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Abstract: Nowadays model mapping plays a crucial role in applications manipulating various heterogeneous sources
(data integration and exchange, datawarehouse, etc.). Users need toquery a given data source and still obtain
results from other mapped sources. If many model management systems have been proposed that support high-
level operators on model mappings, a more flexible approach is needed supporting the querying of mapping
models and the propagation of queries through mappings. As a solution, we present in this paper a mapping-
based query language called MQL (Mapping Query Language). This language extends the SQL language with
new operators to exploit mappings. We show the interest of this language for the multi-model ontology design
methodology proposed in the ANR DaFOE4App project.

1 Introduction

In order to deal with various heterogeneous mod-
els used to represent the same real word domain, sev-
eral mapping languages (Bouquet et al., 2003; Hor-
rocks et al., 2004) or frameworks (Jouault et al., 2008;
Melnik et al., 2003; Moha et al., 2010) have been
proposed. These frameworks support either model
mappings or model transformations. (Bouquet et al.,
2003; Horrocks et al., 2004) allow users to express
correspondences between models and (Jouault et al.,
2008; Melnik et al., 2003; Moha et al., 2010) describe
model transformations. Both approaches aim at per-
forming instance migration. Most of these languages
run in central memory and do not address scalability
when dealing with huge amount of data.

Moreover, with the emergence of the Web, the
amount of models and instances is growing drasti-
cally. Managing mappings in such a context often
requires writing more and more undesirable complex
queries. Therefore, offering solutions for managing
such mappings and instances in a convenient way be-
comes a necessity if one wants to address real sized
problems.

Before year 2000, mappings were implemented by
programs, then (Bernstein et al., 2000) introduced the
notion ofModel Managementthat aimed at reducing
the amount of programming needed for the develop-

ment of metadata-intensive applications. More pre-
cisely, (Bernstein, 2003) has provided model manage-
ment operators (e.g,compose, diff, merge, match, etc)
allowing to manipulate and to manage models and
mappings as objects. However, to understand and to
use mappings established between source models, de-
signers need to query and to exploit them in order to
express a query on a data source and to obtain data
results from other sources. Thus, a more flexible ap-
proach is needed for supporting the querying of map-
ping model and the propagation of queries through
mappings. As a solution, we propose in this paper
a mapping-based query language named MQL (Map-
ping Query Language). This language is an extension
of traditional SQL query language with new opera-
tors to exploit mappings such as crossing or filtering
mappings. The interest of this language is shown on
a real use case extracted from the ANR DaFOE4App
project.

This paper is organized as follows. Section 2 de-
scribes the use case set up to show the interest of
our proposition. This use case is an ontology design
methodology based on a multi-models approach. Sec-
tion 3 discusses related work. After presenting our re-
quirements for a new query language in section 4, we
present in details in section 5 and 6 our proposition
i.e. the MQL language. Finally section 7 concludes
this paper and gives some perspectives of this work.



2 Case Study

The proposition of the MQL language has been
motivated by the need of the ANR DaFOE4App
project. This project consists of a new platform for
the design of ontologies (a demonstration of this plat-
form is available athttp://testcritt.ensma.fr/
dafoe/demo/dafoeV1.zip). This platform proposes
to build an ontology starting from text and using inter-
mediate models. Mappings are established between
the different used models. This section presents the
approach followed by the DaFOE platform to model
and to store these mappings.

2.1 Ontology design in the DaFOE
platform

The DAFOE platform provides a stepwise methodol-
ogy for building ontologies from text analysis. The
first step is dedicated to linguistic analysis (Termi-
nology step) in which users manage linguistic infor-
mation (terms and relations between terms) extracted
with natural language processing tools. Then, a step
for terms disambiguation (TerminoOntology step) is
performed. Finally, a formalization step (Ontology
step) allows users to createclassesandpropertiesof
the ontologies and to populate the created classes.
Each of these steps is autonomous and has its own
model respectively presented in Figure 1, 2 and 3.
Furthermore, two bridges, encoded by explicit model
mappings, have been identified for switching between
models: a first one for producing termino-ontology
concepts from texts and a second one for producing
ontology concepts from termino-ontology concepts.

