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Abstract—With the increasing needs for the world wide enter-
prises to integrate, share and visualize data from various het-
erogeneous, autonomous and distributed sources data and Web
data covering a given domain, the development of integration
and reconciliation solutions becomes a challenging issue. The
existing studies on data integration and reconciliation of results
have been developed in an isolated way and did not consider the
strong integration between these two processes. On one hand,
ontologies were largely used for building automatic integration
systems due to their ability to reduce schematic and semantic
heterogeneities that may exist among sources. On the other hand,
reconciliation of results is performed either by considering that
all sources use the same identifier for an instance or by means of
statistical methods that identify affinities between concepts. These
reconciliation solutions are not usually suitable for real-world
sensitive-applications where exact results are required and where
each source may use a different identifier for the same concept.
In this paper, we propose a methodology that simultaneously
integrate source data and reconciliate their instances based on
ontologies enriched with functional dependencies (FD) in a
mediation architecture. The presence of FD gives more autonomy
to sources when choosing their primary keys and facilitates the
result reconciliation. This methodology is experimented using
the Lehigh University Benchmark (LUBM) dataset to show its
scalability and the quality of the reconciliation result phase.

Index Terms—Data integration, data reconciliation, ontology.

I. INTRODUCTION

The integration of heterogeneous sources is a well known
problem. It has as inputs a set of distributed, heterogeneous,
autonomous sources, where each one has its own schema and
population and produces as output a unified description of
source schemes via an integrated schema that can be used
to access data sources. This problem raises two challenging
issues: source heterogeneity and data reconciliation.

Source heterogeneity must be handled to ensure an auto-
matic data integration. Since ontologies are developed in more
and more domains to explicit the semantics of a domain, a
large number of research studies use them to deal with the
semantic problems raised by data integration (e.g., COIN [1]
or Picsel [2]). Thus these approaches deal with sources that
contain both data and ontologies that describe its semantics.
When these sources use a database as back-end storage, it is
called an Ontology-Based DataBase (OBDB) (e.g., Sesame
[3] or Jena [4]). Most integration systems do not consider the

storage system used to store data and ontologies. However,
integration services should also be developed for OBDB.

Data reconciliation consists in correcting the results returned
by an integration system. Indeed, when a query is executed
on an integration system, results can be redundant since
several sources may have the same answer. Throughout the
literature, two main trends arise. (1) Some works assume
the existence of a common single identifier for each concept
of the sources participating in the integration process. This
assumption relaxes the data reconciliation problem, but it
violates sources autonomy, since this common identifier is
imposed for various sources. (2) Other research efforts propose
to use entity reconciliation methods performed either by entity
matching or data fusion [5], [6]. These approaches have
shown their efficiency in linguistic and information retrieval
applications [7]. However, they may suffer in the context of
sensitive applications such as engineering, banking, healthcare,
travel, etc., where exact solutions are required by the end users.

Source heterogeneity and data reconciliation are usually
treated separately by existing integration systems. In this
paper, we propose a complete integration methodology, called
MIRSOFT, that handle these issues in a mediator architecture.
A preliminary work has been proposed in [8], where we
showed that the data reconciliation and integration may be
combined in a mediator architecture. This methodology is
mainly motivated by a conjunction of three main factors: (1)
the conceptual continuity offered by ontologies to generate
conceptual models and to ease the resolution of data hetero-
geneity, (2) the recent definition of functional dependencies
(FD) on ontological concepts [9] that can be an interest-
ing solution to the data reconciliation problem and (3) the
spectacular development of OBDB sources that may need to
be integrated. To the best of our knowledge, MIRSOFT is
the only system that considers simultaneously heterogeneity
and data reconciliation problems by integrating OBDB and
reconciliating data through FD defined on ontologies. Exper-
imentations on the well known LUBM benchmark defined for
OBDB are provided to show the scalability and the quality of
the reconciliation result phase of MIRSOFT.

The paper is structured as follows. Section 2 compares main
existing data integration systems based on five criteria. Section



3 introduces a formal definition of ontology and OBDB.
Section 4 presents FD for ontologies and shows their interests
for the data reconciliation problem. Section 5 describes in
details our integration system with its main components.
Section 6 presents the experimental studies we have performed
to validate our system. Finally section 7 concludes the paper.

II. RELATED WORK

A lot of integration systems have been proposed in the
literature. To distinguish clearly our approach from other
propositions we propose a classification based on five orthog-
onal criteria of existing integration systems.
_ C1: Data representation. This criterion specifies whether
data of local sources are duplicated in a warehouse (noted M)
or if they are kept in local sources and then accessed through
a mediator (noted V). The ware house approach eliminates
several problems of integration, mainly the excessively long
server response times or the sources unavailability. However, a
main disadvantage of this approach is that answers to queries
can frequently be built from outdated data. As a consequence,
few systems use this approach (examples are Ajax [10] or Pot-
ter’s Wheel [11]). Other systems use the virtual architecture,
where a software called a mediator supports a virtual database,
translates queries into source queries, synthesizes results and
returns answers to a user query.
_ C2: Mapping sense between global and local schemas. In
Global-as-View (GaV) systems, the global schema is expressed
as a view over data sources. This approach facilitates the query
reformulation by reducing it to a simple execution of views
in traditional databases. However, changes in source schema
or adding a new data source requires a designer to revise the
global schema and the mappings between the global schema
and source schemas. Examples of integration systems that
follow a GaV approach are Multibase [12], Hermes [13] or
HumMer [10].
The reverse approach is Local-as-View (LaV). In this ap-
proach, the designer creates a global schema independently of
source schemas. Then, for a new source schema, the designer
has only to give a source description that describes source
relations as views of the global schema. However, evaluating
a query in this approach requires to rewrite it in terms of the
data sources and rewriting queries using views is a difficult
problem in databases. LaV is used by systems such as Carnot
[14] or Picsel2 [2].
Finally, an approach called Generalized Local-as-View (GLaV)
generalizes both the GaV and the LaV paradigms. In this
approach, the designer associates a general query over the
source relations to a general query over the global relations.
GLaV mappings are more expressive, and are well suited to
represent complex relationships in distributed environments.
Fusionplex [15] uses this approach.
_ C3: Mapping automation. This criterion specifies whether
the mapping between the global schema and local schemas is
done in a manual (M), semi-automatic (SA), or fully automatic
way (A). Manual mappings are found in integration systems
that focus mainly on global query processing (e.g., TSIMMIS

