
Observation Tools for Effective Schedules in a RTOS.

Moustapha Bikienga
LIAS

Univ. Koudougou & ENSMA
01 BP 376

Koudougou, Burkina Faso
moustapha.bikienga@lisi.ensma.fr

Dominique Geniet
LIAS

Univ. Poitiers & ENSMA
1 av. Clément Ader, Téléport 2
F-86961 Chasseneuil, France
dominique.geniet@univ-poitiers.fr

Annie Choquet-Geniet
LIAS

Univ. Poitiers & ENSMA
1 av. Clément Ader, Téléport 2
F-86961 Chasseneuil, France

annie.geniet@univ-poitiers.fr

ABSTRACT
Real-time scheduling validation usually stands on emulators:
the scheduling policy is validated, not the effective scheduler.
We propose a strategy to calibrate scheduling observers, that
aim to validate effective implementations of schedules.

Categories and Subject Descriptors
C.3 [Spec.-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.4.1 [Operating Sys-
tems]: Process Management—Scheduling

General Terms
Scheduling, Real-Time Systems

Keywords
Scheduling, Real-Time Systems

1. INTRODUCTION
Real-Time Systems are mostly control-command systems
that must satisfy both algorithmic correctness and specific
time constraints. Real-Time scheduling focus on satisfying
deadlines, and real-time validation on deciding whether the
system can satisfy or not the time constraints. We deal with
real-time validation, not with algorithmic validation.

Control-command systems must react to all incoming events.

They are composed of a set of concurrent tasks
n
(τi)i∈[1,n]

o

which may read signal values, compute how the system must
react, and transmit engine activation signals. Each task is
submitted to hard temporal constraints induced by the dy-
namic of the physical process: e.g. a late computed result,
even if it is correctly computed, may be unexploitable be-
cause it is out-of-date. For that reason an operating system
may host a real-time software if and only if it can guaran-
tee that all deadlines are met. Such an operating system is
called Real-Time Operating System: it is especially charac-
terized by the use of specific scheduling policies [2].

Two approaches are commonly used in the litterature:

• on-line scheduling: a set of rules is used at run-
time to chose the task to process among the pending
tasks; several algorithms have been proposed in the
litterature (e.g. RM, EDF [10]);

• off-line scheduling: a schedule is computed before
run-time (either thanks to on-line scheduling policies
like RM or EDF, or using a model-driven approach),and
then must be followed by the dispatcher; such strate-
gies are more powerfull than on-line strategies in the
sense that they can produce valid schedules (i.e. for
which all the time constraints are met) for a larger
class of applications [7].

Motivation and Related works
Since the early sixties, many real-time scheduling policies
have been proposed [10] [2] [7]. However, the real-time oper-
ating systems which may be used nowadays to host effective
applications only propose fixed priority schedulers [13] [20].
Neither the other (more performant) on-line strategies nor
the off-line strategies are implemented.

In [21], the Linux kernel is modified in order to guarantee
the real-time constraints. It implements a priority driven
scheduler within the kernel. In [16], the operating system
structure is also modified, by the implementation of schedul-
ing functions in both the hardware and the software. The
proposed scheduling technique is also priority driven. This
approach is extended in [19] and [5], where the proposed
coprocessor is modelled in VDL.

A challenging issue for real-time systems would be to pro-
pose a methodology to implement scheduling strategies other
than the native fixed-priority ones within a real-time ker-
nel. Of course, such a methodology has to be validated. For
that aim, some specific observation tools must be developed.
Their definition is the aim of our paper.

Most of the time, temporal validation means the validation
of the scheduling strategy. This is classically performed off-
line, independently of the platform on which the application
will run (see the theoretical side of Figure 1). It often relies
on simulation. We are here interested in the actual behavior
of the application. We want to verify that at run time, all the
temporal constraints are actually met. This requires a fur-
ther step after the validation of the scheduling strategy (see

Software Specification

Effective Schedule

Theoretical Schedule

Time

Specification

Functional

Specification

Time Analysis

Algorithmic

Conception

Implementation

Similar ?

