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Abstract: Providing automatic integration solutions is the key to the
success of applications managing massive amounts of data. Two main
problems stand out in the major studies:

i the management of the source heterogeneity

ii the reconciliation of query results.

To tackle the first problem, formal ontologies are used to explicit the
semantic of data. The reconciliation problem consists in deciding whether
different identifiers refer to the same instance. Two main trends emerge
in the reconciliation process:

i the assumption that different source entities representing the same
concept have the same key – a strong hypothesis that violates the
autonomy of sources.

ii The use of statistical methods that identify affinities between concepts –
not suitable for sensitive-applications.

In this paper, we propose a methodology integrating sources referencing
shared domain ontology enriched with functional dependencies (FD).
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The presence of FD gives more autonomy to sources when choosing their
primary keys and allows deriving a reconciliation key for a given query.
The methodology is then validated using LUBM.

Keywords: data integration; mediation architecture; ontologies; functional
dependencies; reconciliation.
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1 Introduction

In past years, Enterprise and Information Integration (EII) became an established
business, with academic and commercial tools integrating data and XML sources
more readily available. These tools offer final users a uniform and a transparent
access to data. The spectacular development of this business has been motivated
by the need companies have to be able to access data allocated over the internet
and within their intranets (Dong and Naumann, 2009; Halevy et al., 2005; Sarma
et al., 2011; Nguyen et al., 2011). Source Integration problem has as inputs: a set
of distributed, heterogeneous, autonomous sources, where each one has its schema
and population. Its output a unified description of source schemes via an integrated
schema and mapping rules allowing the access to data sources. The construction of
a data integration system is a difficult task due to the following main factors:

a the large number of data sources candidate for integration

b the lack of semantic sources explicitation

c the heterogeneity of sources

d the autonomy of sources.

(a) The explosive growth of data sources: The number of data sources involved
in the integration process is increasing. The amount of information generated in
the world increases by 30% every year and this rate is bound to accelerate (Dong
and Naumann, 2009), especially in domains such as E-commerce, engineering, etc.
Integrating these mountains of data requires automatic solutions.

(b) The lack of explicitation of the semantic of sources: The semantics of data
sources is usually not explicit. Most sources participating in the integration process
were designed to satisfy day-to-day applications and not to be integrated in the
future. Often, the small amount of semantic contained in their conceptual models
is lost, since only their logical models are implemented and used by applications.
The presence of a conceptual model may allow designers to express the application
requirements and domain knowledge in an intelligible form for a user. Thus,
its absence or any other semantic representation in final databases makes their
interpretation and understanding complicated, even for designers who have good
knowledge of the application domain.

(c) The heterogeneity of data sources impacts both the structure and the semantic:
Structural heterogeneity exists because data sources may have different structures
and/or different formats to store their data. The autonomy of the sources increases
heterogeneity significantly. Indeed, the data sources are designed independently
by various designers with different application objectives. Semantic heterogeneity
presents a major issue in developing integration systems (Hakimpour and Geppert,
2002). It is due to different interpretations of real world objects, generating several
categories of conflicts (naming conflicts, scaling conflicts, confounding conflicts and
representation conflicts (Goh et al., 1999)).

(d) Autonomy of sources: Most sources involved in the data integration are fully
autonomous in choosing their schemes.
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To deal with semantic problems and ensure an automatic data integration, a
large number of research studies propose the use of ontologies. Several integration
systems were proposed under this hypothesis. We can cite for instance: COIN
(Goh et al., 1999), Observer (Mena et al., 1996a, 1996b) OntoDaWa (Xuan et al.,
2006; Bellatreche et al., 2006), etc. In Bellatreche et al. (2006), we claim that
if the semantic of each source participating in the integration process is explicit
in a priori way, the integration process becomes automatic. This means that
the used ontology should exists before the creation of each source participating
in the integration process. This assumption is reasonable in several application
domains, where ontologies are largely developed: medicine (Unified Medical
Language System), engineering (e.g., IEC [ISO13584-42, IEC61360-2]), biology
(http://www.iplantcollaborative.org/), businness inteligence applications (Romero
and Abelló, 2010), etc. The storage of ontologies in a database leads to the concept
of Ontology-Based DataBases (OBDB). Several academic and industrial systems
offer efficient solutions to store and manage ontologies and their associated data
(e.g., Jena (Carroll et al., 2004), Sesame (Broekstra et al., 2002), Oracle (Das et al.,
2004), IBM Sor (Lu et al., 2007)). If we follow this trend, OBDB sources become
then candidate for the integration process. Therefore, integration services should be
developed for this type of sources.

Once source heterogeneity is solved by the use of ontologies, data integration
designers have to propose solutions for data reconciliation when queries are
answered over the integration system (following mediator architecture). Throughout
the literature, two main trends arise:

1 works in the first one assume the existence of a common single identifier for
each common concept of sources participating in the integration process.

The assumption relaxes the data reconciliation problem, but it violates the
source autonomy, since this common identifier is imposed for various sources.
Other research efforts characterising the second trend propose the use of entity
reconciliation methods performed either by entity matching or data fusion
(Bleiholder and Naumann, 2008; Saïs et al., 2009). These approaches have shown
their efficiency in linguistic and information retrieval applications (Dong and
Naumann, 2009). However, they may suffer in the context of sensitive applications
such as engineering, banking, healthcare, travel, etc., where exact solutions are
required by the end users.