[16] or Informix [17]). They provide algorithms for identifying
relevant sources and decomposing a global query into sub
queries for the involved sources but the construction of the
mediators and the wrappers must be done manually.
To make the data integration process (partially) automatic,
explicit representation of data meaning is necessary. Thus
most of the recent integration approaches use ontologies (e.g.,
Picsel2 [2]). When ontologies and ontology mappings are
defined at integration time, the process always request a human
supervision and thus they are are only partially automatic. To
enable automatic integration, the semantic mapping shall be
defined during the database design. Then a shared ontology
must exist and moreover, each local source shall contain
ontological data that refers to the shared ontology. It means
that each local ontology extract a sub-ontology of the shared
ontology. Some systems have already been proposed on that
direction such as Picsel2 [2], and COIN [1]. But to remain
automatic, these systems do not allow individual data source
to add new concepts and properties.
_ C4: Data reconciliation method. Evaluating a query on an
integration system requires first to identify the relevant sources
and then to reconciliate the results. Two trends emerge for
this last task. Some systems assume that different entities of
sources representing the same concept have a global common
identifier (CI) (e.g. TSIMMIS [16] and Infomix [17]). This
identifier is used for the reconciliation of the results through
relational operations. Other systems use statistical methods to
identify similar instances (SI) (e.g. HumMer [10] and Ajax
[18]). Instances of a query result are compared pair wisely
using a similarity measure. A tuple pair is classified based on
this measure as sure-duplicate or non-duplicate.
_ C5: Data fusion capabilities. After the data reconciliation
phase, conflicts that may appear between results must be han-
dled. Different fusion strategies exist that can be categorized
in the following groups [5].
Conflict-Resolution Systems (R) (e.g., Hermes [13] and Fusion-
plex [15]) perform conflict resolution by implementing decid-
ing and mediating strategies based on metadata or instances.
Conflict-Avoiding Systems (A) (e.g., SIMS [19] and ConQuer
[20]) handles data conflicts by conflict avoidance. Conflict are
avoided implementing metadata and instance-based strategies.
Conflict-Ignoring Systems (I) (e.g., Pegasus [21] and Nimble
[22]) do not perform neither resolution nor avoiding methods.
They simply handle conflicts by ignorance.

Table I summarizes our analysis of existing integration
systems based on our five criteria. Most of these systems focus
either on the integration process or on the data reconciliation
and fusion processes. The originality of our approach is to pro-
pose a complete system that both handle source heterogeneity
through ontologies and reconciliation of query results using
FD on these ontologies.

III. PRELIMINARIES

In this section, we formally defined the concepts needed to
understand our proposal.



TABLE I
CLASSIFICATION OF MAIN EXISTING DATA INTEGRATION SYSTEMS

System C1 C2 C3 C4 C5
Multibase [12] V GaV M CI R
Hermes [13] V GaV M CI R

Fusionplex [15] V GLaV M CI R
HumMer [10] V GaV SA SI R

Ajax [18] M n/a M SI R
TSIMMIS [16] V GaV M CI A

SIMS/Ariadne [19] V LaV M SI A
Infomix [17] V GaV M CI A
ConQuer [20] V n/a M CI A
Pegasus [21] V GaV M SI I
Nimble [22] V unknown unknown SI I
Carnot [14] V Lav M CI I
Picsel2 [2] V Lav A CI n/a

Potter’s Wheel [11] M n/a n/a n/a I
Our approach V GaV M FD R
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Figure 1. UML diagram representation of a part of LUBM ontology

A. Ontologies

An ontology is usually defined as an explicit specification
of a conceptualization [23]. Even if different ontology models
exist, all ontologies are composed of classes and properties.
Thus we consider, in this work, ontologies that may be defined
formally as the quadruplet O :< C,P,Sub,Applic > [24]:

• C is the set of ontology classes.
• P is the set of properties used to describe the instances

of the C classes.
• Sub is the subsumption relationship defined as Sub: C →

2C . It associates to a given class its direct subclasses.
• Applic is a function defined as Applic : C → 2P . It

associates to each class the properties that are applicable
for each instance of this class and that may be used to
describe its instances.

Example. Let’s consider the subset of the ontology
presented in Figure 1 composed of the Course, Student
and GraduateStudent classes. It can be presented as
O < C,P, Sub,Applic > with:

C = {Student,GraduateStudent, Course}
P = {personId, name, address, email, age, takesCourse,
courseId, courseName}
Sub(Student) = {GraduateStudent}
Sub(GraduateStudent) = ϕ
Sub(Course) = ϕ
Applic(Student) = {personId, name, address, email, age}
Applic(GraduateStudent) =

{personId, name, address, email, age, takesCourse}
Applic(Course) = {courseId, courseName}

B. Ontology-Based DataBases (OBDB)

An OBDB is a database that store ontologies and its
instances. Thus an OBDB must be defined by an ontology,
its instances and the database schema of its instances. As
a consequence we consider that an OBDB is a quadruplet
< O, I,Sch,Pop >, where:

• O is an ontology O :< C,P,Sub,Applic >;
• I is the set of instances of the database;
• Pop : C → 2I associates to each class its instances;
• Sch: C → 2P associates to each ontology class c of

C the properties, which are really used to describe the
instances of the class c. For each class c, Sch(c) must
satisfy: Sch(c) ⊆ Applic(c).

Our proposition is also based on the notion of functional
dependencies presented in next section.

IV. FUNCTIONAL DEPENDENCIES FOR ONTOLOGIES

Traditional ontology formalisms do not support FD in their
definition. Yet, FD have been used heavily in databases (e.g.,
normalization theory or query rewriting). As a consequence, a
couple of studies have been recently conducted on FD in the
context of ontologies [25], [26], [9], [27]. Inspired by these
works we propose the following formal definition for FD.

A. Formal Model for FD
A FD is composed of the following elements:
1) a left part (LP ) representing a set of properties,
2) a right part (RP ) representing a sole property,
3) a root class (R). This class is the domain class of the

properties of the left part and the right part.
This definition can also be expressed as an implication: fd R :
LP → RP .

