
OntoDBench: Novel Benchmarking System for
Ontology-Based Databases

Stéphane Jean, Ladjel Bellatreche, Géraud Fokou, Mickaël Baron, and Selma Khouri

LIAS/ISAE-ENSMA and University of Poitiers
BP 40109, 86961 Futuroscope Cedex, France

{jean,bellatreche,fokou,baron,selma.khouri}@ensma.fr

Abstract. Due to the explosion of ontologies on the web (Semantic Web, E-
commerce, and so on) organizations are faced with the problem of managing
mountains of ontological data. Several academic and industrial databases have
been extended to cope with these data, which are called Ontology-Based Databases
(OBDB). Such databases store both ontologies and data on the same repository.
Unlike traditional databases, where their logical models are stored following the
relational model and most of properties identified in the conceptual phase are
valuated, OBDBs are based on ontologies which describe in a general way a
given domain; some concepts and properties may not be used and valuated and
they may use different storage models for ontologies and their instances. There-
fore, benchmarking OBDB represents a crucial challenge. Unfortunately, exist-
ing OBDB benchmarks manipulate ontologies and their instances with charac-
teristics far away from real life applications in terms of used concepts, attributes
or instances. As a consequence, it is difficult to identify an appropriate physical
storage model for the target OBDB, which enables efficient query processing.
In this paper, we propose a novel benchmarking system called OntoDBench to
evaluate the performance and scalability of available storage models for ontolog-
ical data. Our benchmark system allows : (1) evaluating relevant characteristics
of real data sets, (2) storing the dataset following the existing storage models, (3)
expressing workload queries based on these models and (4) evaluating query per-
formance. Our proposed ontology-centric benchmark is validated using the data
sets and workload from the Lehigh University Benchmark (LUBM).

1 Introduction

Ontologies are used to explicit the semantics of a domain through conceptual, for-
mal and consensual models. These nice characteristics have been used in many do-
mains such as e-commerce, engineering or environments to solve a wide range of prob-
lems such as information integration, natural language processing or information re-
trieval. With the widespread of ontologies, the quantity of data described by ontologies,
called ontology-based data, has quickly increased and as a consequence, the develop-
ment of scalable solutions represents a crucial challenge. The database technology was
one of relevant solutions. The obtained databases are called ontology-based databases
(OBDB). They aim at storing both ontologies and the data they describe in the same
repository. Several commercial and academic database management system (DBMS)
have been extended with features designed to manage and query these mountains of

ontology-based data [1–10]. Contrary to traditional databases, where only logical rep-
resentations (usually in the relational format) of the schema is represented in the target
DBMS, OBDB have two entities to be managed: instances and the ontology describing
their senses. By deeply examining OBDB, we realize that they differ according to: (i)
the used ontological formalisms to define the ontology like rdf, rdfs, owl, plib, flight,
etc. (ii) The storage schema of the ontology and of the data model. We distinguish three
main relational representations: vertical, binary and horizontal (illustrated in Figure 2).
Vertical representation stores data in a unique table of three columns (subject, predicate,
object) [4]. In a binary representation, two-column tables are used for each property
[11]. Horizontal representation translates each class as a table having a column for each
property of the class [7]. (iii) The architecture dedicated to store all information (Figure
1). Systems like Oracle [4], use the same architecture of traditional databases with two
parts: data schema part and the system catalog part. In systems like IBM Sor [2], the
ontology model is separated from its data which gives an architecture with three parts:
the ontology model, the data schema and the system catalog. Systems like Ontodb [7]
consider an architecture with four parts, where a new part called meta-schema is added
as a system catalog for the ontology part.

This diversity pushes us to formalize an OBDB by a 6-tuple as follows:
< O,I,Pop,SMIM,SMI,Ar >

– O : the used ontology. It is also defined by a 4-tuple: < C,R,Re f , F >, where:
• C: denotes the set of Concepts of the ontology (atomic concepts and concept

descriptions). If we consider the ontology used by the LUBM benchmark [12],
the set of concepts are C ={Person, Student, Employee, Dean, TeachingAssis-
tant, Organization, Program, University, Work, Course, Unit, Stream, Gradu-
ateCourse, . . . }
• R: denotes Roles (relationships) of the model. Roles can be relationships re-

lating concepts to other concepts, or relationships relating concepts to data-
values (like Integers, Floats, etc). The roles of the LUBM are {author, member,
degreeFrom, masterDegreeFrom, tekeCourse, ...}.
• Re f : C → (Operator, Exp(C,R)). Re f is a function defining terminologi-

cal axioms of a description logic (TBOX). Operators can be inclusion (⊑) or
equality (≡). Exp(C,R) is an expression over concepts and roles using con-
structors of description logics such as union, intersection, restriction, etc. (e.g.,
Ref(Student)→(⊑, Person ⊓ ∀takesCourse(Person, Course))).
• F: represents the formalism (RDF, OWL, etc.) in which the ontology O is de-

scribed. The formalism used in the LUBM is OWL.
– I: presents the instances or ontology-based data.
– Pop: C→ 2I is a function that relates each ontological concept to its instances.
– SMIM: is the Storage Model of the ontology.
– SMI: is the Storage Model of the instances (binary, horizontal or vertical).
– Ar: is the architecture model of the the target DBMS supporting the OBDB (Fig-

ure 1).

