uint32_t) +
sizeof(uint64_t));

unsigned char * value = (unsigned char *) malloc(sizeof(double));
SENSOR_ID(key) = htobe32(10);
TIMESTAMP(key) = htobe64(1224598516123);
VALUE(value) = 3.14;
cur->insert(key, value);

5



6.5 Deletion

To delete a key-value pair, the key must be specified.

chr_cursor::del(const unsigned char * key);

For example:

cur->del(key);

To delete a key-value pair with a specific value, the pair first has to be read (cf. section 6.7)
and verified by the application.

6.6 Update

Chronos can update a value associated with a key. The key remains the same, only the value is
overwritten.

chr_cursor::update(const unsigned char * key,
const unsigned char * value);

For example:

cur->update(key, value);

To update a key, the application has to (optionally read and) delete the original key-value
pair, and then insert the updated key-value pair.

6.7 Read

A cursor can be used to retrieve data with increasing keys.

chr_cursor::read_next(unsigned char * key, unsigned char * value);

For example, to read the content of the table samples:

cur->move(NULL, CHR_FIRST, CHR_BEFORE);
while (cur->read_next(key, value) != CHR_EOF)
{
uint32_t sample_id = be32toh(SENSOR_ID(key));
uint64_t timestamp = be64toh(TIMESTAMP(key));
double sample = VALUE(value);

}

7 Return codes

Possible return codes for each method are defined in their header in the source code. To sum-
marize, the following error codes are essential:

• CHR_OK no error,
• CHR_ERR table not available (create_table, drop_table, close_table),
• CHR_EOF end of table reached (read_next),
• CHR_NOTFOUND table not found (drop_table), or key not found (del, update),
• CHR_DUPKEY insertion of duplicate keys (insert).

6



References

[Chardin, 2011] Chardin, B. (2011). Open-source DBMS for data historization and impact of flash
memories. Ph.D Thesis in Computer Science, INSA de Lyon.

7