Figure 1: A subset of the Terminology model.

Figure 2: A subset of the TerminoOntology model.

Figure 3: A subset of the Ontology model.

2.2 Modeling and Persistence of
mappings

In (Téguiak et al., 2012), we argued that model-
based databases (MBDB) are well adapted for han-
dling mappings in a database context. Furthermore,
because the underlying architecture (called OntoDB
(H. Dehainsala, 2007)) that inspired our work does
not explicitly handle mappings, we have extended it
in a previous work (T́eguiak et al., 2012). In that pro-
posal, we have extended the meta-schema part of the
OntoDB MBDB with a repository for mapping rep-
resentations. More precisely, as illustrated in Fig-
ure 4 we have introduced mapping constructors in the
OntoDB meta-model. In this resulting meta-model
(named core meta-model) where models are defined
by their entities and their attributes, three main con-
structors for creating correspondences are available.
The first one, calledmLink, is used to establish corre-
spondences between models. The second one, called
eLink, allows the user to establish correspondences
between entities of models and finally, theaLink con-



structor is used to establish correspondences between
attributes of entities. According to its arity (1:n), the
aLink constructor uses anexpressionto write the tar-
get attribute in term of the sources attributes.

Figure 4: Core metamodel.

2.2.1 Terminology to TerminoOntology step

Considering bothTerminologyandTerminoOntology
models, a simplified mapping between these models
consists in:

- links between models. Creation of amLink
between theTerminologymodel and theTerminoOn-
tologymodel;

- links between entities. Creation of aeLink
from theTermentity and theTerminoConceptentity
to express that instances of theTerm entity will be
transformed into instances of theTerminoConcepten-
tity. A eLink between theTermRelationentity of the
Terminologymodel and theTerminoConceptRelation
entity of theTerminoOntologymodel is also available;

- links between attributes. Creation of aaLink
expressing that an instance of theTerminoConcept
entity has the samelabelas the one of its correspond-
ing instances of theTerm entity, prefixed by’tc ’ .
AnotheraLink expresses that therate of an instance
of TerminoConceptentity, equals to thefrequencyof
the corresponding instance in theTermentity divided
by 100.

2.2.2 TerminoOntology to Ontology step

For TerminoOntologyand Ontologymodels, a sim-
plified mapping consists in:

- links between models. Creation of amLinkbe-
tween theTerminoOntologymodel and theOntology

model;

- links between entities. In the context of the
previous createdmLink between models, aeLink
is created between theTerminoConceptentity and
the Class entity to express that instances of the
TerminoConceptentity will be transformed into
instances of theClass entity. A link from Ter-
minoConceptRelationof theTerminoOntologymodel
and thePropertyentity of the Ontology model is also
available;

- links between attributes. Creation of aaLink
expressing that an instance of theClassentity has the
samelabelas the one of its corresponding instance in
theTerminoConceptentity. AnotheraLink expresses
that therelevance factorof an instance ofClassen-
tity, equals to therate of the corresponding instance
in theTerminoConceptdivided by 10.

As an illustration, assume that instances of the
Ontology, TerminoOntology and Terminology mod-
els are respectively represented by Tables 1, 2 and
3. Thanks to mappings, a user who queries theClass
entity through of the Ontology model would want to
query both TerminoConcept of the TerminoOntology
model and Term of Terminology model (Cf. Table 4).

Table 1: Ontology model: Class.

Class
oid c label relevance isAbtract

1000 tc car 0.01 true
1001 tc wheel 0.002 false
1002 motor 0.008 true
1003 electricmotor 0.04 false

Table 2: TerminoOntology model: TerminoConcept.

TerminoConcept
oid tc label definition rate
600 tc car ... 0.1
601 tc wheel ... 0.02
602 motor ... 0.08
603 motorcycle ... 0.8

Table 3: Terminology model: Term.

