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Abstract. Recently, ontology-based databases (OBDB) have been de-
veloped as a solution to store and manipulate, efficiently and in a scal-
able way, ontologies together with data they describe. Currently, exist-
ing OBDB propose weak solutions to calculate derived (non-canonical)
concepts. Indeed, these solutions are internal to the OBDB and spe-
cific to the ontology model (formalism) supported. As a consequence,
non-canonical concepts can not be in all cases properly defined with the
different available mechanisms since existing solutions are not constantly
suitable. In this paper, we propose a generic solution which is an exten-
sion of OBDB with the capability to introduce dynamically operators to
calculate non-canonical concepts. These operators can be implemented
in different ways (e.g. with external programs or with web services).
Then, we show the interest of this extension by improving a proposed
methodology to design databases storing ontologies. Finally, a prototype
implementing our design approach is outlined.

1 Introduction

Ontologies are used to express the semantics of a domain through conceptual,
formal and consensual models. Nowadays, they are used in many domains such as
engineering, e-commerce or chemistry, and they have contributed to the success
of many applications such as systems integration, information retrieval or natural
language processing. Several languages and formalisms exist to define ontologies.
They are often dedicated to a specific domain such as the semantic web (e.g.,
OWL [13], RDF [19] and RDF-Schema [6]) or engineering (e.g., PLIB [24, 25]).

All ontologies are not alike. Three types are often distinguished: (1) canoni-
cal ontologies that include only primitive concepts, (2) non-canonical ontologies
that extend canonical ontologies with derived concepts i.e., notions expressed in
term of other concepts and (3) linguistic ontologies that associate a linguistic
definition to canonical and non-canonical concepts.



With the growing size of data described by ontologies, the need to efficiently
persist data together with ontologies, in a scalable way, appeared. As a con-
sequence, a new type of databases has been proposed, called ontology-based
databases (OBDB), that stores ontologies and data in the same repository. Sev-
eral architectures of OBDB have emerged in the last decade. They differ in (i)
the way they support ontology model(s), (ii) the separation of the different data
layers and (iii) the database schema they use to store ontologies and data.

Currently, existing OBDBs support mainly canonical ontologies. On the con-
trary, non-canonical concepts are often managed with frozen and hard-encoded
operators offered by the OBDB or by reasoners like Racer3 or Corese4 in central
memory. In databases, mechanisms such as views, triggers or stored procedures
are set up to compute derived classes and properties. Consequently, all the avail-
able mechanisms used to compute derived concepts are internal to the OBDB
become specific to the supported ontology model.

The aim of the work presented in this paper is to provide a generic solu-
tion to handle non-canonical concepts in OBDB. Our idea is that non-canonical
concepts can be both computed by internal mechanisms of databases as well
as external mechanisms such as reasoners, web services and remote programs.
Our approach borrows concepts and technique from persistent meta-modeling
systems (PMMS) [2]. It consists in extending PMMS to define OBDBs with the
capability to introduce dynamically operators that can compute non-canonical
concepts independently of any ontology-model. These operators can invoke meth-
ods of reasoners, external programs, web services or use internal mechanism of
the database. Thus, this extension gives to OBDBs an additional power of ex-
pressiveness and a better support of non-canonical ontologies. To show the in-
terest of our approach, we propose an OBDB design methodology which handles
non-canonical concepts by invoking external reasoners before building the logical
model of the database.

The remainder of this paper is organized as follows. Section 2 presents the
OntoDB ontology-based database, on which our approach is based, together with
its associated exploitation language, OntoQL. An example illustrates the draw-
backs of this system. Section 3 exposes different OBDB architecture types we
have identified and the way they support non-canonical concepts. Section 4 in-
troduces the extension of OBDBs with the flexible support of non-canonical con-
cepts. The proposed OBDB design methodology which supports non-canonical
concepts using ad hoc mechanisms to compute non-canonical concepts is given
in section 5. This section shows an application of our approach to improve the
OBDB design methodology. Finally, section 6 gives a conclusion and some future
research directions.
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Fig. 1. The OntoDB architecture

2 OntoDB: an ontology-based database

OntoDB [14] is an ontology-based database architecture with four parts (Fig-
ure 1). The meta-base (3) and data (4) parts are the classical parts of traditional
databases. The meta-base part contains tables used to manipulate the whole
data of the database, and the data part stores data described by ontologies. The
other two additional parts, i.e. meta-schema (1) and ontologies (2) parts store
respectively ontology models (formalized by a meta-model) and the ontologies
as instances of ontology models.