Note that these two issues: heterogeneity management and data reconciliation
are treated separately. In this paper, we propose a complete integration
methodology, called, MIRSOFT that incorporates these issues in a mediator
architecture. It is mainly motivated by a conjunction of three main factors:

• the conceptual continuity offered by ontologies to generate conceptual models
(Bellatreche et al., 2011) and to ease the resolution of data heterogeneity

• the recent research efforts that define functional dependencies FD on
ontological concepts (Romero et al., 2009). The presence of FD allows
designers to generate all candidate keys for each class of an ontology. As a
consequence, a source designer may pick her or his primary keys from



76 A. Bakhtouchi et al.

candidate keys. So FD give more autonomy to sources and may contribute in
reconciling query results.

• The spectacular development of OBDB sources that may need to be
integrated. Note that MIRSOFT integrates OBDB by relaxing the constraint
of existing of a common identifier. To our best of knowledge, this work is the
first that considers simultaneously heterogeneity and data reconciliation
problems.

The paper is structured as follows. Section 2 presents a state of the art related
to data integration problem, where a classification of existing systems is proposed.
Section 3 presents the concepts and the formal definitions of ontology and OBDB.
Section 4 describes an extension of ontology model by FD and shows their impact
on data reconciliation. Section 5 describes in details our integration system with its
main components. Section 6 presents experimental studies. Section 7 concludes the
paper.

2 State of the art

In this section, we first describe in details the most important studies conducted on
data reconciliation and then a classification, based on five orthogonal criteria, of
existing integration systems is presented. This classification will help designers and
readers to understand each studied system and to analyse it.

2.1 Data reconciliation

Data reconciliation occurs on two levels: schema and instance correspondences
(Figure 1).

Figure 1 Data and schema reconciliation

Schema level correspondences task aims at establishing semantic mappings between
contents of disparate data sources. More precisely, this process identifies tables
(in the case of relational sources) or XML entities (in the case of XML databases)
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(Nguyen et al., 2011) that represent the same real-world entity type and identifies
attributes describing the same property for the same entity type. This task is usually
performed when creating the global schema of the integration system. This problem
of determining schema-level correspondences is referred to as schema matching
and inter-schema relationship identification (Zhao and Ram, 2008). Some studies
propose the use of formal ontologies to deal with semantic conflicts between sources
(Hakimpour and Geppert, 2002; Xuan et al., 2006). The main idea behind these
works is to formally specify the meaning of the concepts of each source and to
define a translation between each source concepts using ontologies. In other words,
each source will have its own local ontology describing its meaning. Consequently,
correspondences between sources can be viewed as ontology mappings (Wache
et al., 2001). Our work follows this tendency.

The goal of instance level correspondences is to establish reconciliation between
instances that represent the same entity in the real world and to produce the
correct value of such entity. Two types of instance level correspondences exist:
entity reconciliation methods (Rahm and Bernstein, 2001; Zhao and Ram, 2008;
Köpcke and Rahm, 2010; Batini and Scannapieco, 2010) and data fusion methods
(Naumann et al., 2006; Liu et al., 2011; Yin et al., 2008; Batini and Scannapieco,
2010).

2.1.1 Entity reconciliation

Entity reconciliation (also referred to as entity matching, duplicate identification,
record linkage or entity resolution) is a crucial task for data integration and
data cleaning. This step aims at resolving heterogeneity at the instance level by
identifying entities (objects, data instances) referring to the same real-world entity.

Given two sets of entities A ∈ SA and B ∈ SB of a particular semantic entity
type from data sources SA and SB , the data reconciliation problem consists in
identifying all correspondences between entities in A × B representing the same
real-world object. This definition includes the special case of finding pairs of
equivalent entities within a single source (A = B,SA = SB). The match result
is typically represented either by a set of correspondences, sometimes called a
mapping, or by a set of clusters. A correspondence c = (ei, ej , s) interrelates two
entities ei and ej from sources SA and SB . An optional similarity value s ∈ [0, 1]
indicates the similarity or strength of the correspondence between the two objects.
In the alternate result representation, a cluster contains entities that are deemed
to represent the same real-world object. Ideally all entities in a cluster refer to the
same object, and two entities from two different clusters do not refer to the same
object (Köpcke and Rahm, 2010).

Principally, data reconciliation seems to be a simple process. If a pair is
more similar than a given threshold it is declared a duplicate. But it has two
main drawbacks: effectiveness and efficiency (Bleiholder and Naumann, 2008).
Effectiveness is mostly affected by the quality of the similarity measure and the
choice of a similarity threshold. Usually the similarity measure is domain-specific.
The similarity threshold determines when two objects are duplicates. To ensure
efficiency, entity reconciliation should be fast even for voluminous datasets. For
very large datasets this requirement usually prescribes the use of blocking methods
to reduce the search space for entity reconciliation. More precisely, blocking reduces
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the search space from the Cartesian product to a small subset of the most likely
reconciling entity pairs. Numerous blocking algorithms have been proposed in the
past years. These techniques commonly use a key to partition the entities to be
matched into groups (blocks). The reconciliation of an entity can then be restricted
to the entities in the same block (Köpcke and Rahm, 2010). The key is typically
composed from parts of entity attribute values.

The various approaches to entity reconciliation proposed in the literature
can be classified into two categories: rule-based approaches and learning-based
approaches (Zhao and Ram, 2008). In rule-based approaches, domain experts are
required to directly provide decision rules for matching semantically corresponding
records. In learning-based approaches, domain experts are required to provide
sample matching (and non-matching) records, based on which classification
techniques are used to learn the entity reconciliation rules.

2.1.2 Data fusion

The objective of data fusion step is to combine records that refer to the same
real-world entity by merging them into a single representation and resolving
possible conflicts from different data sources. Data fusion aims at resolving conflicts
from data and increasing correctness of data. There are many different strategies
to resolve conflicts adopted by different integration systems.