Term
id t label frequency

300 car 1
301 wheel 2
302 bicycle 30
303 handlebar 1

Putting these mappings all together results in a
stepwise design methodology for a database record-
ing (Cf. Figure 5) manipulated data and produced



Table 4: Query based on the Ontology model.

Results
id label relevance isAbstract

1001 tc car 0.01 true
1002 electricmotor 0.04 false
603 motorcycle 0.08 null
302 bicycle 0.03 null
303 handlebar 0.01 null
... ... ... ...

to build an ontology from texts according to the pro-
cess defined in the DaFOE4App project. The result-
ing database is a MOF-like repository where Mi+1/M i
means that the Mi level is represented as instances of
the Mi+1 level.

3 Related work

There are multiple areas related to database sys-
tems with the definition of a query language for both
defining, manipulating or querying models and map-
pings between models. In this section we divide these
approaches in three categories.

3.1 Transformation languages

A model transformation language is a vocabulary and
a grammar with well-defined semantics for perform-
ing mappings. In the context of model-driven engi-
neering, there are model transformation languages,
that take as input models conforming to a given meta-
model and produce as output models conforming to
another metamodel. Such languages are often declar-
ative to provide a cleaner and simpler implementation
for simple mappings. Imperative constructs are also
provided so that some mappings that are too complex
to be handled declaratively are still describable.

However, in these languages, models and meta-
models need to be explicitly loaded and stored in
computer memory. As consequence, incremental
model transformation is often not supported, so the
whole source model is read and the target model is
created when the transformation is executed. These
languages lack of a sub-language for querying mod-
els, mappings and data by interpreting mappings cre-
ated between models.

Among this kind of languages, we quote represen-
tative ones like Query/View/Transformation (QVT)
(Kurtev, ), the standardized language of the Ob-
ject Management Group (OMG), ATL (Jouault et al.,
2008) a hybrid model-to-model transformation lan-
guage that supports both declarative and imperative
constructs, Kermeta (Moha et al., 2010) a general

purpose modeling and imperative programming lan-
guage that offers EMF-based metamodeling, con-
straints, checks, transformation and behavior support.

3.2 Languages for metadata repository
systems

Metadata repository systems manage metadata com-
monly represented as models or meta-models. In
order to facilitate repository application develop-
ment, a dedicated query language, addressing the
specific capabilities of such systems is required.
The common approach is to build a MOF-based
query language that provides capabilities to ma-
nipulate both data and meta-data. Representative
query languages among this type of language are
SchemaSQL (Laks V. S. Lakshmanan, 2001), MSQL
(John Grant, 1993), SQL/M (Kelley et al., 1995),
mSQL (Petrov and Nemes, 2008) dedicated for multi-
/federated databases. Other proposals are encoun-
tered in the domain of ontology-based application
with OntoQL (Jean et al., 2006) that exploits its un-
derlying metamodeling database architecture called
OntoDB (H. Dehainsala, 2007), SparQL (Konstanti-
nos et al., 2010) dedicated for RDFS metamodeling
database1, etc. In general, this type of query language
does not handle mappings between models because
mappings are often neither explicitly represented nor
exploited.

3.3 Mapping oriented languages

By mapping oriented query language, we mean lan-
guages that explicitly represent mappings between
models and offer capabilities to exploit these map-
pings when querying data. Among these languages,
we quote languages like SparQL (Konstantinos et al.,
2010). Indeed in OWL-based languages, ontologies
can be interconnected usingequivalent class con-
structorsand SparQL allows a user to query the re-
sulting graph of interconnected classes. Another map-
ping oriented languages is Metaweb Query Language
dedicated to query the FreeBase repository system2.
We also have some model management platform such
as Rondo (Melnik et al., 2003) that provides high level
mapping operators for model management (diff, com-
pose, merge, etc) but that lacks a query language em-
bedding mappings. As limitation, these mapping ori-
ented languages and frameworks do not allow a user
to customize the mapping exploitation process. In
many cases, the exploitation process is hidden to the

1http://www.w3.org/TR/rdf-schema/
2http://www.freebase.com/



Figure 5: Mapping management in the DaFOEApp project.

user and all the graph of interconnected database is
used even if the user wants to use only a sub-part of
this graph. Furthermore, in these languages or frame-
works, the representation of mappings is static and
can not be extended.