OntoDB stores data in relational tables, it is implemented on the PostgreSQL
RDBMS. Figure 2 shows an example of data layers representation in OntoDB.
This example defines a simple ontology model with two entities: OWLClass and
OWLProperty. Each entity is associated to a corresponding table at the ontology
level. Similarly, each class of an ontology is associated to a table at the data
level to store classes instances.

Once data of the different abstraction levels are stored in OntoDB, we observe
that the traditional database exploitation languages like SQL are not powerful
enough. These languages require a deep knowledge of the database representa-
tion used by the OBDB for the different layers of data. In this context, as a next
step, the OntoQL language [16], [17] has been proposed to manipulate ontology
models, ontologies and data without any knowledge of the database representa-
tion used for storing all data. Next subsections summarizes OntoDB/OntoQL
capabilities.

3 http://www.racer-systems.com/
4 http://www-sop.inria.fr/edelweiss/software/corese/
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2.1 Meta-schema evolution

The meta-schema part of OntoDB can be enriched to support new ontology mod-
els using the OntoQL language. For instance, the meta-schema of our example
can be created with the following statements.

CREATE ENTITY #OWLProperty (#uri STRING);

CREATE ENTITY #OWLClass (#uri STRING, #superClasses REF(#Class) ARRAY, #properties

REF(#OWLProperty) ARRAY);

These two statements create a simple meta-schema containing two entities:
OWLProperty and OWLClass with different attributes. Once the meta-schema
part is enriched, OntoDB supports the creation and the manipulation of ontolo-
gies conforming to the defined ontology model (see Figure 1 and 2).

2.2 Ontologies definition

OntoQL possesses also the capability to create ontologies that conform to the
supported ontology models. Next statements create the ontology of the example
of Figure 1 and 2.

CREATE #OWLClass Person (name STRING, age INT, sex STRING);

CREATE #OWLClass Student UNDER Person (stdtNumber INT);

CREATE #OWLClass Professor UNDER Person (ProfNumber INT);



These statements create three classes (Person, Student and Professor) with
different properties. Note that the keyword UNDER express inheritance relation-
ships between classes.

2.3 Instances definition.

Once ontologies are created with OntoQL and stored in OntoDB, they can be
instantiated to create classes individuals with a syntax similar to SQL. Next
statements create individuals of our example (Figure 1 and 2).

INSERT INTO Professor VALUES (’tata’, ’F’, 30, ’PR345’);

INSERT INTO Student VALUES (’toto’, ’M’, 20, ’ST567’);

These two statements create one instance of each of Professor and Student

classes.

2.4 Limitations of OntoDB/OntoQL to support non-canonical
concepts

Currently, OntoDB does not use a specific mechanism for supporting non-canonical
concepts. Let us consider, for example, the definition of a class as the union of
other classes. For instance, a class SchoolMember could be defined from the union
of Professor and Student classes. A possible semantics of the union of classes
induces that the SchoolMember class becomes a super class of Professor and
Student classes and conversely, Professor and Student become subclasses of
SchoolMember. Besides, instances of SchoolMember class are obtained with the
union of instances of Professor and Student. Here appears the need of com-
puting a new class and its instances (non-canonical) from existing classes and
instances (canonical). Such a construction is not available in OntoQL.

Our objective is to extend this language with the support of non-canonical
concepts. Our idea is to be able to create the SchoolMember class with a state-
ment that looks like:

CREATE #OWLClass SchoolMember

AS unionOf (Professor, Student)

Moreover, our aim is to provide a generic and a flexible solution that use
internal mechanisms of databases as well as external mechanisms (reasoners,
web services, etc.).

3 Related work: The support of non-canonical concepts
in OBDB

To analyze the support of non-canonical concepts by OBDB, we use a classi-
fication of OBDBs. Indeed, different OBDB architectures are available. They
store ontologies together with data they describe. We distinguish three types of
OBDB architectures:
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– Type1 OBDB (Figure 3) store both ontologies and data in a single triple
table composed of (subject, predicate, object) that represent respec-
tively the subject, the predicate and the object of triples. This OBDB ar-
chitecture is used to store RDF-based ontologies. Some examples of type1
OBDB are 3Store [15], Jena [9], Oracle [11] and Sward [23]. To process non-
canonical concepts, some of these OBDB provide hard encoded operators
using deductive rules [11] and other OBDB use external reasoners [15].