Techniques that deal with data fusion can be applied in two different phases of
the life cycle of a data integration system, namely, at design time and at query time
(Batini and Scannapieco, 2010). In both cases, the actual conflicts occur at query
time; however, the design time approaches decide on the strategy to follow for fixing
conflicts before queries are processed, i.e., at the design stage of the data integration
system. The techniques operating at query time incorporate the specification of the
strategy to follow within the query formulation. Design time techniques have a
major optimisation problem. Therefore, data fusion at design time may be very
inefficient. Query time data fusion techniques have been proposed to overcome such
performance inefficiencies. Furthermore, query time techniques are characterised by
greater flexibility, they allow those who formulate the query to indicate a specific
strategy to adopt for conflict resolution. Given a query, these techniques deal with
data fusion by resolving conflicts that may occur on query results.

Another classification is proposed in Bleiholder and Naumann (2008), where
existing techniques of resolving data conflicts are classified into three categories.
In particular, Conflict ignoring strategies are not aware of conflicts, perform no
resolution, and thus may produce inconsistent results. Conflict avoiding strategies
are aware of conflicts but do not perform individual resolution for each conflict.
Rather, a single decision is made, e.g., preference of a source, and applied to
all conflicts. Finally, conflict resolving strategies provide the means for individual
fusion decisions for each conflict. Such decisions can be instance-based, i.e., they
deal with the actual conflicting data values, or they can be metadata-based,
i.e., they choose values based on metadata, such as freshness of data or the
reliability of a source. Finally, strategies can be classified by the result they are able
to produce: deciding strategies choose a preferred value among the existing values,
while mediating strategies can produce an entirely new value, such as the average
of a set of conflicting numbers.
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2.2 Classification of data integration systems

In this section, we present a classification of integration systems. Most of existing
classifications ignore the data reconciliation. Initial classifications used only one
criterion: the nature of global schema generation (Global as View (GaV) approach
(Chawathe et al., 1994) and Local as View (LaV) approach (François Goasdoué
et al., 2000; Levy et al., 1996; Reynaud and Giraldo, 2003)). This criterion has
been enriched by the type of the architecture materialising the integrated systems
(Ullman, 1997). Other contributions consider the number of used ontologies
(single ontology, multiple ontologies, and a shared ontology) (Wache et al., 2001).
Our classification takes into account data reconciliation, where we distinguish
between systems assuming the existence of a global common identifier and systems
using statistical methods. We also take into account the data fusion capabilities
where we distinguish systems handling conflicts by resolution, systems handling
conflicts by avoidance and systems ignoring conflicts. Table 1 summarises most
important data integration systems using our five criteria:

Table 1 Classification of existing data integration systems (inspired from (Bleiholder and
Naumann, 2008))

System C1 C2 C3 C4 C5

Multibase (Dayal, 1983) V GaV M CI R
Hermes (Adali and Emery, 1995) V GaV M CI R
Fusionplex (Motro et al., 2004) V GLaV M CI R
HumMer (Bilke et al., 2005) V GaV SA ER R
Ajax (Bilke et al., 2005) M n/a M ER R
TSIMMIS (Chawathe et al., 1994) V GaV M CI A
SIMS/Ariadne (Arens and Knoblock, 1993) V LaV M ER A
Infomix (Leone et al., 2005) V GaV M CI A
Hippo (Chomicki et al., 2004) V n/a M CI A
ConQuer (Fuxman et al., 2005) V n/a M CI A
Rainbow (Caroprese and Zumpano, 2006) V n/a M CI A
Pegasus (Ahmed et al., 1991) V GaV M ER I
Nimble (Draper et al., 2001) V unknown unknown ER I
Carnot (Singh et al., 1997) V Lav manual CI I
InfoSleuth (Nodine et al., 2000) V Lav M CI U
Picsel2 (Reynaud and Giraldo, 2003) V Lav A CI U
Potter’s wheel (Raman and Hellerstein, 2001) M n/a n/a n/a I
Our approach V GaV A FD R

• Data representation

• Sense of the mapping between the global and local schemas

• Mapping automation

• the used data reconciliation method: CI for common identifier, ER for entity
reconciliation

• Data fusion capabilities: R for resolution, A for avoidance, I for ignorance, U
for unknown.
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2.2.1 Data representation

This criterion specifies whether data of local sources are duplicated in a warehouse
or remained in local sources and then accessed through a mediator. Two major data
integration architectures are proposed in the literature: materialised (warehouse)
and virtual (mediator). In the materialised architecture (Inmon and Hackathorn,
1999; Kimball and Caserta, 2004) (Figure 2(a)), a copy of data recovered from
the sources is stored in a single database (called a data warehouse). The data
stored in the warehouse are pre-processed in a complex way before storage; it is
usually referred to as Extract, Transform and Load (ETL). In this approach, the
difficulty is in the data transformation, contrary to the mediation approach, which
is oriented especially towards queries rewriting. The data warehouse eliminates
several problems of integration, mainly the excessively long server response times,
the network clogging, or the sources unavailability. Queries can be also more easily
optimised, and the data transformed at the user’s discretion. These modifications,
even if their usefulness can be proven, will obviously not be reflected on the local
sources. A main disadvantage of this approach is that the answers to the queries can
frequently be built from outdated data. Data warehouse updating can be expensive,
and furthermore copyrights may exist on what certain sources provide.