As illustrated above in our case study, our pro-
posed database structure (Cf. Figure 5) is a MOF-like
database that also handles mappings between mod-
els. However, this database is a bit more complex to
manage using classical SQL queries. Indeed the ex-
tensions that we have proposed has introduced a new
data structure (i.e. mappings) and therefore, as it is
the case for abstract datatype descriptions, it requires
its own management operators that encapsulate the
structure of the datatype and therefore hide the map-
ping structure for the user. This drawback brings us to
design a query language bypassing limitations of lan-
guages presented above and that makes easier query-
ing databases (using mappings between models) by
providing high level operators that hide the internal
mapping representation in the database. Next section
discusses the requirements for such a query language.

4 Requirements for a
mapping-based query language

(Wakeman and Jowett, 1993; OMG, 2003; Pa-
trascoiu, 2004; Petrov and Nemes, 2008) have inves-
tigated requirements for higher-level query languages
managing both data and metadata (e.g, models). Here

we summarize them and introduce new requirements
specific to mappings exploitation.

4.1 High-level requirements

1. Uniform treatment of data and metadata. The
language should allow users to manage data and
metadata interchangeably, since metadata seems
as data in a more abstract point of view. Hence
query language constructors must be as much as
possible invariant with respect to repository ob-
jects from different abstraction levels.

2. Usability and expressiveness. The language must
be easy to use and expressive. These features re-
fer for example to the compatibility with the com-
monly used SQL language.

3. Reflect the repository features. The language
should consider the characteristics of the under-
lying repository system, in terms of metadata or-
ganization, data model, etc.

4.2 Mappings exploitation requirements

In a classical database, data retrieval is performed
by SQL queries of the form ”SELECT ... FROM ...
WHERE ...”. This type of queries does not take into
account the notion of mapping because they do not
exploit possible existing mappings between models.
In practice, a user handles explicitly the notion of
mappings when writing his queries. This situation
raises the following other requirements.



4.2.1 Handling complex queries

Considering the example of section 2 and assuming
that a user needs to write a query whose results are
given in Table 4. Two situations may occur.

On the one hand, if the user knows the mappings
characteristics, so he/she can manually write the
appropriate following SQL queries:
(1) SELECT c label, relevance FROM Class,
(2) SELECT tc label, rate/10 FROM TerminoConcept,
(3) SELECT concat(’tc’,t label) (frequency/100)/10
FROM Term,

Queried attributes and entities of these three
queries are defined according to the description of
each model. For theOntology model, c label and
relevanceare retrieved, whiletc label and rate (re-
spectivelyt label andfrequency) are retrieved for the
TerminoOntologymodel (respectively theTerminol-
ogy model) according to the defined mappings char-
acteristics between these models.

On the other hand, because mappings characteris-
tics may be evolved dynamically (new mappings may
be created while existing one may be deleted or up-
dated, just as in a peer to peer system (Iraklis and
Joemon, 2003; Halevy et al., ), one needs firstly to
query mappings network for characteristics retrieval,
and then write the appropriate queries based on these
characteristics. Such a query requires to access a
repository which represented instances are model and
mappings between models.

4.2.2 Handling mapping navigation

Considering more closely the second situation of the
requirement presented in section 4.2.1 where users
need to query mappings repository in order to retrieve
mappings characteristics. One can ask itself how to
handle transitivity with query languages such as SQL
for example. This issue refers to the needs to dynam-
ically navigate through the mappings hiding the ex-
ploitation of these mappings. So a policy for a tran-
sitive subqueries propagation through chains of arbi-
trarily huge mapped models is required because these
models may contain huge amount of data.