– Type2 OBDB (Figure 4) store ontologies and data in two separated parts
(ontologies and data parts). Main type2 OBDB are RDF Suite[1], Sesame
[7], RStar [18], DLDB [21] and OntoMS [22]. These OBDB are mainly dedi-
cated to store ontologies expressed with a specific model (e.g. RDFS, OWL,
PLIB, etc.). Here different ontology models can be statically set up but they
are frozen and cannot be modified nor extended. Type2 OBDB use differ-
ent mechanisms to manage non-canonical concepts. Indeed, some OBDB use
views [21], labeling schemas [22] or subtable relationships of object-relational
databases [1, 7]. Other OBDB compute non-canonical concepts using mech-
anisms of deductive databases, typically logic-based engines like Datalog
engine or reasoners [20, 28, 5, 21].

– Type3 OBDB (Figure 5) add another abstraction layer to type2 OBDB
architecture. The added part aims at supporting different ontology models
and their evolution. Thus, several ontology models (formalisms) can be dy-
namically supported with type3 architecture. The main example of type3
OBDB is OntoDB [14] which we presented in the previous section.

Synthesis. We notice that the different OBDB architectures focus on the
way they store data and ontologies. However, non-canonical concepts are not
powerfully addressed. Indeed, existing OBDB use some mechanisms that are ei-
ther specific to the OBDB or to the supported ontology model. All the proposed
solutions define static and hard encoded operations. No flexible solution to han-
dle non-canonical concepts is available to support the definition on the fly at
runtime of non-canonical operations.



4 Handling non-canonical concepts in ontology-based
databases

4.1 A formal model

- DT = {dt1, dt2, ..., dtn} is the set of simple or complex data types supported
by OntoDB/OntoQL.
- OP = {op1, op2, ..., opn} is the set of operations defined in OntoDB.
- IMP = {imp1, imp2, ..., impn} is the set of descriptions of implementations
that may be associated to the defined operations.
- Each operation can be associated to a set of implementations.
- implem is a function that associates implementations to a given operation.
implem : OP→ P (IMP).
∀opi ∈ OP, implem(opi) = Imp, where: Imp ⊆ IMP.
- input is a function that returns the input data types of an operation:
input : OP→ P (DT), where: ∀opi ∈ OP, input(opi) = dt, where: dt ⊆ DT.
- output is a function that returns output data types of an operation:
output : OP→ P (DT), where: ∀opi ∈ OP, output(opi) = dt, where: dt ⊆ DT.

The class diagram of Figure 6 illustrates these definitions.

4.2 Implementation

Implementation Operation

ExternalProgramWebService

** DataType

StringType

ComplexType CollectionTypeSimpleType

…BagType ListType

Attribute Entity
* 1

IntType …
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Fig. 6. The extension of the OntoDB/OntoQL meta-model with operations

The meta-model of OntoDB supports the gray part of the data model of
Figure 6. Supporting operational behaviors (that encode non-canonical com-
putations) requires an extension of OntoDB meta-model. So, the meta-model
supported by OntoDB/OntoQL architecture is extended with new entities (Fig-
ure 6, black part).



– Operation: stores informations about operations like the operation name,
its input and output data types and its implementation. Each operation is
associated to an implementation that can be either a remote service or an
external program or any other possible implementation. Information stored
in the operation entity can be considered as operation specifications.

– Implementation: records implementations details. For example, if the oper-
ation implementation is a web service, the implementation entity stores the
url, the namespace and the operation name, and if it is an external program,
the implementation entity stores the location of the program, the package
name, the class name, the method to invoke, etc.
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Fig. 7. The OntoDB extension

Once this extension is set up, the meta-schema part of OntoDB contains new
tables to support operations (Figure 7). In this example, the operation table
contains the specification of unionOf operation which processes the union of
classes. The implementation table contains implementations associated to the
defined operations. In our example, unionOf is implemented with a web service.

Once the OntoDB architecture is extended, we have also to extend the On-
toQL associated exploitation language in order to support operations creation
and invocation. The capability to create an operation is shown in the following
example:



CREATE OPERATION unionOf

INPUTS REF #OWLClass ARRAY

OUTPUT REF #OWLClass

IMPLEMENTED WITH WEB SERVICE unionOfImpl

namespace = "http://webservices.lias-lab.fr"

url = "http://localhost:8787/Services"

operation = "OWLUnionOfClasses"

This statement creates an operation unionOf that has an OWLClass array as
input and returns an OWLClass. This operation is associated to an implementa-
tion unionOfImpl which is a web service that is described by some properties
that permit its execution. Moreover, we have extended the query part of the
OntoQL language with the capability to invoke operations.