Figure 1: Theoretical/Effective scheduling valida-
tion.

the effective side of Figure 1), that consists in verifying that
this strategy is correctly implemented within the scheduler,
and thus, that the application behaves as expected, i.e. that
its actual behaviour matches the schedule. This will rely on
observation.We implement the program tracing system into
the program itself [11][15].

Scope of the paper
The aim of this paper is to set up the basis for the design of
an observation tool. Then we will present its implementa-
tion within the real-time development framework Xenomai
which cooperates with the Linux kernel. And finally, we
will illustrate its use through the observation of the native
scheduling strategies.

Context
We adopt the classical modelling of tasks. We consider pe-
riodic hard real-time systems: for all i, τi is periodic and
characterized by the following time attributes (see Fig. 2):

• ri is the first release date;

• Ci is the worst case execution time;

• Di is the relative deadline;

• Ti is the period.

Time 0 is defined as the first release date of the earliest
released task. Tasks are assumed to be independent: they
neither share resources nor exchange messages.

We use a PC architecture: a date is associated with each
event, thanks to a clock called real-time clock in the sequel.
We consider that the date values generated by the real-time
clock match effective date values.

We use the real-time development framework Xenomai [18]
for the following reasons:

Ci Activation dates deadlines

Di

ri

instance instance instance

etc.

Ti

1
st

2
nd

3
rd

Figure 2: Time characteristics of task τi.

1. Xenomai stands on an open source operating system,
what is required since we plan to modify the kernel of
the operating system;

2. Xenomai runs on a PC architecture;

3. the system is alive: there are active users and a devel-
oper community, regular new versions, etc.

For these reasons, systems like LynxOS [17], QNX [8], RTLi-
nux [20] could not be used whereas Xenomai [18] satisfies all
requirements. This justifies our choice.

2. REAL-TIME SCHEDULING
2.1 Schedules
2.1.1 Theoretical aspects
A task owns the processor between two consecutive context
switchs. The time interval between two consecutive context
switchs is constant, it is called quantum. The quantum is a
multiple of the period of the real-time clock of the computer.
A schedule σ is a sequence of tasks that successively own the
processor. σt = τi means that τi owns the processor from
time (t − 1) × q to time t × q.

A schedule σ is cyclic with period P if ∃t0 ∈ R
+ such that

t ≥ t0 ⇒ σt+P = σt.

2.1.2 Concrete aspects
The real-time clock regularly sends a signal, that increments
a register that every program may read. The different times
are computed from the start time of the system (time 0).
Hence we represent the time by the set N, and time=t (t ∈
N) means t clock cycles after starting the computer. In the
sequel, we define our time scale by a translation of the clock:
time 0 is the start time of the real-time software.

The function X : N → S gives the history of the operating
system. Its graph is a set of pairs of the form (t, X (t)).

Example 1. Figure 3 presents a process history and the
corresponding graph: at the beginning the system is in the
state S0 (the scheduler launches τ1), as at time 30.

In the sequel, the Theoretical (resp Effective) schedule cor-
responds to the theoretical (resp. effective) analysis of the
real-time software.

Date Event
0 Start (τ1)

10 End (τ1)
30 Start (τ1)
40 End (τ1) S0 t

S

S1

Sn…

10 30 400

Figure 3: Graph of X for Example 1.

3. THE SCHEDULER OBSERVER
3.1 Why to observe a schedule
We have presented in §2.1 theoretical aspects of scheduling.
Based on these concepts, one can validate a schedule (off-
line) or a scheduling policy (on-line) in a theoretical way.

Theoretical means that the validation relies on the assump-
tion that there is no difference between the theoretical and
the effective schedules (matching assumption that the op-
erating system follows the schedule very precisely). Now,
the validation of the scheduler requires either to prove this
assumption, or to give it up and to reason on the effective
schedule rather on the theoretical one. To evaluate how
far the operating system is from this matching assumption,
we need to collect effective times corresponding to context
switches. For that aim, we have developed a specific com-
ponent, that we have called scheduler observer.