4.2.3 Providing persistent mappings

This requirement refers to the problem ofmemory
saturation, that means avoiding loading into cen-
tral memory big amount of data whose models are
mapped together. Indeed, the mappings repository
may become very huge and therefore expensive (in

response time and memory consumption) for naviga-
tion purposes because, as we presented in this paper,
new models (says news modeling steps) could be cre-
ated dynamically according to the needs of a partic-
ular user. Thus, a persistent-based approach is re-
quired.

5 Our approach

In this section, we present an overview of the
MQL (Mapping Query Language), our mapping-
based query language proposal for handling mappings
according to previous quoted requirements. This
language is highly coupled with the Model Based
Database (MBDB) persistence approach proposed in
(Téguiak et al., 2012). For each part (meta-schema,
schema, instance) of the MBDB, the MQL language
provides operators to define, manipulate and query
its content. To keep this paper in reasonable size,
we present in more details only the instance manage-
ment part of MQL (Cf. Section 6). Moreover a com-
plete description of the query processor is available in
(Téguiak et al., 2011).

5.1 MetaModel Management

Since our core metamodel is not static and can be ex-
tended, the elements of this level of information must
not be encoded as keywords of the MQL language.
To define the syntax of the MQL language, we have
chosen to adapt SQL to our core metamodel. Thus,
the MetaModel Management operators allows users
to create, modify and delete concepts of the core
metamodel using a syntax similar to the SQL manipu-
lation user-defined types (CREATE, ALTER, DROP).

Example 1. Construction of the core metamodel:
Create the concept Model of the core metamodel.

CREATE MetaENTITY Model (oid Integer, label
String).

Example 2. Construction of the core metamodel:
Add the constructor for handling correspondences
between model.

CREATE MetaENTITY mLink (target REF(Model),
source REF(Model)).

This statement adds themLink concept to our
core metamodel. This concept is created with two
attributes, target and source, whose datatypes are
model identifiers. Indeed, theREF syntaxhas the



same semantics as theForeign key semantics in
SQL. Notice that, for readability of queries,label
of concept are used instead ofobject identifier (oid)
(REF(Model)instead ofREF(5)for example).

As a result of these previous queries, rows 5 and 6
are inserted in tableMetaEntity(Cf. Figure 5) and two
tables (ModelandmLink) are automatically created in
the schema part.

5.2 Model Management

To create, modify or delete the concepts of a cre-
ated model, we have defined Model Management
operators. In the same way as for the data definition
language, we have adapted the SQL data manipula-
tion language (INSERT, UPDATE, DELETE) to the
data model of this part.

Example 3. Create a mapping between Terminol-
ogy and TerminoOntology models.

INSERT INTO mLink(oid, label, confidence, source,
target) VALUES (001, “Terminology to TerminoOn-
tology”, 0.9, “Terminology”, “TerminoOntology”)

As a result, row 700 is inserted in tablemLink of
Figure 5.

Analogously, we have defined a Model Querying
Language that allows the user to query the metamodel
level.

Example 4. Retrieve all the mappings in which
the Terminology model is involved.

SELECT label
FROM mLink
WHERE mLink.source = ’Terminology’
OR mLink.target = ’Terminology’

5.3 Instances Management

The MQL language provides instances management
capacities. These instances management capacities
are handled by two sub-languages. The first one,
namely DQL (Data Query Language), provides state-
ments for retrieving instances of created models. The
second one, namely DML (Data Manipulation Lan-
guage) is dedicated for inserting, deleting, updating
instances of a created model. An illustration of the
DML is presented in the next section where we moti-
vated extensions we made to the SQL language.

6 DML: Querying instances and
mappings together

Let’s consider the example below and its corre-
sponding query.

Example 5. Retrieve all the classes whose rele-
vance factor is high than 0.01.