The diversity of OBDB in terms of storage models, the used formalisms, the target ar-
chitectures, etc. represents a big opportunity for researchers to work on the development

of benchmarks. This situation is more challenging than the one faced by existing bench-
marks for traditional databases (TPC-C: www.tpc.org) and data warehousing (TPC-H,
Star Schema Benchmark [13], etc.), where only one entity representing the instances
stored in one format is manipulated. Besides we have already lived the same situation
when developing benchmarks for object oriented databases and XML databases, where
the target model implementing the instances may differ from database to another (OO7
[14], XML benchmarks (XOO7 [15]).

Several existing benchmarks gave the possibility to evaluate the scalability ofOBDB
[12, 16–18]. They contribute in giving hints to a database administrator (DBA) in choos-
ing her/his adequate representation for ontology-based data. But, a supplementary effort
needs to be performed by DBA to check whether the benchmark dataset and workload
are similar to those present in her/his application. This checking represents a hard task
since ontology-based data can be rather structured like relational data or completely
unstructured. Moreover, Duan et al. [19] have recently raised doubts over the predic-
tions of these benchmark experiments in realistic scenarios. Indeed they have shown,
through the definition of a metric called coherence, that while real datasets range from
unstructured to structured data, existing benchmark datasets are mostly high-structured.
As a consequence, it is still unclear which database representations (storage) should be
used for a given dataset and workload.

Instead of defining a dataset and workload conform to the target application, we pro-
pose in this paper an alternative benchmarking system called OntoDBench, to bench-
mark OBDB. It is based on a benchmarking system offering DBA the possibility to
estimate the structuredness of its dataset and test the scalability of the three main repre-
sentations of ontology-based data on its real datasets and workload. Then, according to
its functionality and scalability needs, DBA may choose the adequate OBDB. OntoD-
Bench supports the following functionalities: (1) the evaluation of the characteristics
of the real datasets, (2) the identification of the relevant storage models (SMIM and
SMI) for a given OBDB, (3) the expression of the workload queries according to the
three representations and (4) the evaluation of the queries performance. To validate the
correctness of the benchmarking system, we apply it to the LUBM dataset and work-
load of queries which has been heavily tested in the literature. Our idea is to check
whether benchmarking system gives the results that have been previously established
on this dataset. Note that our system is generic in the sense that it is able to evaluate any
dataset and workload of queries.

The reminder of this paper is structured as follows. In Section 2 we present the
state of the art on the representation of ontology-based data in relational databases.
Then we review existing benchmarks and show their limitations by introducing a set
of ontology-based data metrics. These limitations lead us to propose a new system for
benchmarking OBDB. It is based on a benchmarking system described in Section 3.
Section 4 validates our proposal on the LUBM Benchmark. Finally, the paper concludes
in Section 5 with a summary of our contributions and a discussion of open issues.

meta_table

ID name
#1 triples … …

Catalog system

Data
Triples

subj pred obj
#1 name peter
#2 type student

1

2

2-parts architecture
(e.g., Oracle)

meta_table

ID name
#1 class … …
#2 triples

Catalog system

Data

1

2Ontology 3
Class

ID name
#1 student … …
#2 professor

3-parts architecture
(e.g., IBM Sor)

4-parts architecture
(e.g., OntoDB)

Triples

subj pred obj
#1 name peter
#2 type student

meta_table

ID name
#1 class … …
#2 triples

Catalog system

Data

1

2Ontology 3
Class

ID name
#1 student … …
#2 professor

Triples

subj pred obj
#1 name peter
#2 type student

Entity

ID name
#1 class … …
#2 property

Meta-Schema 4

Fig. 1. Different Architectures

2 Background and State of The Art

2.1 Database Representation for Ontology-Based Data

Currently most proposals use relational databases to store ontology-based data. Three
main storage layouts have been followed. They are illustrated in Figure 2 based on the
LUBM benchmark data [12].

Vertical representation (Figure 2 (a)):

As most ontology-based data are represented in the RDF format, the direct trans-
lation into a database schema consists in using a triple table (subject, predicate,
object). Since URI are long strings, additional tables may be used to store only inte-
ger identifier in the triple table. This approach has initially been followed in Jena [3],
3store [1] and Virtuoso [9]. More recently, Oracle [4] introduces an RDF management
platform based on this approach. The main drawback of this approach is that it requires
many self-joins over the triple table even for simple queries (shown in section 3.3).

Binary representation (Figure 2 (b)):

An alternative representation to the triple table consists in using a binary (two-
columns) table for each property of the dataset. Thus, for a property P, a corresponding
table P(subject, object) stores the values (object) of subjects (subject) for the
property P. This representation includes a table TYPE to record the type of each subject.
An alternative solution consists in using a unary table for each class of the ontology.
This approach has been followed in [5, 6, 11] including the systems Sesame and DLDB.
Compared to the vertical representation, this approach requires less joins but can still
require many joins for query involving many properties.