In the virtual architecture (Wiederhold, 1992) (Figure 2(b)), a software called
a mediator supports a virtual database (without storing data into a database),
translates queries into source queries, synthesises results and returns answers to a
user query. A mediator is based on a unified global schema as a synthesis of the
source schemas; on this global schema queries are expressed. The most important
step in using a mediator is the global schema creation. Contrary to the data
warehouse approach, here the mapping deals with the relationships between the
global schema and the local sources. The specification of these correspondences
– according to the used method – determines the query reformulation difficulty,
as well as the facility of adding or removing sources to the system. Two main
concepts make up this architecture: wrappers and mediators. A wrapper wraps
an information source and models the source using a source schema. A mediator
maintains a global schema and mappings between the global and source schemas.

A third integration approach mixes fully materialised and fully virtual
approaches and combines their advantages (Hull and Zhou, 1996). In this
Figure 2(a) Materialised architecture, Figure 2(b) Virtual architecture. approach,

Figure 2 (a) Materialised architecture and (b) virtual architecture
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part of the data is materialised in a warehouse whereas the rest is not. To reduce
the query response time, some frequently sought data are cached. An example of a
system adopting this approach is Picsel 3 (Reynaud and Safar, 2009).

2.2.2 Sense of the mapping between the global and local schemas

In Global-as-View (GaV) systems, the global schema is expressed as a view
(a function) over data sources. This approach facilitates the query reformulation
by reducing it to a simple execution of views in traditional databases. However,
changes in source schema or adding a new data source requires a designer to
revise the global schema and the mappings between the global schema and source
schemas. Thus, GaV is not scalable for large applications. In the source-centric
approach, each data source is expressed with one or more views over the global
schema.

Therefore, Local-as-View (LaV) scales better, and is easier to maintain than
GaV because the designer creates a global schema independently of source schemas.
Then, for a new source schema, the designer has only to give (adjust) a source
description that describes source relations as views of the global schema. In order to
evaluate a query, a rewriting in terms of the data sources is needed. The rewriting
queries using views is a difficult problem in databases (Hong et al., 2005). Thus,
LaV has low performance when queries are complex.

There is a more general approach in mapping design that generalises both the
GaV and the LaV paradigms. Such an approach, called Generalised Local-as-
View (GLaV), requires the designer to associate a general query over the source
relations to a general query over the global relations. GLaV mappings are more
expressive, and are well suited to represent complex relationships in distributed
data integration environments. An example of a system adopting this approach is
Fusionplex (Motro et al., 2004).

2.2.3 Mapping automation

This criterion specifies whether the mapping between the global schema and local
schemas is done in a manual, a semi-automatic, or a fully automatic way.

Manual mappings are found in the first generation of integration systems that
integrate sources represented by a schema and a population (i.e., each source Si is
defined as: < Schi, Popi >) as in classical databases and without explicit meaning
representations. The manual systems focus mainly on query support and processing
at the global level, by providing algorithms for identifying relevant sources and
decomposing (and optimising) a global query into sub queries for the involved
sources. The construction of the mediators and the wrappers used by these systems
is done manually because their focus is mainly on global query processing (Castano
et al., 2001).

To make the data integration process (partially) automatic, explicit
representation of data meaning is necessary. Thus most of the recent integration
approaches use ontologies (Castano et al., 2001; Hakimpour and Geppert, 2002;
Reynaud and Giraldo, 2003). Based on the way where ontologies are utilised,
we may discern three different architectures (Wache et al., 2001): single ontology
methods, multiple ontologies methods, and hybrid methods (Figure 3). In the single
ontology approach, each source is related to the same global domain ontology
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Figure 3 Different ontology architectures

(e.g., (Lawrence and Barker, 2001; Reynaud and Giraldo, 2003; Hakimpour and
Geppert, 2002) work). As a result, a new source cannot bring new or specific
concepts without requiring change in the global ontology. This violates the
source schematic autonomy requirement (each source can extend its schema
independently). In the multiple ontologies approach (e.g., Observer Mena et al.,
1996a, 1996b), each source has its own ontology developed regardless of the other
sources. Then, inter-ontology relationship need to be defined. In this case, the
definition of the inter-ontology mapping is very difficult as different ontologies
may use different aggregation and granularity of the ontology concept (Wache
et al., 2001). The hybrid approach has been proposed to overcome the drawbacks
of single and multiple ontologies approaches. In this approach, each source has
its own ontology, but all ontologies are connected by some means to a common
shared vocabulary (e.g., KRAFT project (Visser et al., 1999)).

In all these approaches, ontologies and ontology mappings are defined at
integration time. Therefore, they always request a human supervision, and they are
only partially automatic.

To enable automatic integration, the semantic mapping shall be defined during
the database design. Then a shared ontology must exist and moreover, each
local source shall contain ontological data that refers to the shared ontology.
It means that each local ontology extract a sub-ontology of the shared ontology
((Bhatt et al., 2006) proposes a framework to perform the extraction process).
Some systems have already been proposed on that direction such as Picsel2
(Reynaud and Giraldo, 2003), and COIN (Goh et al., 1999). But to remain
automatic, these systems do not allow individual data source to add new concepts
and properties.

2.2.4 Data reconciliation method

Once an integration system is built it shall support user queries, by first identifying
the relevant sources for a given query and then reconciling the result. To accomplish
this task, two trends emerge in the current works:

Systems assuming the existence of global identifier (e.g., TSIMMIS (Chawathe
et al., 1994) and Infomix (Leone et al., 2005)) suppose that different entities
of sources representing the same concept have a global common identifier. This
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identifier allows the reconciliation of the results of a query using relational
operations (join and union and their relatives).