SELECT C.clabel as label, C.relevance
FROM Class C
WHERE C.relevance≥ 0.01

The result of this query does not take into account
that in the DaFOE platform aClass is also aTer-
minoConceptwhich in turn is aTerm. In this section,
we firstly give a motivating example that illustrates
the lack of an explicit representation of mapping in
queries. Then we present our statements proposal for
a query language that allows the user to write queries
that navigate through the network of mappings be-
tween models.

6.1 A motivating example

Querying instances and mappings together refers to
the need of embedding both instance and mapping
levels in the same query. Let’s consider again the
Example 5.

To answer this example, the previous query (noted
QOntology) should retrieve additional data both from
the Ontology model and from models directly or
indirectly (by transitivity of mappings) mapped with
the Ontology model such as the TerminoOntology
model, the Terminology model, etc. To simplify, we
assume that additional data should be retrieved from
the TerminoOntology model.

Because the user does not know mapping charac-
teristics between the Ontology and TerminoOntology
models, he needs to write a mapping level query to
retrieve these characteristics.

Q1) Retrieve the Ontology model.

SELECT Model.oid
FROM Entity E, Model M
WHERE E.label= “Class” AND E.model= M.oid



Q2) Retrieve mLink where the Ontology model is
involved as target of a mapping.

SELECT mLink.oid
FROM mLink
WHERE mLink.target in Q1

Q3) Retrieve the entities mapped to Class entity.

SELECT eLink.source
FROM eLink,Entity E
WHERE eLink.mL in (Q2)
AND eLink.oid= E.oid AND E.label= “Class”

Q4) Retrieve correspondences between entities
where the Class entity is involved as target of a
mapping.

SELECT eLink.oid
FROM eLink
WHERE eLink.mL in (Q2)

Q5) Retrieve mapped entities and mapped at-
tributes (through their expression).

SELECT E.label,aLink.exp
FROM Entity E, Attribute A, aLink
WHERE E.oid in (Q3)
AND aLink.eL in (Q4)
AND aLink.target= A.oid
AND A.dom= E.oid

Q5 query returns all information for translating
a query based on theClass entity of the Ontology
model into a query based on theTerminoConcept
entity of the TerminoOntology model. This query
produces the results of Table 5. These results are
exploited to write, for the TerminoOntology model,
the QTerminoOntologyquery, representing the translation
of the QOntology query on the TerminoOntology
model.

QTerminoOntology)
SELECT TC.tclabel as label, TC.rate/10 as rele-
vance
FROM TerminoConcept TC
WHERE TC.rate/10≥ 0.01

Table 5: Mapping level results.

E.label aLink.exp
TerminoConcept tc label
TerminoConcept rate/10

As we can observe above, the process of unfold-

ing queries on target models is not easy and may be-
come complex if one needs to integrate the complete
network of mappings. In this case, the user han-
dles by himself the transitivity capabilities of map-
pings. A commonly approach to deal with this situa-
tion consists in writing a query translator. So, the user
writes a query (QOntologyfor example) and the transla-
tor generates unfolded queries for target queried mod-
els. This queries generation process is hidden to the
user and made implicit. In other words, this approach
assumes that the user does not know any mappings
characteristics usable for example to customize the
queries generation process.

6.2 The MQL statements proposal

To address the requirements mentioned in section
2 and to deal with the limitations illustrated in the
previous section, we propose to extend the classical
”SELECT ... FROM ... WHERE ... ” queries by the
following clauses. In other words, our approach
is and hybrid one that can be used even if a user
knows mappings characteristics or not. As the main
purpose of MQL is to facilitate navigation through
mappings, we introduced some optional statements
useful for navigation and query propagation in order
to get compact syntactic queries. The proposed
statements are exploited by the translator in the
queries translation process to customize this process.

MATCH. Specify the target models in which the
MQL query is propagated at runtime.

FILTER. When propagating a MQL query from
a modelm1 to another modelm2, an entity ofm1 may
correspond to several entities ofm2. In this case, one
may want to restrict the translation so that it applies
only to part of these entities. Such a restriction is
described using theFILTER clause.