Horizontal representation: (Figure 2 (c)1)

To avoid the many joins required with the vertical and binary representation, the hor-
izontal representation consists in representing ontology-based data in a relational way.
Thus, for each class C of the ontology, a table C(p1, . . . , pn) is defined where p1, . . . , pn

are the single-valued properties used at least by one instance of the class. Multi-valued
properties are represented by a two-column table such as in the binary representation.
This approach is followed in OntoDB [7], OntoMS [8] and Jena2 [16]. Since all subjects
in a table do not necessarily have a value for all properties of the table, this representa-
tion can be sparse which can impose performance overhead. Moreover, if the ontology
is mostly composed of multi-valued properties, this approach is similar to the binary
representation.

UniversitytypeID3

ID3subOrganizationOfID2

DepartmenttypeID2

ID3
Undergraduate
DegreeFrom

ID1

ID2memberOfID1

GraduateStudenttypeID1

TRIPLES

Subject Predicate Object

UniversitytypeID3

ID3subOrganizationOfID2

DepartmenttypeID2

ID3
Undergraduate
DegreeFrom

ID1

ID2memberOfID1

GraduateStudenttypeID1

TRIPLES

Subject Predicate Object

UniversityID3

DepartmentID2

Graduate
Student

ID1

TYPE

Subject Object

UniversityID3

DepartmentID2

Graduate
Student

ID1

TYPE

Subject Object

ID2ID1

MEMBEROF

Subject Object

ID2ID1

MEMBEROF

Subject Object

ID3ID2

SUBORGANIZATIONOF

Subject Object

ID3ID2

SUBORGANIZATIONOF

Subject Object

ID3ID1

UNDERGRADUATE
DEGREEFROM

Subject Object

ID3ID1

UNDERGRADUATE
DEGREEFROM

Subject Object

ID3ID2ID1

GRADUATESTUDENT

Subject memberOf underGraduate
Degreefrom

ID3ID2ID1

GRADUATESTUDENT

Subject memberOf underGraduate
Degreefrom ID3

UNIVERSITY

Subject

ID3

UNIVERSITY

Subject

ID3ID2

DEPARTMENT

Subject subOrganizationOf

ID3ID2

DEPARTMENT

Subject subOrganizationOf

(a) Vertical Representation (b) Binary Representation

(c) Horizontal Representation

Fig. 2. Example of the three main representations of ontology-based data

As we have seen, three main representations are used to store ontology-based data.
The scalability of these three representations has been evaluated in several benchmarks
presented in next sections.

2.2 Benchmarking Ontology-Based Database

In this section, we review five OBDB benchmarks: the LUBM Benchmark, the Barton
Library Benchmark, the Berlin SPARQL Benchmark, the SP2Bench Benchmark and the
DBpedia SPARQL Benchmark.

The LUBM Benchmark [12] is composed of several datasets on a University domain
with classes such as UndergraduateStudent or AssistantProfessor and 14 test
queries. Each dataset is named LUBM(N,S) where N is the number of Universities and
S is a seed value used for the generation of data. Five sets of test data are generally
used: LUBM(1, 0), LUBM(5, 0), LUBM(10, 0), LUBM(20, 0), and LUBM(50,0) (up
to seven millions triples) but the generator could also be used to generate more data.
This benchmark was used to conduct an evaluation of mainly two OBDBs: DLDB [6]
and Sesame [5] which were each better at different queries.

The Barton Library Benchmark [17] is composed of a dataset on a Library domain with
classes such as Text or Notated Music. This dataset contains approximately 50 mil-
lions of triples. Seven queries were associated to this benchmark in [11]. Experiments

were run to compare the three main representations of RDF data presented in the previ-
ous section. The binary representation was clearly better than the vertical representation
and was always competitive to the horizontal representation.

The Berlin SPARQL Benchmark [18] is composed of a dataset on an e-commerce do-
main with classes such as Product or Vendor and 12 test queries. The aim of this
benchmark was to test a real sequence of operations performed by a human user. This
benchmark was used to do experiments on OBDBs such as Jena [3], Sesame [5], Vir-
tuoso [9] and OWLIM [10].

The SP2Bench Benchmark [19] is composed of a dataset based on DBLP with classes
such as Person or Inproceedings and 12 test queries. The aim of this benchmark
was to include a variety of SPARQL features not supported in previous benchmark. The
experiments conducted on OBDBs, including Sesame [5] and Virtuoso [9], identified
scenarios where the binary representation was slower than the vertical representation.

The DBpedia SPARQL Benchmark [20] is composed of a dataset based on DBpedia with
25 SPARQL query templates. The aim of this benchmark was to use real RDF dataset
instead of generated one. This benchmark was used to do experiments on Virtuoso[9],
Jena [3] and OWLIM [10]. The obtained results were more diverse and indicate less
homogeneity than what was suggested by other benchmarks.

As we can see, many benchmarks have been proposed for benchmarking OBDBs.
They target different domains and evaluate different OBDBs. For a DBA that needs to
choose an OBDB, the experiments conducted in these benchmarks are not easy to use
as they do not use the same data and thus are often contradictory. As stated in [12],
”one must determine if the benchmark is similar enough to a desired workload in order
to make predictions about how well it will perform in any given application”. Recently,
Duan et al. [21] have introduced a set of metrics to estimate this similarity.

2.3 Ontology-Based Data Metrics

Usually, a dataset is described by basic metrics such as the number of triples, subjects,
predicates, objects, or classes and detailed statistics such as the average outdegree of
the subjects (i.e., the average number of properties associated with a subject) or average
indegree of the objects (i.e., the average number of properties associated with an object).
However these basic metrics do not characterize the structuredness of a dataset.