Among the different functional dependencies proposed in
the literature we have identified three types that are helpful
for data reconciliation : classic, key and basic.

1) Classic FD (fd R : LP → RP ) indicates that values of
the properties of the left part determine a unique value
of the property of the right part.
Example. fd : Person : email → name.
Each email value of a person determines a unique name
value. Formally this FD is written: ({email}, name) ∈
FD (Person).



2) Key FD (fd R : LP →) indicates that values of the
properties of the left part determine a unique instance
of the class R. Thus, a Key FD does not contain a
right part, but implicitly its right part are the functional
properties, denoted by FP (R), of the class.
Definition 1: (R : LP →) is a Key FD if and only if
LP determines all the functional properties FP (R) of
the class R. The left parts of all key FD of a class R,
denoted CK(R), are called candidate keys of R.
Example. fdk : Person : personId →
Each personId value of a person determines a unique
instance of the class Person. Formally this FD is
written: ({personId}, ϕ) ∈ FD (Person).

3) Basic FD (fd R : → RP ) indicates that each instance
of R determines a unique instance of the range class of
RP . A basic FD does not contain a left part, implicitly
its left part is one of the candidate keys CK(R) of R.
Definition 2: fd R :→ RP is a Basic FD if and
only if RP is a functional object property or RP−1

is an inverse functional object property. In other words
RP determines all candidate keys of its range class
CK(ρ(RP )), where ρ(p) is the range class of the
property p.
Example. fdb : Person : → memberOf
Each instance of Person determines a unique instance
of the class Organisation. Formally this FD is written
(ϕ,memberOf) ∈ FD (Person).

B. Extended Formal Model of Ontologies

The formal definition of ontologies (see section III-A) can
be extended with FD as follows:
O :< C,P,Sub,Applic,FD >, where FD is a binary
relationship FD: C → (2P , P) which associates to each class
c of C, the set of the functional dependencies (LP,RP ), where
the class c is the root (fd c : LP → RP ).
Example. The ontology presented in Example III-A can be

extended as O < C,P, Sub,Applic, FD > with:
FD(Student) = {({personId}, ϕ), ({email}, ϕ)}
FD(GraduateStudent) =

{({personId}, ϕ), ({email}, ϕ)}
FD(Course) = {({courseId}, ϕ)}

C. Impact of Functional Dependencies on Data Reconciliation

We claim that FD can facilitate the data reconciliation
problem, especially when no common identifier is used by
various sources. To illustrate this point, let’s consider the
following example.
Example. Let S1, S2 and S3 be three sources containing the

same relation Person, but with different properties:
S1.Person(personId(PK), name, address, email),
S2.Person(personId(PK), name, email) and
S3.Person(email(PK), name, address).
On this table, the following FD are defined: fd1 : Person :
personId → name, fd2 : Person : personId →

address, fd3 : Person : personId → email, fd4 :
Person : email → name, fd5 : Person : email →
address.
The mediator schema contains a Person relation with the
properties personId(PK), name, address. Let’s consider
the following query: list names and addresses of all persons.
The mediator decomposes this query on the three sources.
Without FD, we cannot reconcile all source results, since
the source S3 has a different identifier for Person. By using
fd4 : email → name and fd5 : email → address, we
notice that the attribute email is a common candidate key
between the three sources. Therefore, a reconciliation of the
results coming from these three sources becomes possible
using email as a common identifier.

V. OUR INTEGRATION METHODOLOGY

In this section, we first present a formal model of our
integration system and the initialization of its components.
Then we show how a new source is integrated. Finally, we
detail the query processing aspect of our system.

A. Formalization of our data integration system

Formally, our integration system MIRSOFT is defined as a
triple Med : < G,S,M >, where:

1) G :< O,Sch > is the global schema.It is composed of
the mediator ontology O :< C,P,Applic,Sub,FD >
and the schema Sch of its ontology classes. Sch : C →
2P associates to each mediator ontology class c of C the
properties describing the instances of the class c, which
are valuated in at least one integrated source.

2) S is the set of source schemas, where each source
schema is defined as a couple Si :< OLi, SchLi >.
OLi :< CLi, PLi, ApplicLi, SubLi > is the ontology
of the source Si and SchLi : CLi → 2PLi is the schema
of the OLi ontology classes.

3) M is the mapping between the classes of mediator
ontology O and the classes of source ontologies. M :
C → 2{CL1∪...∪CLn} associates to each mediator on-
tology class c of C the corresponding classes of source
ontologies.

B. Initialization of the data integration system components

Before starting the integration process, MIRSOFT compo-
nents are initialized. The mediator ontology O is imported
by selecting classes and properties from the shared ontology
Os :< Cs, Ps, Applics, Subs, FDs >. This importation is
performed as follows.

1) Starting from user requirements expressed by a set
of queries, the mediator administrator selects relevant
classes and properties from the shared ontology.

2) The selected classes and properties are added to the
mediator ontology;

3) If an imported class has a super class, all its super classes
through the class hierarchy are also imported.
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Figure 2. Example of mediator ontology importation

4) To keep the semantic of complex properties (object prop-
erties), the importation of a complex property involves
the importation of its range classes.

5) Likewise, to keep FD, the importation of a property
appearing in a right part of a FD implies the importation
of all the properties of the left part of this FD.

6) We check the consistency and we classify the taxonomy
of the mediator ontology using a reasoner such as Racer,
Pellet, Fact++, etc.

7) New FD may be added by the administrator in the
shared ontology.

Initially, the schema Sch, the source schemas S and the
mapping M are empty (∀ c ∈ C Sch(c) = ϕ, S = ϕ and
∀ c ∈ C M(c) = ϕ). They are incrementally updated when a
new source is integrated.
Example. Figure 2 presents an example of a shared ontol-

ogy that contains six classes (Person, Student, Employee,
Administrator, Faculty and Professor) and nine properties
(personId, name, email, advisor, age, telephone, headOf,
worksFor and teacherOf ).
Suppose that the mediator administrator select only three
classes (Person, Student and Employee) and four properties
(personId, name, age and telephone). After the importation
the components of the mediator Med : < G,S,M >
contain: (1) the mediator ontology O presented in Figure
2 and (2) the schema Sch, the source schemas S and the
mapping M which are empty.