The role of a scheduler observer is summarized in Figure
4 [9] [6]. The temporal part of the requirements leads to
the theoretical analysis of the software, that produces the
theoretical behaviour(s) X of the software, and then the di-
agnosis of validity. Following the path Conception → Imple-
mentation, we obtain the effective software, whose execution

produces the effective behaviour bX.

Definition 1. A scheduler observer is a component whi-
ch models an effective system in order to produce an estima-

tion X̄ of its effective behaviour bX.

Our concern is to measure the distance between bX and X,
which quantifies the quality of the observer. This distance
may be estimated thanks to the specifications of both the
real-time clock and the associated operating system func-
tions. Thanks to the observer, we produce an estimation X̄

of bX: we have

distance
“
X, bX

”
≤ distance

`
X, X̄

´
+ distance

“
X̄, bX

”

Requirements

ConceptionExecution

Effective

behaviour

Theoretical

analysis

Theoretical

behaviour

Observed

behaviour

Implementation

Observer

XX
^ X

–

Figure 4: What a scheduler observer produces.

3.2 How to observe a schedule
An observer produces a sequence of pairs (t,A (t)), where
t is a real-time clock value and A (t) the action which has
been observed at time t.

The observation process involves three objects: the observed
system, the hardware it is running on, and the observer it-
self. The observer runs on the same computer that the ob-
served system. The system, the hardware and the observer
are characterized by specific attributes.

The observed system
• The class describes the characteristic of the real-time

system (hard, soft, periodic, syncronous, etc.) [7].

• The life is the time interval on which the observation
process must run. For our examples, we observe it
along the loading period and one cyclic period, that
are computed following [3].

• The time scale s.scale is the time unit: it specifies the
smallest time interval between two consecutive events
in the life of the system.

The hardware
• The architecture describes the characteristics of the

target (uniprocessor, multiprocessor, etc.) [7].

• The computer cycle is the time interval between two
consecutive real-time clock signals.

The observer
• Statements are embedded in the software. They collect

the pairs (t, X (t)) that compose X̄.

Definition 2. X̄ is an accurate view of bX if ∀t ∈ N,

∃t
′

∈ N such that
˛̨
˛t − t

′

˛̨
˛ ≤ S.scale ∧ X̄

“
t
′

”
= bX

“
t
′

”

So X̄ is an accurate view of bX if at each time t, bX matches

the value bX (t) for a time t
′

near from t: near means less
that s.scale. Hence both graphs are the sames, if values are
approximated to the nearest s.scale multiple.

We note this property X̄ = bX. The view X̄ obtained thanks
to an observer Ω is noted X̄Ω if specifying Ω is required, X̄

if there is no ambiguity.

Definition 3. An observer Ω is adequate for a system

S running on a hardware H if and only if bX = X̄Ω.

3.3 Implementation
We implement the observer as a functionnaly-empty ver-
sion of the program itself. Figure 5 presents the way this
is performed. The events Start, Exec and End are explicit;
the events Suspend and Reload are implicitely deduced from

the context. This technique guarantees bX = X̄, since the
program is the observer.

vo id τi () {
do { /∗ Tracing τi’s activation ∗/

WRITE(τi . S t a r t) ;
/∗ Body ∗/
f o r (j =1; j≤ Ci ; j+=S . s c a l e) {

OwnCPU(S . s c a l e) ;
WRITE(τi . Exec) ;

}
/∗ Tracing τi’s completion ∗/
WRITE(τi . End) ;

/∗ Waiting for τi’s next activation ∗/
P(τi . A c t i v) ;

} wh i l e (0==0);
}

Figure 5: Program body for τi.

3.3.1 Calibration
Running the observer on the same computer (and with real-
time priority) impacts the time behaviour of the software
(writing, disk buffering and storage, etc.). These operations
may also involve noise at the operating system level (mem-
ory caching, external process loading/suspending, etc.). We

have to evaluate how these effects impact bX and/or X̄ . This
is achieved by means of a Process Calibration, that consists
in associating an estimated duration to all statements added
to the program, due to the observer.

N represents the sequence of dates corresponding to the com-
puter real-time clock signals, hence all statements (e.g. clock
signals) may occur only at integer dates. The number of
ticks of the real-time clock which are associated with the
time unit depends on the frequency of the real-time clock.