Intuitively the structuredness of a dataset is linked to the number of NULL values
(i.e, values not defined) in the dataset. This number can be computed with the following
formula:

#NULL = (
∑

C

|P(C)| × |I(C,D)| − Nt(D))

– |P(C)| is the number of properties of the class C;
– |I(C,D)| is the number of instances of C in the dataset D;
– |Nt(D)| is the number of triples of the dataset D.

This number of NULL can be computed for each class to evaluate the structured-
ness of each class. This metrics is called coverage of a class C in a dataset D, denoted
CV(C,D).

CV(C,D) =
∑

p∈P(C) OC(p, I(C,D))
|P(C)| × |I(C,D)|

– OC(p, I(C,D)) is the number of occurrences of a property p for the C instances of
the dataset D.

To illustrate the coverage metric lets consider a class that has 2 properties (P(C))
and 4 instances (I(C,D)). If this class had a perfect coverage, all 4 instances would
have a value for the 2 properties (8 triples). Now, if look at the triples and see that the
4 instances have only a value for the first property (4 triples) then the coverage of the
class is 0.5 (4/8).

The coverage metric is only defined on a class and do not characterize the whole
dataset. Yet a class can be more or less important. If we denote τ the set of classes in
the dataset, this weight WT is computed by:

WT (CV(C,D)) =
|P(C)| + |I(C,D)|∑

C′∈τ(|P(C′)| + |I(C′,D)|)
This formula gives higher weight to types with more instances and with a larger

number of properties. The weight of a class combined with the coverage metric can be
used to compute the structuredness of a dataset called coherence. The coherence for
dataset D composed of the classes τ, denoted CH(τ,D) is:

CH(τ,D) =
∑
C∈τ

WT (CV(C,D)) ×CV(C,D)

Using the coherence metrics Duan et al.[21] showed that benchmark datasets are
very limited in their structuredness and are mostly well-structured. In comparison, real
datasets range from unstructured to structured data. As a consequence, it is most un-
likely that a DBA can use results of existing benchmarks to predict the behaviour of an
OBDB if he uses it to manage its own dataset and workload of queries. In response to
this limitation, Duan et al.[21] introduced a benchmark generator which takes as input
the coherence of the dataset to be generated. This approach has two limitations: (1) it
is difficult to do experiments for the whole spectrum of structuredness. Thus a DBA
has to do its own experiments generating a dataset with the desired coherence, loading
it in OBDBs and executing queries and (2) the generated dataset is not associated to
queries that are similar to the real workload. Again the DBA has to define queries on
the generated dataset which are quite similar to her/his real application (same selectivity
factors, hierarchies, etc.). This task is not always easy. To reduce the complexity of this
task, we propose a novel benchmarking system that can be used to test the scalability
of the real dataset and workload of queries according the different storage models of
ontology-based data. This benchmarking system is detailed in next section.

3 Our Benchmarking System: OntoDBench

3.1 Dataset Storage

The first step of our benchmark system consists in storing the dataset according to the
three main database representations. As in [11], we chose to do a direct PostgreSQL

representations instead of using specific OBDBs. This approach has the advantage to
give us a direct interaction with database and a control of the queries supported. Con-
versely, the implemented representations may not support all the specific optimization
provided by an OBDB. As we will see in the conclusion, this open issue is part of our
future work.

Our PostgreSQL implementation of the vertical representation contains the triple
table as well as a table that maps URL to integer identifier. As this is mostly done in most
OBDBs, three B+ tree indices are created on the triple table: one clustered on (subject,
property, object), two unclustered on (property, object, subject) and (object, subject,
property). The binary representation contains one two-column table per property. Each
table has a clustered B+ tree index on the subject, and an unclustered B+ tree index on
the object. Finally, the horizontal representation consists of a table for each class and
one for each multi-valued properties. We distinguished single-valued and multi-valued
properties by looking at the dataset. In another dataset, this distinction could also be
made with schema information (e.g., the cardinality constraint maxCardinality of
OWL). No specific index (except on the primary key) is defined on the tables corre-
sponding to classes. The table for multi-valued properties is indexed as in the binary
representation.

The tables of each representation must be loaded with the dataset. This process is
achieved (1) by converting all the dataset in the N-Triples format since this format maps
directly to the vertical representation, (2) inserting each triple in the vertical represen-
tation and (3) loading the dataset in the binary and horizontal representations directly
from the vertical representation (which was more efficient that reading again the whole
file). The conversion in the N-Triples format is done with the Jena API. However, since
real dataset can be pretty huge (e.g., the size of the UniProt dataset [22] is approximately
220 GB), the conversion of this dataset could not be done in main-memory. To solve
this problem, we do a segmentation of the input file. This segmentation has two advan-
tages: (1) huge datasets, decomposed in several files, can be read and (2) the loading
process can be executed with a multithreaded program (one thread for each file). The
graphical interface used for steps (1) and (2) is presented in Figure 3.

The step (3) consists in loading the binary and horizontal representation from the
vertical representation. As the dataset is already in the database, this process can be done
directly on the database using stored procedures encoding algorithms 1.1 and 1.22. The
graphical interface uses for steps (3) is presented in top of Figure 5.