C. Integration of a new source

The integration of a new source in our system is based on
two assumptions on the mapping between global and local on-
tologies: (1) each class of a local ontology references explicitly
(or implicitly through its parent class) its lowest subsumption
class in the shared ontology and (2) only properties that do
not exist in the shared ontology may be defined on a local
ontology. These assumptions enable two different integration
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Figure 3. Integrating of a new source in the fragmentation scenario

scenarios associated with automatic integration algorithms: (1)
Fragmentation scenario where each local ontology of each
source is a fragment of the shared ontology and (2) Integrated
ontology scenario, where each local ontology may be an
extension of the shared ontology (to satisfy the autonomy of
a local source). This extension is done by adding new classes
and properties that do not exist in the shared ontology.

1) Fragmentation scenario: This scenario assumes that the
shared ontology is rich enough to cover the needs of all local
sources. Such an assumption has been used in the Picsel2
project [2] and in COIN [1]. The source keeps the autonomy
to choose (1) the relevant subset (fragment) of the shared
ontology (classes and properties) for this source and (2) its
local database schema.

In this scenario, the integration of a new
source Si :< Oi, Ii, Schi, Popi > with Oi :<
Ci, Pi, Applici, Subi, FDi > is performed using the
following steps:

1) the source schemas S is updated by adding the schema
of the new source (S = S ∪ {Si :< OLi, SchLi >});

2) in the ontology OLi :< CLi, PLi, ApplicLi, SubLi >
only classes and properties existing in the mediator
ontology (OLi = O ∩Oi) are kept;

3) the schemas of the OLi classes from Schi (∀ c ∈
CLi SchLi(c) = Schi(c)) are imported;

4) the schema of the mediator ontology classes Sch is
updated by adding the properties valued in Si to the
schema of their classes (∀ c ∈ CLi Sch(c) = Sch(c)∪
SchLi(c)). This definition means that instances of a
query result are expanded with null values to fit with
the more precisely defined instances. An alternative
definition may also be used to define the schema of a
class where instances contain no null values by con-
sidering only properties valued in all integrated sources
(initially Sch(c) = SchL1(c) then ∀ i > 1 Sch(c) =
Sch(c) ∩ SchLi(c));

5) the mapping of the mediator classes is updated by
adding the mapping between the classes of the mediator
ontology O and the classes of the new source ontology
OLi (∀ c ∈ CLi M(c) = M(c) ∪ Si.c).



Example. The integration of a new source in the fragmen-
tation scenario is illustrated Figure 3. At the end of the
integration process, the components of the mediator Med :
< G,S,M > contain:
- No change on the mediator ontology.
- Sch(Person) = {personId}, Sch(Student) = ϕ and
Sch(Employee) = {personId, telephone} using union
operator, Sch(Employee) = {personId} using intersec-
tion operator.
- S = {S1} with OLi and SchLi presented in Figure 3.
- M(Person) = {S1.Person}, M(Student) = ϕ and
M(Employee) = {S1.Employee}.

2) Integrated ontology scenario: In a number of cases,
including e-business applications for instance, sources need
more autonomy. Indeed, each local source may have its local
ontology composed of specific classes and properties. We
support this scenario by requiring that the local ontologies
reference the shared ontology Os while satisfying the two
assumptions presented in section V-C. Thus, each source Si

references the shared ontology Os as follows: OntoSubi :
Cs → 2Ci which associates to each class c ∈ Cs the set of
classes ci ∈ Ci that are subsumed directly by c. Contrary to the
previous case, each data source Si is defined as a quintuple:
Si :< Oi, Ii, Schi, Popi, OntoSubi >.

In this scenario, the integration of a new source
Si :< Oi, Ii, Schi, Popi, OntoSubi > with Oi :<
Ci, Pi, Applici, Subi, FDi > is performed as follows.

1) The mediator ontology O :< C,P,Applic,Sub,FD >
is updated by adding the new classes and properties
corresponding to the user requirements defined in Oi

that does not exist in the shared ontology. To extend the
mediator ontology, we use the same algorithm defined
for the mediator ontology importation. We denote C+

i

and P+
i the sets of classes and properties which will be

added to the mediator ontology. So the component of O
are extended as follow:
C = C ∪ C+

i ,
P = P ∪ P+

i ,
Sub(c) = Sub(c) ∪OntoSubi(c),
∀ c ∈ C+

i Applic(c) = Applici(c) and
∀ c ∈ C+

i FD(c) = FDi(c).
2) The source schemas S is updated by adding the schema

of the new source (S = S ∪ {Si :< OLi, SchLi >}).
3) In the ontology OLi :< CLi, PLi, ApplicLi, SubLi >

only classes and properties existing in the mediator
ontology after extension are kept (OLi = O ∩Oi).

4) The schemas of the OLi classes from Schi (∀ c ∈
CLi SchLi(c) = Schi(c)) are imported.

5) The schema of the mediator ontology classes Sch is
updated by adding the schema of new classes and
computing the schema of existing classes. If the class
c belongs to C+

i , Sch(c) is computed as Sch(c) =
SchLi(c). If c belongs to C before extension and it
is a leaf class, its schema is explicitly defined as
Sch(c) = Sch(c) ∪ SchLi(c). Whereas, if c is a non-
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Figure 4. Integrating a new source in the integrated ontology scenario

leaf class, its schema is computed recursively using a
post-order tree search by: Sch(c) = ∪cj∈Sub(c)Sch(cj).

6) The mapping of the mediator classes is updated by
adding the mapping of the new classes and updating the
mapping of the existing classes (∀ c ∈ CLi M(c) =
M(c) ∪ Si.c).

This scenario leaves a large autonomy to each source
and compute in a fully automatic and deterministic way the
corresponding integrated system.
Example. Figure 4 illustrates the integration of a new source

in the integrated ontology scenario. After this integration the
components of the mediator Med : < G,S,M > contain:
- The mediator ontology extended with the
GraduateStudent and Course classes and their properties.
C = {Person, Student, Employee,GraduateStudent,

Course},
P = {personId, name, age, telephone, takesCourse,

courseId, courseName},
Sub(Student) = {GraduateStudent}
- Sch(Person) = {personId},
Sch(Student) = {personId, age},
Sch(GraduateStudent) = {personId, age,
takesCourse},
Sch(Course) = {courseId, courseName} and
Sch(Employee) = ϕ.