CONFIDENCE. Confidence degrees are often
assigned to mappings in order to handle fuzzy
mappings. This clause restricts the propagation of the
MQL query for the models that satisfy the specified
confidence degree. When specified, this clause is
used as a threshold to be respected.

With closure. If specified, the propagation of the
query is achieved through the mappings repository
using thetransitive closurein the way that, instances
are retrieved according to the transitivity of available
mappings.

DEPTH. When a MQL query uses theWith



closureclause, it may result in a memory saturation
or a bad response time according to the size of the
graph of mappings. TheDEPTH clause specifies the
depth exploration of the graph of mappings. For
example,”DEPTH 4” means that the MQL query
will be propagated transitively on four consecutive
mappings at most .

mWHERE. Unlike the classical WHERE clause
of a SQL query, the mWHERE clause allows users to
specify predicates to filter correspondences. In other
words, the mWHERE clause is comparable to a SQL
WHERE clause, but it is dedicated to mapping level.

Furthermore, all the previous clauses allow the
user to specify parameters available in thecore map-
ping model. More concretely, let’s consider the case
of modeling fuzzy mappings. The classical represen-
tation of fuzzy mappings is to assign aconfidence
value between 0 and 1 (as usually modeled in the lit-
erature) for each described correspondence. However,
assume that a user wants to provide another way for
handling fuzzy mappings by defining aquality prop-
erty for which values could be“weak, average, good,
excellent”. In the context of mappings, it is required
to extend mapping constructors (mLink, eLink, aLink)
by creating a new property (calledquality for exam-
ple) that will be valuated with one ofweak, aver-
age, good, bestvalues. This extension is made possi-
ble thanks to the meta-schema part of the underlying
MBDB. Once these mapping constructors have been
extended, it is possible to use them in aMQL query
using the mWHERE clause. For example, theMQL

query “SELECT ... mWHERE quality = “good” will
propagate theMQL query through the graph of map-
pings using only“good” mappings.

Table 6 shows the global MQL syntax for query-
ing data including constraint on mappings.

Table 6: Full DQL of MQL query statement.

SELECT<attributes: VARCHAR [ ]>
FROM<entity name: VARCHAR [ ]>
WHERE<criteria: PREDICATE [ ]>
MATCH <mappedmodels: VARCHAR [ ]>
FILTER <mappedentitiesname: VARCHAR [ ]>
CONFIDENCE <conf: INTEGER>
DEPTH <dep: INTEGER>
With closure
mWHERE <mCriteria: mPREDICATE [ ]>

6.3 MQL in action

In this section, we present how MQL can be applied
to answer the Example 5.

mQ1)
SELECT C.clabel, C.relevance
FROM Class C
WHERE C.relevance≥ 0.01

Applied in the Ontology model, the mQ1 query
returns (Cf. Table 7) data extracted only from the
Ontology model (no mapping statement is specified
in this query). In other words, this query is a classical
SQL query. For readability, all the result records are
prefixed by the name of the model from where they
have been retrieved.

Table 7: Results of the mQ1 MQL query.

Ontology(tccar, 0.01)
Ontology(electricmotor, 0.04)
...

mQ2)
SELECT C.clabel, C.relevance
FROM Class C
WHERE C.relevance≥ 0.01
MATCH TerminoOntology

Applied in the Ontology model, the mQ2 query
returns (Cf. Table 8) data extracted from both the
Ontology and the TerminoOntology models (the
Match statement for this query has been set to
TerminoOntology).

Table 8: Results of the mQ2 MQL query.

Ontology(tccar, 0.01)
Ontology(electricmotor, 0.04)
TerminoOntology(motorcycle, 0.08)
...

mQ3)
SELECT C.clabel, C.relevance
FROM Class C
WHERE C.relevance≥ 0.01
MATCH *
FILTER *
DEPTH 1
With closure

Applied in the Ontology model, the mQ3 query re-
turns (Cf. Table 9) data extracted from both Ontology
and TerminoOntology models (theMatch statement
for this query has been set to all models using the *
symbol). However due to theDepth statement, the
results are limited to 1 transitive propagation. Only
the TerminoOntology model is reachable from the
Ontology model with 1 propagation.