Algorithm 1.1. Loading the binary representation
Input: T (s, p, o): The triple table;
begin

foreach t ∈ T do
INS ERT INTO t.p VALUES (t.s, t.o);

end

2 For readability, we simplify these algorithms but in the implementation they use less queries
(with self-joins) to optimize the processing

Fig. 3. Interface to load the dataset in the triple table and compute metrics

Algorithm 1.2. Loading the horizontal representation
Input: T (s, p, o): The triple table;
begin

C = S ELECT o FROM T WHERE p =′ type′;
foreach c ∈ C do

Ic = S ELECT s FROM T WHERE o =′ c′;
foreach i ∈ IC do

r : tuple;
Ti = S ELECT ∗ FROM T WHERE s =′ i′;
foreach ti ∈ Ti do

if ti.p is single-valued then
r.p = ti.o;

else
INS ERT INTO ti.p VALUES (ti.s, ti.o);

INS ERT INTO c VALUES r;

end

3.2 Metrics Computation

The second step of our benchmarking system consists in computing the metrics of the
dataset. This metric can be used to find the relevant benchmarks to the current scenario.
Since the data are already in the database, the computation of most basic metrics is
computed with a single SQL query. For example, the following query on the triple table
T computes the average indegree of the objects:

SELECT AVG(p) FROM T WHERE p <> ’type’ GROUP BY o

The computation of the coverage and coherence is more complex and is imple-
mented with stored procedures. For example, the coverage of a class C is computed
with the algorithm 1.3. The metrics are automatically computed once the dataset is
loaded. The result is exported in a text file.

Algorithm 1.3. Computing the coverage of a class C
Input: T (s, p, o): The triple table;
Output: Res: The coverage of the class C;
begin

I(C,D) = S ELECT s FROM T WHERE o = ′C′ AND p = ′type′;
|P(C)| = S ELECT COUNT (DIS T INCT p) FROM T WHERE s IN I(C,D);
numerator = 0;
foreach pc ∈ P(C) do

OC(pc, I(C,D)) = S ELECT COUNT (∗) FROM T WHERE p =
′pc′ AND s IN I(C,D);
numerator = numerator + OC(pc, I(C,D));

Res = numerator / P(C) × I(C,D);
end

3.3 Query Rewriting Module

Once the dataset is loaded in the database, the queries need to be translated according to
the three representations. We consider queries consisting of a pattern which is matched
against the dataset. If C1, . . . , Cn are ontology classes and p11, . . . , pnn properties, the
considered pattern is the following:
(?id1, type, C1) (?id1, p11, ?val11) · · · (?id1, pn1, ?valn1) [FILTER()]
(?id2, type, C2) (?id2, p12, ?val12) · · · (?id2, pn2, ?valn2) [FILTER()]
...
(?idn, type, Cn) (?idn, p1n, ?val1n) · · · (?idn, pnn, ?valnn) [FILTER()]

Notice that these queries could be written with most ontology query languages
such as SPARQL. Conversely, this pattern does not yet support specific operators (e.g.
OPTIONAL in SPARQL) but it could be extended with them.

All queries of the LUBM benchmark could be written with this pattern. For exam-
ple, Q2 is expressed as follows:
(?x, type, GraduateStudent) (?x, memberOf, ?z)

(?x, undergraduateDegreeFrom, ?y)
(?y, type, University)
(?z, type, Department) (?z, subOrganizationOf, ?y)

Our query rewriting module automatically translates this query to SQL queries on
the three possible representations.

Query rewriting on the vertical representation:

Let’s T(s, p, o) be the triple table, Pred1 the conjunction of predicates in the FILTER
operators and Pred2 the conjunction of predicates composed of equalities of variables
having the same name, then the considered pattern can be translated by the following
relational algebra expressions:
FROM := T→T1

Z
T1.s=T11.s

T→T11 . . . T→T1n−1
Z

T1n−1.s=T1n.s
T→T1n×

. . .
T→Tn

Z
Tn.s=Tn1.s

T→Tn1 . . . T→Tnn−1
Z

Tnn−1.s=Tnn.s
T→Tnn

WHERE := σT1.p=′type′∧T1.o=′C′1∧...∧Tn.p=′type′∧Tn.o=′C′n∧pred1∧pred2(FROM)

SELECT := πt1.s,...tn.s,t11.o,...,tnn.o(WHERE)

As an example, Figure 4 (a) presents the SQL query corresponding to the query 2
of LUBM. For simplicity’s sake, this query only projects distinct variables of Q2.

Query rewriting on the binary representation:

Let’s P(s, o) be the table corresponding to property P, and Pred1, Pred2 as defined
previously, then the considered pattern can be translated by the following relational
algebra expressions:
FROM := Type→T1

Z
T1.s=P11.s

P11 . . . P1n−1
Z

P1n−1.s=P1n.s
P1n×

. . .
Type→Tn

Z
Tn.s=Pn1.s

Pn1 . . . Pnn−1
Z

Pnn−1.s=Pnn.s
Pnn

WHERE := σT1.o=′C′1∧...∧Tn.o=′C′n∧pred1∧pred2(FROM)

SELECT := πt1.s,...tn.s,p11.o,...,pnn.o(WHERE)

As an example, Figure 4 (b) presents the SQL query corresponding to the query 2
of LUBM.