- S = {S1} with OLi and SchLi presented in Figure 3.
- M(Person) = {S1.P erson},
M(Student) = {S1.Student},
M(GraduateStudent) = {S1.GraduateStudent},
M(Course) = {S1.Course} and
M(Employee) = ϕ.

D. Deleting a source from the mediator

A source may be removed for different reasons. For ex-
ample, the source is physically deleted or unavailable for a
long time, the content is judged uninteresting, etc. A source
Si :< OLi, SchLi > is deleted with the the following steps:

1) the mapping of the mediator ontology classes is updated
by deleting the mapping to the classes of the ontology



OLi (∀ c ∈ CLi M(c) = M(c)− Si.c);
2) the schema of the mediator ontology classes is even-

tually updated by removing the properties valued only
in the source Si from the schema of the corresponding
classes (Sch(c) = Sch(c) − {p ∈ Sch(c)|∀Sj ∈
S − {Si}p /∈ SchLj(c)});

3) finally the source from S is deleted by removing its
schema SchLi and its ontology OLi.

E. Query answering

In the previous sections we have presented the integra-
tion process in our system. In this section we detail the
querying part of the system. We consider that queries are
expressed as a Union of Conjunctive Queries (UCQ). Thus,
each query is given using datalog notation as: Qi(X):-
pr1(X1), ..., prn(Xn), where the predicate pri is defined on
one of the following ontological concepts:

1) a class c(x) where x is a variable and c ∈ C;
2) a property p(x1, x2) where x1 and x2 are variables and

p ∈ P;
3) an ordinary atom a(x1, ..., xm) with (x1, ..., xm) is a

variables vector and a is a predicate.
X = (xn, ..., xn) are distinguished variables whereas x /∈

X are existential variables serving to express constraints on
distinguished variables.

We denote PPi = {p ∈ P | p(x1, x2) ∈ Qi ∧ x2 ∈ X} the
projected properties asked by the query Qi, Clsi = {c ∈ C |
c(x) ∈ Qi} the classes appearing in the query Qi, JCPi =
{p ∈ P | p(x1, x2) ∈ Q ∧ p is an object property} the join
clause properties of the query Qi, and CCPi = {p ∈ P |
p(x1, x2) ∈ Q ∧ x2 /∈ X} the condition clause properties of
the query Qi.
Example. Let Q(x, y, z) be a query asking for the names of

graduate students, the names of courses that they take and
the names of their organisations.
Q(x, y, z):- GraduateStudent (x1), takesCourse(x1, x2),
Course(x2), memberOf(x1, x3), Organisation(x3),
name(x1, x), courseName(x2, y), OrganisationName(x3, z).
To answer the query Qi, the mediator performs the four

steps described below.
1) Finding the FD that hold in the query: Two types of

FD that hold in a query, may be distinguished: (1) direct FD
(F d) already exist in the mediator ontology and (2) generated
FD obtained from key FD (F k) and from basic FD (F b).
The FD that hold in the set of query classes Clsi, denoted
by FClsi . They are computed as follow.

• FClsi = F d ∪ F k ∪ F b;
• F d = fd1 ∪ fd2 ∪ ... ∪ fdn are the existing classic FD

on the classes of the query Clsi where the right part is a
projected property from PPi or a property from the join
clauses JCPi;

• F k is the set of FD generated from key FD. F k

indicates that the left part of a key FD (R : LP →)
determines all the functional properties of its root class
FP (R). F k = {LP → p | p ∈ PPi ∪ JCPi ∧ (δ(p) :

LP →) ∈ FD(δ(p))∧ p ∈ FP (δ(p))} where δ(p) is the
domain class of the property p.

• F b is the set of FD generated from basic FD having a
property from JCPi as right part. F b indicates that the
functional property determines all the candidate keys of
its range class and the inverse of an inverse functional
property determine all the candidate keys of its domain
class. F b = {p → CK(ρ(p)) | p ∈ JCPi ∧ (δ(p) : →
p) ∈ FD(δ(p))}.

Finally, the FD that hold in Qi, denoted by FQi , are computed
by: FQi = {X → Y | X → Y ∈ F+

Clsi
}

2) Deriving the reconciliation key: Before deriving the
reconciliation key, we determine the relevant sources (SQi

)
among sources of S. We keep in SQi only the sources in
which one of the projected properties PPi at least is valuated
(SQi = {Sj ∈ S | ∃ p ∈ PPi ∃ c ∈ CLj p ∈ SchLj(c)}).

The reconciliation key is derived using the algorithm 1.
Its inputs are the query Qi, the concerned sources SQi , the
mediator components (Med :< G,S,M >) and the left parts
(K) of the functional dependencies that hold in the query
FQi . The algorithm generates as output a reconciliation key
(KR). We start by a reconciliation key KR containing all the
elements of K. If two left parts in KR determine the same
set of properties of PPi ∪ JCPi, we keep the left part which
is valuated in all sources. Then we remove the properties that
can be functionally determined by an other left part in KR.

Example. Consider the query Q(x, y, z) of the exam-
ple V-E. We have the following fds on the classes
GraduateStudent, Course and Organisation:
- The key FD fd1 : GraduateStudent : personId →,
- The key FD fd2 : GraduateStudent : email →,
- The basic FD fd3 : GraduateStudent : → memberOf ,
- The key FD fd4 : Course : courseId →,
- The key FD fd5 : Organisation : organisationId →.
The FD that hold in Q(x, y, z) are FQ(x,y,z)

= {X → Y |
X → Y ∈ F+

Clsi
} with: FClsi = F d ∪ F k ∪ F b

F d = ϕ,
F k = {personId → email, personId → name,
personId → memberOf, email → personId, email →
name, email → memberOf, courseId → courseName,
organisationId → organisationName},
F b = {memberOf → organisationId},
K = {personId, email, courseId, organisationId,

memberOf}.
The algorithm 1 removes organisationId and memberOf
and derives one of the two reconciliation keys
{personId, courseId} or {email, courseId}.