CREATE #OWLClass SchoolMember

AS unionOf (Professor, Student)

This statement invokes the operation previously created to compute the cre-
ation of the new class SchoolMember from Professor and Student classes. No-
tice that the way the operation is implemented is completely hidden to the
OntoQL user.

OntoDBBehavior API
Web services,

Java programs,
…

OntoQL

Extension with
Behavioral semantics
definition capability

Extension with
Operation entity

Fig. 8. The OntoDB/OntoQL behavior API

From a prototyping point of view, we have set up an application programming
interface (Figure 8) that links the OntoDB/OntoQL world to the external world.
Thus, this API makes data correspondences between these two worlds and invoke
services and programs and return serialized (well formated) data.

We have defined our approach to extend the meta-schema part in order to
handle operators within the OntoDB OBDB. This novel approach supports the
definition of operations at runtime. In the remainder of this paper, we show
how this extension can be exploited in order to define a methodology of OBDB
design, more precisely for encoding non-canonical concepts.



5 Application: an ontology-based database design
methodology

Since an OBDB is a database, it should be designed according to the clas-
sical design process dedicated to the development of databases, identified in
the ANSI/X3/SPARC architecture. However, when exploring the database lit-
erature, we figure out that most of the research efforts were concentrated on
the physical design phase, where various storage models for ontological data
were given. Rdfsuite [1], Jena [9], OntoDB [14], Sesame [7], Owlgres [27], SOR
[18], Oracle [12], etc. are examples for these systems. The fact that OBDB be-
come mature, the proposition of a concrete design methodology as in traditional
databases becomes a crucial issue. This development needs to follow the main
steps of traditional database design approaches: conceptual, logic and physical
designs. In [10], we proposed a five steps methodology for designing OBDB. It
starts from a conceptual model to provide logic and physical models following
five steps method [10]. In this work, we identify two types of ontological classes:
(1) canonical (primitive) and (2) non-canonical (derived) classes. For the first
type, we proposed a complete mechanism to manage canonical concepts structure
and instances. On the contrary, for non-canonical concepts, we only proposed to
place classes in a subsumption hierarchy and represent non-canonical instances
using views after a step of inferring on the ontology achieved by a semantic
reasoner. This proposition lacks an OBDB-integrated mechanism for represent-
ing non-canonical classes structure and instances views. Thus, we propose in this
section, to extend OBDBs with a generic support of non-canonical concepts that
could be used to complete this approach.

5.1 A design methodology

In this subsection, we introduce essential concepts to facilitate the understanding
of our OBDB design methodology. Then, we describe the proposed methodology
with its limitations. Finally, we show the interest of the OBDB extension we
have achieved through a use case.

Ontological dependencies. The distinction between canonical and non-canonical
concepts leads to define dependency relationships. As concepts include properties
and classes, two categories of dependencies are identified: (1) Classes dependen-
cies and (2) Properties dependencies.

1. Classes dependencies. Two types of classes dependencies may be distin-
guished: (1) Instance Driven Classes Dependencies (IDDC) and (2) Static
Dependencies (SD). In the first type, a functional dependency among two
concepts C1 and C2 (C1 → C2) exists if each instance of C1 determines
one and only one instance of C2. [26] proposed an algorithm to discover
functional dependencies (FD) among concepts of an ontology that exploits
the inference capabilities of DL-Lite. For instance, if we consider a role



mastersDegreeFrom with a domain and a range respectively the Person
and University classes, the FD Person → University is defined. It means
that the knowledge of a person with a valued property masterDegreeFrom
determines a knowledge of one instance of University class. In the sec-
ond type, SD are defined between classes based on their definitions. A SD
between two concepts Ci and Cj (Ci 7−→ Cj) exists if the definition of
Ci is available then Cj can be derived. Note that this definition is sup-
ported by a set of OWL5 constructors (owl:unionOf, owl:intersectionOf,
owl:hasValue, etc). For example, if we consider a property level having as
domain the Student class, a class MasterStudent may be defined as a Student
enrolled in the master level ( MasterStudent = ∃ level{master}; Domain
(master) = Student). Therefore, the dependency Student 7−→MasterStudent
is obtained. It means that the knowledge of the whole instances of the
Student class determines the knowledge of the whole instances of the Master-
Student class.