Query rewriting on the horizontal representation:

Let’s Ci(s, pi1, . . . , pim−1) be the table corresponding to the class Ci where pi1, . . . ,
pim−1 are single-valued properties. If pim, . . . , pin are multi-valued properties of Ci then
each multi-valued property P has a corresponding table P(s,o). If we use the notations
Pred1, Pred2 as defined previously, then the considered pattern can be translated by
the following relational algebra expressions:
FROM := C1 Z

C1.s=P1m.s
P1m . . . P1n−1

Z
P1n−1.s=P1n.s

P1n×
. . .
Cn

Z
Cn.s=Pnm .s

Pnm . . . Pnn−1
Z

Pnn−1.s=Pnn.s
Pnn

WHERE := σpred1∧pred2(FROM)

SELECT := πC1.s,C1.p1...C1.Pm−1,P1m .o,...,P1n.o,..., Cn.s,Cn.P1...Cn.Pm−1,Pnm .o,...,Pnn.o(WHERE)

As an example, Figure 4 (c) presents the SQL query corresponding to the query 2
of LUBM.

3.4 Benchmarking

With the previous query rewriting module, the workload under test can be executed on
the three main database representations for ontology-based data. The database buffers
can have an influence on the query performance. Indeed, the first execution of a query

SELECT T1.s, T2.s, T3.s
 FROM T T1, T T11, T T12,
 T T2,
 T T3, T T31
 WHERE T1.p = 'type' AND T1.o = 'GraduateStudent'
 AND T1.s = T11.s AND T1.s = T12.s
 AND T11.p = 'memberOf'
 AND T12.p = 'undergraduateFrom'
 AND T2.p = 'type' AND T2.o = 'University'
 AND T3.p = 'type' AND T3.o = 'Department'
 AND T3.s = T31.s
 AND T31.p = 'subOrganizationOf'
 AND T11.o = T3.s
 AND T31.o = T2.s
 AND T12.o = T2.s

Vertical Representation
 (a)

SELECT T1.s, T2.s, T3.s
 FROM Type T1, MemberOf P11,
 UnderGraduateDegreeFrom P12,
 Type T2,
 Type T3, SubOrganizationOf P31
 WHERE T1.o = 'GraduateStudent'
 AND T1.s = P11.s AND T1.s = P12.s
 AND T2.o = 'University'
 AND T3.o = 'Department'
 AND T3.s = P31.s
 AND P11.o = T3.s
 AND P31.o = T2.s
 AND P12.o = T2.s

Binary Representation
 (b)

SELECT Graduatestudent.s, University.s, Department.s
 FROM Graduatestudent, University, Department
WHERE Graduatestudent.memberOf = Department.s and Graduatestudent.undergraduateDegreeFrom = University.s
 AND Department.subOrganisationOf = University.s

Horizontal Representation
 (c)

Fig. 4. Query rewriting of the Q2 query of LUBM

is usually slower that the next executions due to the caching of data. As a consequence
our benchmarking module takes as input (the graphical user interface is presented on
the bottom of Figure 5) the number of times the queries have to be executed. For a
given representation R, this process is realized by the algorithm 1.4. All the data of the
results Res are automatically exported in an excel file so that the DBA can, if necessary,
represent them as graphs.

Algorithm 1.4. Benchmarking the workload queries
Input: Q: The set of m queries;

n: number of executions of each query;
R: representation;

Output: Res[m, n]: The set of query response time;
begin

foreach Qi ∈ Q do
Q′i = Rewrite(Qi,R);
foreach j ∈ 1 . . . n do

Res[i, j] = responseT ime(Q′i ,R);

end

4 Experimental Validation

To validate our proposal we have done a complete implementation of the benchmarking
system (the source code is available at http://lisi-forge.ensma.fr/OntologyMetric.zip).
We used JAVA for the graphical user interface and PostgreSQL as a database storage.
A screenshot of the interface used to load data and compute metrics is presented in Fig-
ure 3. Moreover, we run several experiments to test the correctness of our benchmarking

Fig. 5. Interface to load the dataset according to the vertical and horizontal representations and
execute workload queries

system. We claim that if it computes the correct metrics of a dataset and provides the
correct query performance for a given workload on the three representations we con-
clude that it is valid. Thus, to test our benchmarking system we need a dataset and
a workload of queries that has been heavily tested. As a consequence, we chose the
LUBM dataset and its associated 14 queries. To check that our benchmarking system
provides the correct answer to each query and that we compute the correct metrics of
the dataset, we have used a dataset generated by LUBM (1,0) 3. These experiments were
run on PostgreSQL 8.2 installed on a standard Intel Core i5 750 2.67 Ghz 4GB of RAM
desktop machine (Dell). We also run experiments on LUBM(20, 0) and LUBM(50,0)
to check that our benchmarking system can handle bigger dataset. The results obtained
are described in the following sections.

4.1 Metrics of the LUBM dataset

Table 1 presents the basic metrics computed from the dataset. LUBM(1,0) generates a
rather small dataset composed of approximately 1K triples (8MO). The LUBM ontol-
ogy is composed of 14 classes with 17189 instances. Each instance has an average of
approximately 5 values of properties. If we look at the different properties of each class,
this dataset is composed of 7244 NULL values.