Sytems using statistical methods to identify similar instances (e.g., HumMer
(Bilke et al., 2005) and Ajax (Bilke et al., 2005)). These systems relax the global
identifier assumption and instances of a query result are compared pair wisely using
athresholded similarity approach. More specifically, using a similarity measure that
computes the similarity between two tuples, we classify a tuple pair as sure duplicate
or non-duplicate

2.2.5 Data fusion capabilities

We can distinguish different fusion strategies (Section 2.1.2). As systems can
implement one or more of these strategies, we present the systems classified by the
most powerful strategy they are able to use. Existing systems can be categorised
into the following four groups (Bleiholder and Naumann, 2008).

Conflict-Resolution Systems (e.g., Hermes (Adali and Emery, 1995) and Fusionplex
(Motro et al., 2004)) are the most advanced systems concerning data fusion. They
are able to perform conflict resolution by implementing deciding and mediating
strategies based on metadata or instances.

Conflict-Avoiding Systems (e.g., SIMS (Arens and Knoblock, 1993) and ConQuer
(Fuxman et al., 2005)) are the next class of systems acknowledges data conflicts and
handles them by conflict avoidance. This avoidance is performed by implementing
metadata-based and instance-based strategies.

Conflict-Ignoring Systems (e.g., Pegasus (Ahmed et al., 1991) and Nimble (Draper
et al., 2001)) do not perform neither resolution nor avoiding methods. They simply
handle conflicts by ignorance.

Finally, we consider all remaining systems that do not consider entity reconciliation
or data fusion techniques in detail (e.g., Information Manifold (Levy et al., 1996)
and Garlic project (Roth et al., 1996)). These systems do not handle conflicts when
integrating data from different sources.

3 Background

In this section, we present concepts and definitions related to the ontologies,
ontology-based databases and data reconciliation to facilitate the understanding of
our proposal.

3.1 Ontologies

A crucial question that should be addressed about the design of the integration
system is in which way it is in fact ontology-based. Typically, an ontology is defined
as an explicit specification of a conceptualisation (Gruber, 1993). More precisely
we consider in this paper that an ontology is a formal and consensual dictionary
of categories and properties of entities of a domain and the relationships that
hold among them (Jean et al., 2006b).
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In Jean et al. (2006b), a taxonomy of ontologies, namely the onion model
(Figure 4), has been proposed. It considers classes with a set of properties as
the basic notion for ontology design that can be extended by different layers.
The Onion Model is composed of three layers: Conceptual Canonical Ontologies,
Non Conceptual Canonical Ontologies and Linguistic Ontologies.

1 Conceptual Canonical Ontologies (CCOs) contain ontologies which describe
concepts of a domain without any redundancy. CCOs adopt an approach of
structuring of information in term of classes and properties and associate to
these classes and properties a single identifiers reusable in various languages.
CCOs can be considered as shared conceptual models. They contain the core
classes and play the role of a global schema in DB integration architecture.

2 Non Conceptual Canonical Ontologies (NCCOs) contain ontologies which
also describe concepts but represent not only primitive concepts (canonical),
but also definite concepts (non canonical). i.e., which can be defined from
primitive concepts and/or other definite concepts. NCCOs provide
mechanisms similar to views in DBs; non canonical concepts can be seen as
virtual concepts defined from canonical concepts. These mechanisms may be
used to represent mappings between different DBs.

3 Linguistic Ontologies (LOs) are those ontologies whose scope is the
representation of the meaning of the words used in a particular universe of
discourse, in a particular language. Beyond the textual definitions, a number
of linguistics relationships (synonymous, hyponym, etc) are used to capture,
in an approximate and semi-formal way, the relation between the words
(Figure 4). LOs may be used to localise similarities between DB schemas, to
document existing DBs or to improve the DB-user dialog.

Figure 4 The onion model (see online version for colours)
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In this work, we concentrate on conceptual ontologies that may be defined formally
as the quadruplet O :< C,P,Sub, Applic > (Pierra, 2003), where:

• C is the set of classes used to describe the concepts of a given domain.

• P is the set of properties used to describe the instances of the C classes.

• Sub is the subsumption function defined as Sub: C → 2C . For a class of the
ontology, it associates its direct subsumed classes. Sub defines a partial order
over C.

• Applic is a function defined as Applic : C → 2P . It associates to each class of
the ontology, the properties that are applicable for each instance of this class
and that may be used, in the database, for describing its instances. Note that
for each c ∈ C, only a subset of Applic(c) may be used in any particular
database, for describing c instances.

Example 1: Formally, the ontology presented in Figure 6 can be presented as
O < C, P, Sub, Applic > with:

C = {Organisation, Person, Student, Employee, Administrator, Faculty, Professor,

GraduateStudent, Course}
P = {organisationId, organisationName, WebSite, subOrganisationOf, personId,

name, email, address, memberOf, adviosor, age, telephone, headOf, worksFor,

teacherOf, takesCourse, courseId, courseName}
Sub(Organisation) = φ

Sub(Person) = {Student, Employee}
Sub(Student) = {GraduateStudent}
Sub(Employee) = {Administrator, Faculty}
Sub(Administrator) = φ

Sub(Faculty) = {Professor}
Sub(Professor) = φ

Sub(GraduateStudent) = φ

Sub(Course) = φ

Applic(Organisation) = {OrganisationId, OrganisationName, WebSite,

subOrganisationOf}
Applic(Person) = {personId, name, email, address, memberOf}
Applic(Student) = {advisor, age}
Applic(Employee) = {telephone}
Applic(Administrator) = {headOf}
Applic(Faculty) = {worksFor}
Applic(Professor) = {teacherOf}
Applic(GraduateStudent) = {takesCourse}
Applic(Course) = {courseId, courseName}.
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3.2 Ontology-based dataBases (OBDB)