To evaluate this time, we execute N times1 the code (see
Figure 5) with no observer statement, and we get the to-
tal amount of time A0 dedicated to its completion. Next,
we replay the sequence with one observer statement s1 (e.g.
WRITE(τi.Start)). We again get the total amount of time
A1 which is greater than A0. The difference A1 − A0 cor-
responds to N × Duration (s1). This process is succes-
sively reproduced for all observer statements. Once all ob-
server statements integrated, we have a sequence of com-
puted times A0, A1, . . . Ak (k is the number of observer
statements that had been integrated) such that A0 < A1 <

. . . < Ak. The value B =
As−As−1

N
is an estimation of

the amount of time dedicated to the sth observer statement
integrated into the software during each execution of τi. Us-
ing S.scale, we compute the time used for observation per

time unit: Bs =
As−As−1

NTi

(Ti is the period of τi, expressed

as a multiple of the time unit S.scale). Moreover, state-
ment duration analysis shows that the observed values fol-
low Gaussian distributions, hence the average value is the
more accurate [4]. Hence to cancel this loss of time from
observations, we modify the scale of the system thanks to
S.scale:= S.scale − Average

τi

Bu.

3.3.2 Quality of effective schedules
The theory defines X as the ideal behaviour that the imple-
mentation can produce. We observe X̄. On the structural

1N is an arbitrary great number (106 here).

level, X and X̄ are lists of pairs of the form (t,A (t)). The
ideal X = X̄ corresponds to ∀t ∈ S.Life, (t, A (t)) ∈ X ⇔
(t, A (t)) ∈ X̄ . If this ideal is not reached, then there ex-
ists t ∈ S.Life such that (t, A (t)) ∈ X \ X̄ ∪ X̄ \ X. The
more frequently this situation appears, the worst is the qual-
ity of the implementation. The Hamming distance [12] has
been designed to quantify the differences between vectors.
It is defined in the following way: let A = (ai)i∈[1,n] and

B = (bi)i∈[1,n] be vectors of size n, the Hamming distance

d (A,B) is equal to |{i ∈ [1, n] such that ai 6= bi}|.

Therefore d (A, B) is bounded by 0 (A = B) and n (there is
no i such that ai matches bi). In our context, we prefer to
use a percentage-based quality indicator, where 0% means
bad and 100% means perfect.

Definition 4. We call similarity level of an observed

schedule X̄ the value δ
`
X, X̄

´
=

S.Life−d(X,X̄)
S.Life

, where

d (•, •) is the Hamming distance.

3.3.3 Xenomai implementation of the observer
The Linux kernel is not a real-time operating system. To
get a real-time Linux, one may modify the non-preemptive
kernel2 into a preemtive one. The alternative is to enrich the
Linux kernel with a second kernel, named co-kernel. This co-
kernel is a real-time kernel.

The Xenomai implementation is based on the co-kernel ap-
proach, which is implemented using the ADEOS patch [1].
ADEOS stands on the concept of domain, that embeds a
set of processes supposed to share the same criticity level.
For the Xenomai implementation, three domains have been
defined (see Figure 6):

1. the Xenomai domain, also called primary domain;

2. the Linux domain, also called secondary domain;

3. the interrupt shield domain, which is an intermediate
domain between the two others.

Interrupts

and Traps

Xenomai

Primary

Interrupt

shield

Linux

Secondary

per - CPU ADEOS pipeline

Figure 6: ADEOS domain organization.

We have experimented using the native Xenomai API (v.
2.5.6). Statements like start() and end() have been developed
thanks to both the Linux input/output procedures and the
Xenomai specific system primitives. The Figure 7 presents
the way τi is implemented, Figure 8 describes the program-
ming details for the functions start() and end(). The others
observer statements (e.g.busy cpu) are developed following
the same approach.