The basic metrics computed does not give a precise idea of the structuredness of
the dataset. This structuredness is evaluated by the coherence metric. This metric is
computed from the coverage and weight metrics presented in table 2.

3 Reference query answers for LUBM(1,0) are available at: http://swat.cse.lehigh.edu/projects/
lubm/answers.htm

#triples #subjects #predicates #objects #types avg indegree avg outdegree #NULL
100558 17189 17 13947 14 5,91 4,79 7244

Table 1. Basic metrics of the dataset

Type Coverage Weight
AssistantProfessor 100% 1%
AssociateProfessor 100% 1%

Course 100% 5%
Departement 100% 0,10%
FullProfessor 91,20% 1%

GraduateCourse 100% 4%
GraduateStudent 90,22% 10%

Lecturer 100% 1%
Publication 100% 33%

ResearchAssistant 100% 3%
ResearchGroup 100% 1%

TeachingAssistant 100% 2%
UndergraduateStudent 86,79% 33%

University 0,10% 5%
Table 2. Coverage and weight of types

The coverage metric is illustrated on Figure 6. As we can see most classes have a
perfect structuredness (instances have a value for each property of the class). There are
four exceptions:

– FullProfessor has 125 instances with 110 NULL (10 properties/instance);
– GraduateStudent has 1874 instances with 1467 NULL (8 properties/instance);
– UndergraduateStudent has 5916 instances with 4689 NULL (6 properties/instance);
– University has 979 instances with 978 NULL (1 property/instance).

Fig. 6. Coverage of each type of the LUBM dataset

Thus, only the University class has a low structuredness due to the fact that this
class has only 1 property (name) which is valuated by only one instance of this class.

Indeed LUBM(1, 0) generates data for only one university (described by a name) but
references many more university that are only identified by an URI.

From the coverage metric we can suspect that this dataset is well-structured. How-
ever, we have to take into account the weight (percentage of instances) of each class.
Indeed if the University class had large number of instances; this dataset could be
rather unstructured. The weight metrics is illustrated in Figure 7. As we can see, two
classes (UndergraduateStudent and Publication) have 66% of all instances. Since
these two classes have a coverage of approximately 90% it explains that the coherence
of the dataset is 89,24%. This result confirms the one presented in [21] and thus is
a good indication that our benchmarking system correctly computes the metrics of a
dataset.

Fig. 7. Weight of each type of the LUBM dataset

4.2 Performance of the LUBM queries on the three representations

The second result that can be obtained from our benchmarking system is the query
response time of each query of the workload. Each query was run several times: once,
initially, to warm up the database buffers and then four more times to get the average
execution time of a query.

Figure 8 presents the obtained average query response time. For the readability rea-
son we only present the response time of 9 queries of the LUBM benchmark (Q1 to
Q9). These results show that, for all queries, the binary and horizontal representations
outperform the vertical representation. This result is caused by two factors: (1) the ver-
tical representation implies many self-joins on the triple table for all LUBM queries. In
comparison, these queries involved less joins on the two other representations and on
tables that have less tuples. (2) Due to the metrics of the dataset, the two other represen-
tations do not suffer from their drawbacks. The dataset contains only 17 properties and
most queries do not involve more than 3 properties. Thus, most queries do not involve

many joins in the binary representation. The dataset is well structured and thus, the ta-
bles in the horizontal representation are not sparse (except for the table corresponding
to University but this table is only access by the Q2 query).

The binary and horizontal representations give similar response time. The horizon-
tal representation has a slight advantage for Q7, Q8 and Q9 since they involved only
single-valued properties and target classes that have coverage of 100%. The binary rep-
resentation is better for Q2 and Q4 as these queries involve classes that do not have a
perfect coverage (University and FullProfessor).

These results are similar to the ones obtained in [12, 7]: binary and vertical represen-
tations usually outperform the vertical representation for high-structured data. If a DBA
put the scalability as the main criteria of choice for an OBDB, our benchmarking sys-
tem advises her/him to choose anOBDB that uses a binary or horizontal representation.
Of course many other factors can influence the decision of a DBA (e.g., functionalities
of the OBDB). One of the most contributions of our benchmarking system is that it
gives hints on the scalability criterion.

Fig. 8. Average time of query execution for 9 queries of LUBM

The experiments conducted in this section show that our system applied to the
LUBM dataset and benchmark provide the same results that have been given in existing
benchmarks and thus, is a positive test for validating the correctness of our approach.
Compared to existing benchmarks, the interest of our work is that we can do exactly
the same experiments on other dataset and workload with the availability of a complete
benchmarking system. This contribution is summarized in the next section.