OBDB is a database that store ontologies and its instances. It can be composed of
four parts (Dehainsala et al., 2007) (Figure 5). Part (1) and Part (2) are traditional
parts available in all DBMSs, namely the data part that contains instance data
and meta-base part that contains the system catalogue. (3) The ontology part
allows the representation of ontologies in the database. (4) Themeta-schema part
records the ontology model into a reflexive meta-model. For the ontology part,
the meta-schema part plays the same role as the one played by the meta-base in
traditional databases. By means of naming convention, the meta-base part also
represents the logical model of the content, and its link with the ontology, thus
representing implicitly the conceptual model of data in database relations.

Formally, an OBDB is a quadruplet < O, I,Sch,Pop >, where:

• O is an ontology O :< C,P,Sub, Applic >.

• I is the set of instances of the database. The semantics of these instances is
described in O by characterising them by classes and properties values.

• Pop : C → 2I associates to each class its own instances. Pop(c) constitutes the
population of c.

• Sch: C → 2P associates to each ontology class c of C the properties, which
are effectively used to describe the instances of the class c. For each class c,
Sch(c) must satisfy: Sch(c) ⊆ Applic(c).

Figure 5 OntoDB architecture

4 Extension of ontology model by functional dependencies

Traditional ontology formalisms do not support FD in their definition. Data
dependencies have been introduced as a general formalism for a large class of
database constraints that augments the expressivity of database models (Abiteboul
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Figure 6 UML diagram representation of a part of LUBM ontology

et al., 1995). FD compose a particularly interesting data dependency that elegantly
models the relationships between attributes of a relation. FD are used for defining
primary keys and in the normalisation theory. Other important application of FD
in database includes query rewriting and query evaluation (Hong et al., 2005).

These benefits of FD could be transported to the ontology world to enrich the
expressivity of the knowledge representation and data cleaning (Fan, 2008). Note
that Traditional ontology formalisms do not support FD in their definition.
Recently, couple of studies were concentrated on FD in the context of ontologies.
Two main categories of FD are distinguished (Calbimonte et al., 2009; Calvanese
et al., 2001; Romero et al., 2009; Toman and Weddell, 2008):

• intra-class dependencies

• inter-class dependencies.

Bellatreche et al. (2011) is an example of the first category, where FD are
defined on properties of ontological classes as in classical databases.

The second category of FD involves dependency between classes. Two types are
distinguished:

• FD with a single class in the left part

• FD with several classes in the left part. The work of Romero et al. (2009) is
an example of the first types of this dependency.

The authors define a FD between classes C1 and C2 (C1 → C2) when each instance
of C1 determines a single instance of C2. In the second type, (Calbimonte et al.,
2009) define a FD between the classes {C1, . . . , Cn} linked to a root class R by
properties (or a chain of properties) and a class C linked to the root class by a
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property (or properties chain) (R : {C1, . . . , Cn} → C), if the instances of the n
classes determine a single instance of the class C.

These above research efforts are a strong incentive to extend the existing formal
models of ontologies to include FD.

4.1 Formal model for FD

A FD is composed of the following elements:

1 a left part (LP ) representing a set of properties

2 a right part (RP ) representing a sole property

3 a root class (R).

This class is the domain class of the properties of the left part and the right part.
As in traditional FD in databases, this definition can also be expressed as an
implication: fd R : LP → RP .

4.2 Extended formal model of ontologies

Now, we have all ingredients to extend the initial ontology model presented
in Section 3 by including FD. This extension is done as follows: O :<
C,P,Sub, Applic,FD >, where FD is a binary relationship FD: C → (2P , P)
which associates to each class c of C, the set of the functional dependencies
(LP, RP ), where the class c is the root (fd c : LP → RP ).

Our model supports three types of FD: classic, key and basic.

1 Classic FD (fd R : LP → RP ) indicates that values of the left part
properties determine a unique value of the right part property.

Example 2: fd : Person : email → name. Each email value of a person
determines a unique name value. Formally this FD is written as:
({email}, name) ∈ FD (Person).

2 Key FD (fd R : LP →) indicates that values of the left part properties
determine a unique instance of the root class R. Explicitly, a Key FD does
not contain a right part, but implicitly its right part are the functional
properties, denoted by FP (R), of the root class.

Definition 1: (R : LP →) is a Key FD if and only if LP determines all the
functional properties FP (R) of the class R. The left parts of all key FD of a
class R, denoted CK(R), are called candidate keys of the class R.

Example 3: fdk : Person : personId → Each personId value of a person
determines a unique instance of theclass Person. Formally this FD is
written as: ({personId}, φ) ∈ FD (Person). If we suppose that all the
properties of the class Person are fonctional except the address property,
we can derive from fdk the following FDs: fd1 : Person:
personId → name, fd2 : Person : personId → email and
fd3 : Person : personId → memberOf .
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3 Basic FD (fd R : → RP ) indicates that each instance of R determines a
unique instance of the range class of RP . A basic FD does not contain a left
part, implicitly its left part is one of the candidate keys CK(R) of the class R.

Definition 2: fd R :→ RP is a Basic FD if and only if RP is a functional
object property or RP−1 is an inverse functional object property. This means
that RP determines all candidate keys of its range class CK(ρ(RP )), where
ρ(p) is the range class of the property p.