3) Query evaluation: Each query Qi will be rewritten into
the union of sub queries over the concerned sources Q

Sj

i .
Qi = QS1

i ∪...∪QSr
i with Sj ∈ SQ where QSj

i being a query
over the ontology OLj :< CLj , PLj , ApplicLj , SubLj > of
the source Sj having the following form:

Q
Sj

i (X):- pr1(X1), ..., prn(Xn) where the predicate pri is:
- Sj .c(x), x is a variable, Sj .c(x) ∈ M(c) and c ∈ Clsi,



Algorithm 1. Deriving the reconciliation key
Input: Qi: The query;

SQi : Concerned sources;
Med :< O,S,M >;
K: Left parts of FD in FQi ;

Output: KR: Reconciliation key;
begin

KR = K;
foreach LPi ∈ KR do

// PLPk
= {p ∈ PPi ∪ JCPi | LPk → p}:

properties determined by LPk;
if ∃ LPj ∈ KR PLPi = PLPj and ∀ Sk ∈ SQi ∀ p ∈
LPi p ∈ SchLk(δ(p)) then

KR = KR − {LPj};

foreach LPi ∈ KR do
if ∃ p ∈ KR LPi → p then

KR = KR − {p};

end

- p(x1, x2), x1 and x2 are variables and p ∈ (PPi∪JCPi∪
CCPi) ∩ PLj ,

- a(x1, ..., xm) with ∀ xi ∈ {x1, ..., xm} p(xj , xi) ∈ Q
Sj

i .
All the properties of JCPi may not be valuated

by the source Sj . Therefore the query Q
Sj

i may not
be valid on this source. For example if the query
Qi(x):-Person(x, y),memberOf(x, y), Department(y)
is executed on a source Sj where the property memberOf

is not valued, the rewritten query is Q
Sj

i (x, y):-
Person(x), Department(y) which is not valid because
it returns a Cartesian product. As a consequence, the validity
of the query is tested and, if it is not valid, only a part of
the results are returned (e.g., Q

Sj

i (x):- Person(x) for the
previous query). This process is achieved by the algorithm 2.
It is used to set the projected properties PP

Sj

i , the classes
Cls

Sj

i , the join clause properties JCP
Sj

i and condition
clause properties CCP

Sj

i of the query Q
Sj

i . We start by
Cls

Sj

i containing the class considered by the user as the
most important in the query (this class must be a domain
class of a property from the reconciliation key). Using the
join clause properties valuated in the concerned source, we
add to Cls

Sj

i all the classes accessible from the initial class.
Condition clause properties CCP

Sj

i (respectively projected
properties PP

Sj

i ) are the properties of CCPi (respectively
PPi) valuated in Sj and having the domain classes in Cls

Sj

i .
Finally, the resulting query Q

Sj

i is sent to the source Sj to
be evaluated.

4) Results reconciliation and fusion: To avoid redundancy
and conflicting information, data integration systems imple-
ment data reconciliation and fusion techniques. Most of these
methods need to query all sources and are designed for
offline data aggregation that can take a long processing time.
Instead of this approach, we propose an incremental and online

Algorithm 2. Query unfolding
Input: Med :< O,S,M > ;

KR: Reconciliation key;
Qi: The query;
Sj : The concerned source;

Output: Cls
Sj

i : Query classes;
JCP

Sj

i : Join clause properties;
CCP

Sj

i : Condition clause properties;
PP

Sj

i : Projected properties;
begin

Cls
Sj

i = {δ(p) | p ∈ KR} /* δ(p) is chosen by the user
*/;
JCP

Sj

i = ϕ;
repeat

noChange = true;
if p ∈ JCPi and p ∈ SchLj(δ(p)) and Sj .(δ(p)) ∈
M(δ(p)) and δ(p) ∈ JCP

Sj

i and ρ(p) /∈ JCP
Sj

i

then
Cls

Sj

i = Cls
Sj

i ∪ {ρ(p)};
JCP

Sj

i = JCP
Sj

i ∪ {p};
noChange = false;

until noChange or Cls
Sj

i = Clsi;
CCP

Sj

i = CCPi ∩ {p ∈ PLj | p ∈ SchLj(δ(p)) ∧
δ(p) ∈ Cls

Sj

i };
PP

Sj

i = PPi ∩ {p ∈ PLj | p ∈ SchLj(δ(p)) ∧ δ(p) ∈
Cls

Sj

i };

end

reconciliation and fusion method allowing to return the first
answer as soon as possible. The system returns answers from
the first concerned source and refreshes the answers as it
queries more sources by applying reconciliation and fusion
techniques on the retrieved data. For each returned answer, it
shows the asked sources. Finally the process can be stopped
if the user satisfied by the current answer.

The answer of the initial query Q, denoted by ans(Q), are
ans(Q) = ans(Q1) ∪ ... ∪ ans(Qn).

The set of instances satisfying the query Qi from all
the concerned sources SQi is ans(Qi) = ans(QS1

i ) ∪KR

... ∪KR ans(QSr
i ) where ∪KR is the union with reconciling

the instances using the reconciliation key KR.
The set of instances satisfying the query Q

Sj

i in the source
Sj are tuples from the Cartesian product of the Cls

Sj

i class
populations that satisfy join clauses and condition clauses of
the query Q

Sj

i . ans(QSj

i ) = {t ∈ Popj(c1)×. . . ×Popj(cm) |
t |= Q

Sj

i } with c1, ..., cm ∈ CLi.
KR is the reconciliation key of the query Qi means that

KR functionally determines all the projected properties of the
query (∀ p ∈ PPi KR → p) in all sources. In other word
∀ p ∈ PPi, ∀ i1 ∈ ans(QSv

i ), ∀ i2 ∈ ans(QSw
i ) i1[KR] =

i2[KR] ⇒ i1[p] = i2[p] where i1[KR] = i2[KR] ⇔ ∀ p ∈
KR i1[p] = i2[p]. i[KR] is the vector of values that take the



properties of KR in the instance i.
Let Reconcile be a binary predicate. Reconcile(i1, i2)

means that the two instances, denoted by i1 and i2, refer to
the same world entity.