5 Conclusion

The explosion of ontology-based data over the Web pushes commercial and academic
DBMS to extend their features to support this new type of data. Notice several re-
search efforts have been undertaken to propose benchmarks in the context of traditional

databases (relational and object-oriented). Ontology-based databases (OBDB) come
with new characteristics: (1) they store both ontology-based data and the ontology de-
scribing their meanings on the same repository, (2) the concepts and properties in the
stored ontology are not always used contrary to traditional databases, (3) ontology and
ontology-based data may be stored in various storage layouts (binary, horizontal and
vertical) and (4) the target DBMS may have different architectures (2-parts, 3-parts
and 4-parts). Existing benchmarks dedicated for OBDB provide useful hints for the
management of very well structured ontology-based data. However, real ontological
applications manage unstructured to structured data. In this paper, we propose a bench-
marking system OntoDBench helping DBA on choosing the relevant components (ar-
chitecture, storage model, etc.) of their OBDB that takes into account the data set and
workload. Before describing in details this system, we give a generic formalization of
an OBDB. Our benchmarking system gives the DBA metrics to evaluate the dataset
(including the ontology and their instances) and query performance based on the three
storage models. Our benchmarking system full source code and executable programs
are available at http://lisi-forge.ensma.fr/OntologyMetric.zip using JAVA for the graph-
ical user interface and PostgreSQL as the DBMS. Our benchmarking system has been
evaluated on several LUBM datasets and compared with the existing ones [21].

Our work opens several research issues. OBDB can use many database optimiza-
tions that are not included in our benchmarking system (e.g., partitioning or material-
ized views). These database optimizations have a huge impact on query performance.
Thus we plan to extend our system so that the DBA can compare specific OBDB rep-
resentations instead of the generic ones that we have currently implemented. Another
perspective concerns the metrics used to characterize a dataset. Currently, the metrics
proposed by [21] that we have integrated in our system are only defined on ontology-
based data. Yet, queries could also be expressed on ontologies or on both ontologies and
data. Thus, it could be interesting to study which metrics can be defined on ontologies
(e.g., the depth of the class and/or property hierarchy) are relevant for such queries.
Moreover, queries themselves could be characterized by different optimization metrics
(e.g., number of joins or selectivity of selections) to help choosing the best database
representation according to the dataset and query workload.

References

1. Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: Proceedings of the 1st
International Workshop on Practical and Scalable Semantic Systems (PSSS’03). (2003) 1–
15

2. Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.: Sor: a practical system for
ontology storage, reasoning and search. In: Proceedings of the 33rd international conference
on Very large data bases (VLDB’07). (2007) 1402–1405

3. B.McBride: Jena: Implementing the RDF Model and Syntax Specification. (2001)
4. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: Imple-

menting an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle.
In: Proceedings of the 24th International Conference on Data Engineering (ICDE’08). (2008)
1239–1248

5. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. In: Proceedings of the 1st International Semantic Web
Conference (ISWC’02). (2002) 54–68

6. Pan, Z., Heflin, J.: Dldb: Extending relational databases to support semantic web queries. In:
Proceedings of the 1st International Workshop on Practical and Scalable Semantic Systems
(PSSS’03). (2003) 109–113

7. Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An Ontology-Based Database for Data
Intensive Applications. In: Proceedings of the 12th International Conference on Database
Systems for Advanced Applications (DASFAA’07). (2007) 497–508

8. Park, M.J., Lee, J.H., Lee, C.H., Lin, J., Serres, O., Chung, C.W.: An Efficient and Scalable
Management of Ontology. In: Proceedings of the 12th International Conference on Database
Systems for Advanced Applications (DASFAA’07). (2007) 975–980

9. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Conference on Social
Semantic Web (CSSW’07). Volume 113. (2007) 59–68

10. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: A
family of scalable semantic repositories. Semantic Web 2(1) (2011) 1–10

11. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web Data Man-
agement Using Vertical Partitioning. In: Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB’07). (2007) 411–422

12. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Journal
of Web Semantics 3(2-3) (2005) 158–182

13. O’Neil, P., O’Neil, E.J., Chen, X., Revilak, S.: The star schema benchmark and augmented
fact table indexing. In: First TPC Technology Conference (TPCTC). (2009) 237–252

14. Carey, M.J., DeWitt, D.J., Naughton, J.F.: The oo7 benchmark. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD). (1993) 12–21

15. Bressan, S., Lee, M., Li, Y.G., Lacroix, Z., Nambiar, U.: The xoo7 benchmark. In: Effi-
ciency and Effectiveness of XML Tools and Techniques and Data Integration over the Web
(EEXTT). (2002) 146–147

16. Wilkinson, K.: Jena Property Table Implementation. In: Proceedings of the 2nd International
Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS’06). (2006) 35–46

17. D. Abadi, A. Marcus, S.M., Hollenbach, K.: Using the Barton libraries dataset as an RDF
benchmark. Technical Report MIT-CSAIL-TR-2007-036, MIT (2007)

18. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. Semantic Web and Information
Systems 5(2) (2009) 1–24

19. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance
Benchmark. In: Proceedings of the 25th International Conference on Data Engineering
(ICDE’09). (2009) 222–233

20. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: DBpedia SPARQL Benchmark
– Performance Assessment with Real Queries on Real Data. In: Proceedings of the 10th
International Semantic Web Conference (ISWC’11). (2011)

21. Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and oranges: a comparison of
rdf benchmarks and real rdf datasets. In: Proceedings of the 2011 international conference
on Management of data (SIGMOD’11). (2011) 145–156

22. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E.,
Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., ODonovan, C., Redaschi,
N., Yeh, L.S.: Uniprot: the Universal Protein knowledgebase. Nucleic Acids Research 32
(2004) D115–D119