Example 4: fdb : Person : → memberOf
Each instance of the class Person determines a unique instance of the class
Organisation. Formally this FD is written as: (φ, memberOf) ∈ FD
(Person). Ifwesupposethat{personId} and {email} are candidate keys
of the class Person; and {OrganisationId} and {WebSite} are
candidate keys of the class Organisation, we can derive from fdb the
following FDs: fd1 : Person : personId → OrganisationId, fd2 : Person :
personId → WebSite, fd3 : Person : email → OrganisationId and fd4 :
Person : email → WebSite.

Example 5: The ontology presented in Example 1 can be extended as O <
C, P, Sub, Applic, FD > with:

FD(Organisation) = {({OrganisationId}, φ), ({WebSite}, φ)}
FD(Person) = {({personId}, φ), ({email}, φ), (φ, memberOf)}
FD(Student) = {({personId}, φ), ({email}, φ)}
FD(Employee) = {({personId}, φ), ({email}, φ)}
FD(Administrator) = {({personId}, φ), ({email}, φ), (φ, headOf)}
FD(Faculty) = {({personId}, φ), ({email}, φ), (φ, worksFor)}
FD(Professor) = {({personId}, φ), ({email}, φ)}
FD(GraduateStudent) = {({personId}, φ), ({email}, φ)}
FD(Course) = {({courseId}, φ)}.

4.3 Impact of functional dependencies on data reconciliation

Note that reconciliation of query results in a mediator architecture leads to four
possible cases:

• manual reconciliation based on the experience and deep knowledge of data
sources of designers which is practically impossible in the real life, where a
large number of sources or instances is involved.

• Only sources having common identifiers are taken into consideration to
process queries. In this case, mediator may propagate the query on sources
having the common identifiers. This solution compromises the quality of
returned results.

• Query results are merged, where some instances overlap which may cause
error.

• Overlapping instances may be discarded using probabilistic reconciliation.
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The presence of FD may help and facilitate the data reconciliation, especially when
no common identifier is used by various sources. To illustrate this point, let us
consider the following example.

Example 6: Let S1, S2 and S3 be three sources containing the same relation Person,
but with different properties as follows: S1.Person (personId(PK), name, address,
email), S2.Person (personId(PK), name, email) and S3.Person (email(PK), name,
address). On this table, the following FD are defined: fd1 : Person : personId →
name, fd2 : Person : personId → address, fd3 : Person : personId → email,
fd4 : Person : email → name, fd5 : Person : email → address.

Suppose that the mediator schema contains a Person relation with the
following properties: personId(PK), name, address. Suppose the following query:
list names and addresses of all persons. The mediator decomposes this query on
the three sources. Without FD, we cannot reconcile all source results, since the
source S3 has a different identifier for Person. By using fd4 : email → name and
fd5 : email → address, we notice that the attribute email is a common candidate
key between the three sources. Therefore, a reconciliation of the results coming
from these three sources becomes possible using email as a common identifier.

5 Our integration methodology

Contrary to most important systems which require the presence of all sources
to perform the integration process, our system MIRSOFT integrates the sources
based on their arrival and delete them when they quit. The mediator components
are incrementally enriched when considering a new source. In this section, we
first present a formal model of our integration system and the initialisation of its
components, secondly we show how a new source is integrated, and finally, we
detail the query processing aspect.

5.1 Formalisation of our data integration system

Formally, our integration system MIRSOFT is defined as a triple Med :
< G,S,M >, where:

1 G :< O,Sch > is the global schema which is composed of the mediator
ontology O :< C,P,Applic,Sub, FD > and the schema Sch of this ontology
classes. Sch : C → 2P associates to each mediator ontology class c of C the
properties describing the instances of the class c, which are valuated in at
least one integrated source.

2 S is the set of source schemas, where each source schema is defined as a
couple Si :< OLi, SchLi >. OLi :< CLi, PLi, ApplicLi, SubLi > is the
ontology of the source Si and SchLi : CLi → 2PLi is the schema of the OLi

ontology classes.

3 M is the mapping between the classes of mediator ontology O and the classes
of source ontologies. M : C → 2{CL1∪...∪CLn} associates to each mediator
ontology class c of C the classes of source ontologies in correspondence with
the class c.
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5.2 Initialisation of the data integration system components

Before starting the integration process, MIRSOFT components are initialised as
follows:

The mediator ontology O is imported by selecting classes and properties
from the shared ontology Os :< Cs, Ps, Applics, Subs, FDs >. This importation is
performed as follows:

1 Starting from user requirements, the mediator administrator selects relevant
classes and properties from the shared ontology

2 The selected classes and properties are added to the mediator ontology

3 If an imported class has a super class, all its super classes through the class
hierarchy are also imported

4 To keep the semantic of complex properties (object properties), the
importation of a complex property involves the importation of its range
classes

5 Likewise, to keep FD, the importation of a property appearing in a right part
of a FD implies the importation of all the properties of the left part of this
FD.

6 We check the consistency and we classify the taxonomy of the mediator
ontology using a reasoner such as Racer, Pellet, Fact++, etc.

7 New FD may be added in the shared ontology.

Initially, the schema Sch, the source schemas S and the mapping M are empty
(∀ c ∈ C Sch(c) = φ, S = φ and ∀ c ∈ C M(c) = φ). They are incrementally updated
when integrating a new source.

Example 7: Figure 7 presents an example of a shared ontology that contains six
classes (Person, Student, Employee, Administrator, Faculty and Professor) and nine
properties (personId, name, email, advisor, age, telephone, headOf, worksFor and
teacherOf).