2. Properties dependencies. As in traditional databases, functional depen-
dencies between properties have been identified in the ontology context [3,
8]. In [8], authors proposed a formal framework for handling FD constructors
for any type of OWL ontology. Three categories of FDs are identified. In [3],
we supposed the existence of FD involving simple properties of each ontology
class. For instance, if we consider the properties idProf and name having as
domain the Professor class and describing respectively the professor iden-
tifier and name, the FD idProf → name may be defined. It means that
the knowledge of the value of the professor identifier idProf determines the
knowledge of a single value of name.

Methodology description In [10], we proposed a methodology which evolves
from, and extends, the traditional database design process. It starts from a con-
ceptual model to provide logic and physical models following a five step method
as described in figure 9. In the first step, designer extracts a fragment of an,
assumed available, domain ontology O (called local ontology(LO)) according
to his/her requirements. The LO plays the role of the conceptual model (CM).
This resulting local ontology is then analyzed automatically to identify canonical
(CCLO) and non-canonical classes (NCCLO) by exploiting classes dependencies
(Step 2). Based on the obtained CCLO and NCCLO, two further steps are de-
fined in parallel. The first one concerns the placement of the NCCLO in the
OBDB taking into account the subsumption hierarchy of classes. The complete
subsumption relationship for the ontology classes is produced by a reasoner such
as Racer6, Pellet [4], etc. (Step3). The second one describes the generation of
the normalized logical model for each ontological class (Step 4) where:(i) a set
of normalized tables (3NF) are generated for each CCi (ii) a relational view
is associated to each CCi ∈ CCLO and (ii) a class view (a DL expression) on
the canonical class(es) is associated to each NCCi ∈ NCCLO. Once the nor-

5 http://www.w3.org/TR/owl-guide/
6 http://www.racer-systems.com/



Fig. 9. OBDB design approach

input : O: a domain ontology ;
output: normalized OBDB

Extract the local ontology LO;

Analyse the LO and identify CCLO and NCCLO;

Place the NCCLO in the appropriate subsomption hierarchy using an external
reasoner;

foreach CCLO
i ∈ CCLO do

Generate the normalized tables (3NF);
Generate a relational view defined on these tables;

end

foreach NCCLO
i ∈ NCCLO do

Generate a class view (a DL expression) on its related canonical class(es) ;
end
Choose any existing database architecture ;
Deploy ontological data;

Algorithm 1: OBDB design algorithm

malized logical model is obtained and NCCLO are placed in the subsumption
relationship, the database administrator may choose any existing database archi-
tecture offering the storage of ontology and ontological data (Step5) for making



persistent data describing meta-model, model and instances. The algorithm 1
summarizes these steps.

In our approach:

– we ask designer to be familiar with the use of reasoners in order to establish
the complete subsumption relationships between ontological classes;

– once the class hierarchy is persisted to the target database, no updates can
be made;

– no detail has been given for class views computation.

The defined approach has been hard encoded in the OBDB database man-
agement system. In next subsection, we show how the defined algorithm of the
methodology can be triggered from the OBDB in a dynamic way.

5.2 Exploitation of the OntoDB extension to support OBDB design
methodology

In this subsection, we show how the proposed methodology to design ontology-
based databases taking into account (1) the different phases of classical design
approach and (2) offering the definition of the behavioral semantics of model
elements can be handled by the approach defined in section 4. We use OntoDB
as storage model architecture for our physical design phase.
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Fig. 10. Our initial OBDB design methodology

Basically, the OBDB design methodology use reasoners on ontologies to infer
the non-canonical concepts instances before building the logical model (Fig-
ure 10).

By exploiting the support of non-canonical concepts in OBDB design method-
ology defined in section 4, we offer a permanent availability with operators to
ontologies (Figure 11). Indeed, if the ontology is updated, we can use the defined
operators to infer on the ontology and/or calculate the new eventual derived con-
cepts. This approach avoids us to restart the OBDB design process in order to
rebuilt the logical model.
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Fig. 11. OBDB design methodology supporting non-canonical concepts

Explicit classes dependencies with operations. To show a real use case
of the proposed methodology, the extension of the initial ontology model stored
in the meta-schema part of OntoDB is required. Thus, we first enrich the meta-
schema to handle (a) class dependencies, and (b) operations expressing behav-
ioral semantics of non-canonical concepts.