Table 9: Results of the mQ3 MQL query.

Ontology(tccar, 0.01)
Ontology(electricmotor, 0.04)
TerminoOntology(motorcycle, 0.08)
...

mQ4)
SELECT C.clabel, C.relevance
FROM Class C
WHERE C.relevance≥ 0.01
MATCH *
FILTER *
With closure

Applied in the Ontology model, the mQ4 query
returns (Cf. Table 10) data extracted from both
the Ontology, TerminoOntology and Terminology
models. In other words thanks to the * symbol of the
Match statement and with noDepth limitation, mQ4
propagates to any model transitively reachable from
the Ontology models.

Table 10: Results of the mQ4 MQL query.

Ontology(tccar, 0.01)
Ontology(electricmotor, 0.04)
TerminoOntology(motorcycle, 0.08)
Terminology(bicycle, 0.03)
...

Furthermore, using same considerations as pre-
sented in this section, we have built for the MQL
language a Data Manipulation Language (DML) al-
lowing to perform insert, delete and update opera-
tions. Analogously to data querying, the DML of the
MQL language is an extension of SQL. Each operator
(INSERT INTO ..., UPDATE ..., DELETE FROM...)
of the SQL language has been enriched by the same
clauses of mapping used for querying data in order
to propagate the execution on other models along the
network of interconnected schemas. Table 11 shows
the DML operators.

7 Conclusion

In this paper, we have presented a mapping-based
query language called MQL that makes easier query-
ing data thanks to available mappings between mod-
els. This language has a knowledge part based on
a core metamodel allowing to represent both mod-
els and mappings between models. One of the main
features of our approach is that this knowledge part
can be extended by evolving the core metamodel.
This extension capabilities is possible thanks to a

Table 11: Full DML of MQL query statement.

INSERT INTO<entity name: VARCHAR>
<attributes: VARCHAR [ ]>
VALUES <attributesvalues: OBJECT [ ]>
MATCH <mappedmodels: VARCHAR [ ]>
FILTER <mappedentitiesname: VARCHAR [ ]>
CONFIDENCE <conf: INTEGER>
DEPTH <dep: INTEGER>
With closure
mWHERE <mCriteria: mPREDICATE [ ]>
UPDATE<entity name: VARCHAR>
SET<attributesname: VARCHAR> =
<attributesvalue: OBJECT>
WHERE<criteria: PREDICATE[ ]>
MATCH <mappedmodels: VARCHAR [ ]>
FILTER <mappedentitiesname: VARCHAR [ ]>
CONFIDENCE <conf: INTEGER>
DEPTH <dep: INTEGER>
With closure
mWHERE <mCriteria: mPREDICATE [ ]>
DELETE FROM<entity name: VARCHAR>
WHERE<criteria: PREDICATE[ ]>
MATCH <mappedmodels: VARCHAR [ ]>
FILTER <mappedentitiesname: VARCHAR [ ]>
CONFIDENCE <conf: INTEGER>
DEPTH <dep: INTEGER>
With closure
mWHERE <mCriteria: mPREDICATE [ ]>

more abstract level (called the metametamodel level)
where the core metamodel itself is represented. The
MQL language has been implemented for model-
based databases persistent context, where both in-
stance level, metamodel level and metametamodel are
persisted in a single database. Furthermore, the MQL
language allows the user to manipulate the knowledge
and the instance levels independently or together (in
a single query).

However, as illustrated in the context of the ANR
DaFOE4App project for the process of building on-
tologies starting for texts where our approach has
been applied, all these models were stored in a sin-
gle database. As a perspective of this work, we are
working on improving our approach so that it can be
used for engineering data exchange where models are
often stored in several databases and where good re-
sponse time is required.
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