2A Linux kernel process can not be preempted [20].

r t t a s k s e t p e r i o d i c (NULL , TM NOW, T[0] ∗E) ;
wh i l e (0==0) {
s t a r t () ;
f o r (i =0; i<C [0] ; i++)

busy cpu () ;
end () ;
r t t a s k w a i t p e r i o d (NULL) ;

}

Figure 7: Use of Xenomai real-time primitives by τi.

exte rn sem un sem ;
exte rn i n t e v t n r ;
vo id s t a r t (RT TASK INFO ∗ t a s k i) {
r t s em p (&un sem , TM INFINITE) ;
o b s e r v a t i o n [e v t n r] . beg in=

r t t i m e r t i c k 2 n s (r t t i m e r r e a d ()) ;
r t t a s k i n q u i r e (r t t a s k s e l f () , t a s k i) ;
o b s e r v a t i o n [e v t n r] . t r a n s i t i o n=’start ’ ;
o b s e r v a t i o n [e v t n r] . t a s k=t a s k i −>name ;
o b s e r v a t i o n [e v t n r] . end=

r t t i m e r t i c k 2 n s (r t t i m e r r e a d ()) ;
e v t n r++;
r t s em v(&un sem) ;}

vo id r t t a s k e n d (RT TASK INFO ∗ t a s k i){
r t s em p (&un sem , TM INFINITE) ;
o b s e r v a t i o n [e v t n r] . beg in=

r t t i m e r t i c k 2 n s (r t t i m e r r e a d ()) ;
r t t a s k i n q u i r e (r t t a s k s e l f () , t a s k i) ;
o b s e r v a t i o n [e v t n r] . t r a n s i t i o n=’end ’ ;
o b s e r v a t i o n [e v t n r] . t a s k=t a s k i −>name ;
o b s e r v a t i o n [e v t n r] . end=

r t t i m e r t i c k 2 n s (r t t i m e r r e a d ()) ;
e v t n r++;
r t s em v(&un sem) ;}

Figure 8: The start() and end() function bodies.

4. RESULTS
The computer experimentations have been performed on an
Intel Pentium 4 whose real-time/ clock frequency is 2791.44
MHz. The real-time clock period is 1ns. The memory size
is 491336 MB, and the hard disk size 31 GB. The cache
memory is disabled for experimentations.

Figure 9 presents the values observed for completing the cal-
ibration process. The scale of the system (i.e. the scheduler
quantum) is set to 1ms, hence observer primitive

quantum
< 0.1%. We

Primitive Execution time
No primitive 46 ns
rt sem p 130 ns
rt sem v 157 ns
rt timer read 42 ns
rt task inquire 205 ns
start 576 ns
end 576 ns

Figure 9: Average execution time of Xenomai primi-
tives and observer functions.

have experimented on the following task system:

Evt Start / End (ns)
S τ1 0 / 1306
Q τ1 1961 / 1002521
E τ1 1003100 / 1003404
S τ2 1006459 / 1006818
Q τ2 1007211 / 2007601
Q τ2 2008002 / 3008339
Q τ2 3008672 / 4008989

...
...

Q τ2 67012972 / 68013271
E τ2 68013637 / 68013908
S τ3 68015461 / 68015794
Q τ3 68016191 / 69016595
E τ3 69017012 / 69017290
Legend
S 〈τ 〉 Start task τ

Q 〈τ 〉 Quantum for task τ

E 〈τ 〉 End task τ

Figure 10: Observation results.

Times are in ms.
Task r C D T Priority
τ1 0 10 50 50 20
τ2 10 30 70 70 14
τ3 40 10 100 100 10

The scheduling policy is Rate Monotonic (Priority (τi) <

Priority (τj) ⇔ Ti > Tj). We have observed the system on
an hyperperiod [3]. The results3 are presented in Figure 10.
Considering the approximations involved by the scale (1ms),
we have δ

`
X, X̄

´
= 100%, hence the effective scheduling

matches the theoretical scheduling.

5. CONCLUSION
We have defined a methodology to observe the effective sche-
dules produced by real-time schedulers. The similarity level
proposed in §3.3.2 enables us to evaluate the quality of a
specific scheduler implementation and to compare different
implementations of the same scheduling policy. A tool has
been developed and validated by means of exprimentations.