In order to handle class dependencies in OntoDB, we extend the meta-schema
part:

CREATE ENTITY #CLeftPart (#itsClasses REF(#OWLClass) ARRAY);

CREATE ENTITY #CRightPart (#itsClass REF(#OWLClass));

CREATE ENTITY #CDependency (#rightPart REF(#CRightPart), #leftPart REF(#CLeftPart),

#operator REF(#Operation));

These statements extend the meta-schema part of OntoDB with three en-
tities in order to handle class dependencies including the left parts, the right
part and the operation used to compute the right part class. Indeed, operations
help us to define precisely the nature of the defined classes dependencies and
indicate the operators used to compute the resulting class of the dependency.
As example, the next statement expresses and stores the classes dependency
(Professor, Student→ SchoolMember). It states that Professor and Student

classes determine together the SchoolMember class using the unionOf operator.

CREATE #CDependency (#leftPart (Professor, Student), #rightPart (SchoolMember),

#operator (unionOf));

This dependency will be used to derive the non-canonical SchoolMember class
the union of Professor and Student classes.

Explicit properties dependencies with operations. To support functional
dependencies, the meta-schema part has to be extended with entities storing
functional dependencies.

CREATE ENTITY #FLeftPart (#itsProps REF(#OWLProperty) ARRAY);

CREATE ENTITY #FRightPart (#itsProp REF(#OWLProperty));

CREATE ENTITY #FDependency (#rightPart REF(#FRightPart), #leftPart REF(#FLeftPart),

#operator REF (#Operation), #itsClass REF(#OWLClass));



Similarly to classes dependencies, the statements above extend the meta-
schema with three entities to handle functional dependencies between properties
of a given class. A functional dependency is characterized by a left part which is
defined by one or many properties, a right part property, an eventual operator
to calculate the right part property if it is a derived property and the class on
which the dependency is defined.

The statements below create two functional dependencies. The first one ex-
presses the dependency between idProf and name properties of the Professor

class, and the second one expresses the dependency between birthday and age

properties of Professor. In the second dependency, the age property is com-
puted using the calculateAge operator. This dependency will be used to derive
a 3NF schema of tables associated to the Professor class.

CREATE #FDependency (#leftPart (idProf), #rightPart (name), #itsClass (Professor));

CREATE #FDependency (#leftPart (birthday), #rightPart (age), #operator (calculateAge),

#itsClass (Professor));
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Fig. 13. Ontology deployment

Figure 12 shows the meta-schema deployment in which the ontology model
and operations are stores, and Figure 13 shows the deployment of the ontology
in which ontologies together with classes and properties dependencies are stored.

Generating the logical model of an OBDB. Once operations are created
and stored in the OBDB, and classes and properties dependencies are expressed,
we become able to generate a complete logical model of the OBDB to design
integrating both a 3NF schema for each canonical class and a class view for each
non-canonical class.

To compute non-canonical concepts, we invoke an existing operation. For ex-
ample, the SchoolMember non-canonical class is computed using the following



statement:

CREATE #OWLClass SchoolMember

AS unionOf (Professor, Student)

To generate the logical model of the OBDB we invoke an operation that ex-
ecute a program implementing the algorithm 1. The logical model of the OBDB
to design could be obtained with the statement below:

CREATE #LogicalSchema

AS algorithm() ;

With regard to the SchoolMember class, a class view is computed based on
its definition (SchoolMember ≡ Professor ∪ Student). This view is associated
to the non-canonical concept:
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Fig. 14. Data deployment

Figure 14 shows an example of the deployment of the generated normalized
logical model of the Professor, Student and SchoolMember classes in OntoDB.

6 Conclusion

In this paper, we have shown that existing OBDB did not address non-canonical
concepts (NCC) as well as it is done with ontology editors evolving in main



memory. Indeed, OBDB use some mechanisms that are not sufficient, adapted
or suitable all the time. Thus, we have proposed a generic solution to handle
NCC by introducing dynamically new operators that can be implemented in
different manners (e.g. web services or external programs). This extension will
permit to OBDB to use internal mechanisms as well as external ones to handle
NCC. Besides, this extension gives to OBDB a wide coverage of ontologies. In or-
der to validate our approach, we have improved a methodology to design OBDB
where ontologies were basically inferred by reasoners before building the logical
model. As perspectives, we expect to use this approach to perform model trans-
formations and derivations in a persistent environment and to address scalability
issues. We also expect to complement OBDB architectures with constraints defi-
nition and checking and associate automatic reasoning to OBDB since they may
be encoded by callable operations or constraints solvers.
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