For two instances i1 and i2, a decision of reconciliation
is taken (Reconcile(i1, i2)) if both instances have the same
values for all properties composing the reconciliation key.
i1[KR] = i2[KR] ⇒ Reconcile(i1, i2)
Similarly, a decision of non-reconciliation is taken

(¬Reconcile(i1, i2)) if there is a property of the reconciliation
key KR for which the values of the two instances are different.
i1[KR] ̸= i2[KR] ⇒ ¬Reconcile(i1, i2)

where i1[KR] ̸= i2[KR] ⇔ ∃ p ∈ KR i1[p] ̸= i2[p]
So, the reconciliation of the result coming from a source

and the global result can be performed by the algorithm
3. This algorithm takes each instances of source result and
check if there is an instance in the global result that can be
reconciled with this source instance. If such an instance exists,
the algorithm fuses the property values of the two instances
as a single instance in the global result, otherwise the source
instance is added to the global result as a new instance.

Algorithm 3. Reconciliation of a source result
Input: KR: Reconciliation key;

ans(Q
Sj

i ) : The source result;
R: Global result;

Output: R: Global result;
begin

foreach i2 ∈ ans(Q
Sj

i ) do
if ∃ i1 ∈ R Reconcile(i1, i2) then

i1 = FusionOf(i1, i2);

else
Add i2 to R;

end

Now that we have presented the different part of our system,
let’s see how it has been implemented.

F. Implementing our methodology

Since our integration system uses ontology and must be
scalable, we have implemented it on an OBDB. Most OBDB
do not support the definition of FD as it is not supported
by most ontology model. However, the OntoDB OBDB [28]
supports the extension of its ontology model through its
ontology exploitation language OntoQL. This section shows
how we have used and extended this OBDB to implement
our approach.

1) Overview of the implemented Architecture: Different
modules composing our integration system are described in
Figure 5: (1) an OBDB repository, (2) a user interface, (3) a
query engine and (4) a result reconciliator.

• The OBDB Repository is based on the OntoDB architec-
ture. It is composed of four parts illustrated in Figure 6.
Part (1) and Part (2) are traditional parts available in all

Figure 5. Different Modules Composing our Integration System
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Figure 6. OntoDB architecture

DBMSs, namely the data part that contains instance data
and meta-base part that contains the system catalog. (3)
The ontology part allows the representation of ontologies
in the database. (4) The meta-schema part records the
ontology model into a reflexive meta-model. For the
ontology part, the meta-schema part plays the same
role as the one played by the meta-base in traditional
databases. By means of naming convention, the meta-base
part also represents the logical model of the content, and
its link with the ontology, thus representing implicitly the
conceptual model of data in database relations.
For supporting our approach the meta-schema part is
extended by (i) a mediator and source schema model, (ii)
a model of mapping between the mediator ontology and
source ontologies and (iii) a FD model. The OntoQL
commands used to do this extension are presented in
section V-F2. In the ontology part, we store the mediator
ontology, source ontologies and schemas, the mapping
between the mediator ontology and source ontologies
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and the FD between the classes and properties of the
mediator ontology. The data part can be used as a caching
to optimize frequently queries (in this work this issue is
not addressed).

• The user interface: it is used by users to express queries
and display its results. After parsing the input query, the
user interface send to the query engine a conjunctive
query defined on a set of classes and properties of the
mediator ontology. The user interface is responsible also
of displaying answers from the first visited sources and
refreshing the answers when the answers of more sources
coming from the reconciliator are available.

• The query engine: for a given user query Qi, the query
engine performs the following tasks: (1) finding the
FD that hold in the query, (2) identifying then the
concerned sources and deriving the reconciliation key
and (3) rewrites the query defined on mediator ontology
in local queries defined in sources ontologies, where
each one is sent to relevant sources. It sends then the
reconciliation key to the reconciliator.

• The result reconciliator: it reconciles the results using
the reconciliation key, to merge instances referring to the
same real world entity and to send progressively obtained
results to the user interface in an incremental way.

2) Representation of FD in OntoDB: The meta-schema
of OntoDB contains two main tables Entity and Attribute
encoding the meta-model level. Entity describes ontological
constructors such as class, property or data type. Attribute
describes attributes related to each ontological constructors
(name, description, comment . . . ). An extension of the meta-
schema of OntoDB consists in adding new entities and at-
tributes. Thus we have defined three meta-models describing
the FD concepts, mapping concepts and class schemas con-
cepts (see Figure 7). These three meta-models are instanciated
in the meta-schema of OntoDB using OntoQL.

The following statements encode these instantiations.
CREATE ENTITY #FD(#ItsClass REF(#Class),

#ItsLeftProperties REF(#Property)ARRAY,
#ItsRightProperty REF(#Property));

CREATE ENTITY #Source(#URL STRING, #UserName STRING,
#Password STRING);

ALTER ENTITY #Ontology ADD ATTRIBUTE #ItsSource REF(#Source)
CREATE ENTITY #Mapping(#MediatorClass REF(#Class),

#SourceClass REF(#Class), #ItsSource REF(#Source));
CREATE ENTITY #Schema(#ItsClass REF(#Class),

#SchemaProperty REF(#Property));

VI. METHODOLOGY VALIDATION

To validate the feasibility and efficiency of our system,
we conduct experiments using dataset of Lehigh University
Benchmark (LUBM) and its 14 queries 1. The used ontology
of LUBM has 45 classes and 32 properties (including 25 object
properties, and 7 data type properties). Based on this ontology
a set of ontology-based databases is generated. All experiments
have been carried out on an Intel Pentium IV machine, with
3,2 GHz processor clock frequency, equipped with 1 Gb of
RAM, under the operating system Windows XP professional.
The OntoDB OBDB is implemented on PostgreSQL.

Two main experiments are conducted to evaluate (1) the
scalability of our system based on the number of sources and
instances and (2) the quality of the returned results.

A. Scalability of our approach

0

200

400

600

800

1000

1200

10 20 30 40 50

Numb er of sources

T
im

e 
(m

s
)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

0

10000

20000

30000

40000

50000

60000

10 20 30 40 50

Num ber o f sou rces

T
im

e 
(m

s
)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14
(a) (b)

Figure 8. (a) Query Response Time - (b) Reconciliation Time vs. Number
of Sources.

Figure 8 (a) shows the query response time (in millisecond)
of the 14 queries when the the number of sources participating
in the integration process range from 10 to 50 (following
a fragmentation scenario). Figure 8 (b) presents the recon-
ciliation time for these same queries. Based on the LUBM
Benchmark, generated sources have the same schema (22
relations) and the biggest relation has 2000 tuples.