This methodology will be helpful for implementing specific
(on-line and/or off-line) policies into real-time kernels: we
will be able to evaluate scheduler implementations relatively
to their theoretical behaviour, and also to compare different
implementations of a specific scheduling policy. We plan to
address static scheduling, that is classically used for real-
time systems. Dynamic scheduling may also be planed [14].

The next step of our research is the implementation of sche-
duling policies not yet implemented into real-time kernels.
This research is ongoing.

6. REFERENCES
[1] http://gna.org/projects/adeos. web site, october 2011.

[2] G.C. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Kluwer Academic Publishers, Boston, USA, 2000.

3An extracted sequence only !

[3] A. Choquet-Geniet and E. Grolleau. Minimal
schedulability interval for real-time systems of periodic
tasks with offsets. Theoretical Computer Science,
310:117–134, 2004.

[4] A. Colin, I. Puaut, C. Rochange, and P. Sainrat.
Calcul de majorants de pire temps d’exécution: état
de l’art. Technique et Science Informatiques,
22(5):651–677, 2003.

[5] C.M. Ferreira and A.S.R. Oliveira. RTOS Hardware
Coprocessor Implementation in VHDL, chapter RTOS
Hardware Coprocessor Implementation in VHDL,
pages 6–11. Embedded Systems Conference, 2009.

[6] J.L. Hellerstein, D.M. Tilbury, and S. Parekh.
Feedback Control of Computing Systems. John Wiley
and Sons, 2004.

[7] J. Carpenter S. Funk P. Holman, A. Srinivasan J.
Anderson, and S. Baruah. A Categorization of
Real-Time Multiprocessor Scheduling Problems and
Algorithms, chapter Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, pages
30–1—30–19. Chapman and Hall/CRC, 2004.

[8] R. Krten and C. Herborth. The QNX CookBook.
PARSE Software Devices, 2003.

[9] W.S. Levine. The Control Handbook. CRC Press, 1996.

[10] C.L. Liu and J.W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[11] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V.J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming
Language Design and Implementation, volume 40,
pages 190–200. ACM, June 2005.

[12] F.J. MacWilliams and N.J.A. Sloane. The Theory of
Error-Correcting Codes, volume 1. North-Holland
Mathematical Library, 1977.

[13] R. Mall. Real-Time Systems: Theory and Practice.
Dorling Kindersley, 2007.

[14] T. Megel, D. Chabrol, V. David, and C. Fraboul.
Dynamic scheduling of real-time tasks on multicore
architectures. In Colloque du GdR Soc/SiP, Orsay,
France, June 2009. CEA. http://hal-cea.archives-
ouvertes.fr/docs/00/45/12/84/PDF/GDR-SOCSIP.pdf.

[15] T. Moseley, N. Vachharajani, and W. Jalby. Hardware
performance monitoring for the rest of us: a position
and survey. In Proceedings of the 8th IFIP
International Conference on Network and Parallel
Computing, volume 6985 of Hardware performance
monitoring for the rest of us: a position and survey,
pages 293–312, Changsha, China, 2011.
Springer-Verlag.

[16] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and
M. Imai. Hardware implementation of a real-time
operating system. In Proc. of the The 12th TRON
Project International Symposium, pages 34–42, Tokyo,
Japan, December 1995. IEEE Computer Society.

[17] L.M. Surhone, MM.T. Tennoe, and S.F. Henssonow.
LynxOS. VDM Verlag Dr. Mueller AG & Co. Kg,
2010.

[18] L.M. Surhone, M.T. Tennoe, and SS.F. Henssonow.
Xenomai. VDM Publishing House, 2010.

[19] M. Vetromille, L. Ost, C.A. Marcon, C. Reif, and
F. Hessel. Rtos scheduler implementation in hardware
and software for real time applications. In Proc. of the
7th IEEE International Workshop on Rapid System
Prototyping, pages 163–168, Chania, Crete, Greece,
June 2006. IEEE Computer Society.

[20] K. Yaghmour, J. Masters, G. Ben-Yossef, and
P. Gerum. Building Embedded Linux Systems. O’Reilly
Media, 2008.

[21] V. Yodaiken and M. Barabanov. A real-time linux.
Linux Journal, 34:5, 1997.