The obtained results show that our system
executes efficiently (less than one second) queries
involving a small set of classes (less joins)
(e.g. Q3(x):- Publication(x), publicationAuthor(x,
’http://www.Department0.University0.edu/AssistantProfes-
sor0’)), but, for queries involving large number of classes

1http://swat.cse.lehigh.edu/projects/lubm/



(e.g. Q9(x):- Student(x), Faculty(y), Course(z), advisor(x, y),
takesCourse(x, z), takesCourse(y, z)), the response time is
quite high, but still reasonable (50 seconds for 50 sources).
Notice that the execution time comprises the time needed for
mediator processing time (including finding the functional
dependencies that hold in the query, deriving the reconciliation
key and reconciliation of results), and local query evaluation.

Figure 8.(b) points out that, for most queries, the time
needed for mediator processing is negligible w.r.t. the overall
execution time. Thus, the major time consuming process is the
evaluation of the query over the sources. Two queries (Q6(x):-
Student(x) and Q14(x):- UndergraduateStudent(x)) have a rec-
onciliation time near 1s for 50 sources. The reconciliation time
are higher for these queries because they return an important
number of results.

The scalability of our approach depends also on the number
of instances of each source. Thus, we conduct an other
experiment that consists in varying the number of instances
of 10 used sources. Figure 9 shows the obtained results. In
this experiment, the high costly queries are Q7 and Q9. In the
previous experiment they were the low costly queries. Indeed
these queries involves several join operations. And, when the
number of instances increases, these operations become costly.
Figure 9 (b) shows similar results as the first experiment. Thus,
this experiment shows that the query response time depends
heavily on the sources and their ability of processing queries
and not on the mediator.
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Figure 9. (a) Query Response Time - (b) Reconciliation Time vs. Number
of Instances.

B. Quality of results of our approach

One strength of our approach (noted M) is that we recon-
ciliate results using FD. These FD are used to compute a
reconciliation key that can be composed of several attributes.
A lot of approaches use instead a unique reconciliation key
(noted UK). This last approach works well if all sources use
the same key for each entity. However, we think that this
assumption will not hold in many situations. Thus we have
chosen to compare the unique reconciliation key with our
approach when this assumption does not hold. More precisely,
we make the assumption that, for a given concept, a source
uses the unique key with a given probability. For conciseness
we present only results obtained for a probability of 50%.
These results are presented in table II (number of queries
results with M and UK for 10, 30 and 50 sources) and
illustrated in Figure 10 (percentage of UK results compared to

TABLE II
RESULTS OF M COMPARED TO THE RESULTS OF UK

10 30 50
M UK M UK M UK

Q6 5239 2689 10407 5058 16139 7896
Q8 5238 2688 7787 4089 7787 4089
Q9 140 27 430 48 716 95
Q12 10 5 15 8 15 8
Q13 1 1 5 2 9 3
Q14 4022 2051 12357 5987 20249 9849

M results). These results do not include results for queries Q1,
Q2, Q3, Q4, Q5, Q7, Q10 and Q11 because the same results
are returned with the two methods. Indeed, for these queries,
the result exists in the same source that uses the unique key.
For other queries Q6, Q8, Q12, Q13, Q14 the UK method
returns less results than our method. The percentage depends
on the number of attributes in the reconciliation key. When this
key is only composed of one attribute (Q6, Q8, Q12 and Q14)
this percentage is around 50% because 50% of the sources
use the unique key. When the number of attributes in the
reconciliation key growths (e.g, 3 for Q6) this percentage can
be very low because there is less chance than all sources will
use the same key for the three attributes. In this experiment we
also vary the number of sources. As we can see the percentage
is stable for each query except for Q13 because it has very
few results so the percentage is not meaningful.

Results with UK / Results with M

0%

20%

40%

60%

80%

100%

120%

10 20 30 40 50

Number of sources

p
e
rc

e
n

ta
g

e
 o

f 
re

s
u

lt
s

Q6

Q8

Q9

Q12

Q13

Q14

Figure 10. Percentage of results returned by UK compared to M

Finally we run a last experiment to test th data fusion
technique that we use to eliminate duplicate results. For
this experiment, we use five different sources. We get the
number of results with these five sources (that do not have
any duplicated). Then we increase the number of sources by
duplicating values of one of the five sources. We run this
experiment for the 14 queries and 5, 10, 20 , 30, 40 and 50
sources. Table III presents a subset of these results (the other
results are similar). It shows the number of results returned
by our approach (M) and without using any fusion technique
(N). As we can see our method eliminates the duplicate for
each number of sources tested.



TABLE III
ELIMINATION OF DUPLICATES

5 20 50
M N M N M N

Q5 719 719 719 2876 719 7190
Q6 7790 7790 7790 31160 7790 77900
Q8 7787 7787 7787 31148 7787 77870
Q14 5916 5916 5916 23664 5916 59160

VII. CONCLUSION

The integration of different sources is an important problem
for many applications in various domains. Meanwhile a lot
of ontologies has been developed in these domains leading
to many sources that contain both data and ontologies that
describe the meaning of these data. In this paper, we have
proposed an integration system called MIRSOFT for these
sources. The originality of MIRSOFT is to propose a complete
methodology for both integrating and/or deleting sources on
the fly and reconciliating results. Note that most of existing
integration systems follow two extreme scenarios for data
reconciliation. (1) Some systems suppose that the manipulated
sources have similar keys to ensure data integration. This
usually violates the autonomy of sources. (2) Others use
statistical techniques to reconcile data. In sensitive domains,
where exact solutions, such techniques cannot be used. Instead,
MIRSOFT uses FD that have been recently defined for
ontologies for the reconciliation of results. We show on the
Lehigh University Benchmark that if FD are expressed on
ontologies, our approach can eliminate the result duplicates
even if the different sources do not use the same key for the
different entities. Moreover we show that the execution time
of a query on MIRSOFT depends on the time spent by the
sources to process the query and not on the mediator.

We are currently extending MIRSOFT in two ways. Firstly,
we are considering other types of sources in the integration
process (e.g., XML sources). Secondly, we are running more
experiments on real datasets to evaluate the complexity of
defining FD on real ontologies. We hope that this study
will lead us to design a methodology for defining in a semi-
automatic way such FD .
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