Suppose that the mediator administrator select only three classes (Person,
Student and Employee) and four properties (personId, name, age and telephone).

After the importation the components of the mediator Med : < G,S,M >
contain:
The mediator ontology O is as shown in Figure 7.
The schema Sch, the source schemas S and the mapping M are empty.

5.3 Integration of a new source

In this section, we present the scenario that consists in integrating a new source.
We assume that

• each class of a local ontology references explicitly (or implicitly through its
parent class) its lowest subsumption class in the shared ontology
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• only properties that do not exist in the shared ontology may be defined on a
local ontology.

Figure 7 Example of mediator ontology importation

We distinguish two different integration scenarios associated with integration
algorithms:

• Fragmentation scenario where each local ontology of each source is a
fragment of the shared ontology

• Integrated ontology scenario, where each local ontology may be an extension
of the shared ontology (to satisfy the autonomy of a local source).
This extension is done by adding new classes and properties that does not
exist in the shared ontology.

5.3.1 Fragmentation scenario

This integration scenario assumes that the shared ontology is rich enough to cover
the needs of all local sources. Such an assumption has been used for defining the
Picsel2 project (Reynaud and Giraldo, 2003) for integrating web service and in
COIN (Bressan et al., 2000). Source autonomy in this scenario is materialised as
follows:

• each source selects relevant subset (fragment) of the shared ontology (classes
and properties)

• it designs its local database schema.

In this scenario, the integration of a new source Si :< Oi, Ii, Schi, Popi > with
Oi :< Ci, Pi, Applici, Subi, FDi > is performed using the following steps:
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1 We update the source schemas S by adding the schema of the new source
(S = S ∪ {Si :< OLi, SchLi >})

2 In the ontology OLi :< CLi, PLi, ApplicLi, SubLi >we keep only classes and
properties existing in the mediator ontology (OLi = O ∩ Oi)

3 We import the schemas of the OLi classes from Schi

(∀ c ∈ CLi SchLi(c) = Schi(c))

4 We update the schema of the mediator ontology classes Sch by adding the
properties valued in Si to the schema of their classes
(∀ c ∈ CLi Sch(c) = Sch(c) ∪ SchLi(c)). This definition means that instances
of a query result are expanded with null values to fit with the more precisely
defined instances. An alternative definition may also be used to define the
schema of a class where instances contain no null values by considering only
properties valued in all integrated sources (initially Sch(c) = SchL1(c) then
∀ i > 1 Sch(c) = Sch(c) ∩ SchLi(c)).

5 We update the mapping of the mediator classes by adding the mapping
between the classes of the mediator ontology O and the classes of the new
source ontology OLi (∀ c ∈ CLi M(c) = M(c) ∪ Si.c).

Example 8: Figure 8 shows the integration of a new source following the
fragmentation scenario. After this integration the components of the mediator
Med : < G,S,M > contain:

No change on the mediator ontology.

Sch(Person) = {personId},Sch(Student) = φ and Sch(Employee) =
{personId, telephone}using union operator, Sch(Employee) = {personId} using

intersection operator.

S = {S1}with OLiand SchLias shown in Figure 8.

M(Person) = {S1.P erson}, M(Student) = φ and M(Employee) =
{S1.Employee}.

Figure 8 Example of integrating a new source following the fragmentation scenario
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5.3.2 Integrated ontology scenario

In a number of cases including e-business applications for instance, more autonomy
is requested for various sources. This autonomy is characterised by the fact that
each local source may have its own concepts and properties. So, each data source
has its own ontology and the classes of each ontology are specific. But, all the
ontologies reference the shared ontology Os while respecting the two assumptions
of Section 5.3. Therefore, each source Si references the shared ontology Os as
follows: OntoSubi : Cs → 2Ci which associates to each class c ∈ Cs the set of
classes ci ∈ Ci that are subsumed directly by c. Contrary to the previous case,
each data source Si is defined as quintuple: Si :< Oi, Ii, Schi, Popi, OntoSubi >.
Ontology is generally not static. From time to time, it needs expansion to include
new concepts (Flahive et al., 2011). In this case, the shared ontology Os does not
fulfill the whole requirements of mediator users. Thus, the mediator ontology is
enriched by adding new concepts defined in sources.

In this scenario, the integration of a new source Si :< Oi, Ii, Schi, Popi,
OntoSubi > with Oi :< Ci, Pi, Applici, Subi, FDi > is performed as follows:

1 We update the mediator ontology O :< C,P,Applic,Sub, FD > by adding
the new classes and properties corresponding to the user requirements defined
in Oi that does not exist in the shared ontology. To extend the mediator
ontology, we use the same algorithm defined to the mediator ontology
importation. We denote C+

i and P+
i the sets of classes and properties which

will be added to the mediator ontology. So the component of O are extended
as follow:

C = C ∪ C+
i ,

P = P ∪ P+
i ,

Sub(c) = Sub(c) ∪ OntoSubi(c),
∀ c ∈ C+

i Applic(c) = Applici(c) and

∀ c ∈ C+
i FD(c) = FDi(c).

2 We update the source schemas S by adding the schema of the new source
(S = S ∪ {Si :< OLi, SchLi >}).

3 In the ontology OLi :< CLi, PLi, ApplicLi, SubLi > we keep only classes and
properties existing in the mediator ontology after extension (OLi = O ∩ Oi).

4 We import the schemas of the OLi classes from Schi

(∀ c ∈ CLi SchLi(c) = Schi(c)).

5 We update the schema of the mediator ontology classes Sch by adding the
schema of new classes and computing the schema of existing classes. If the
class c belongs to C+

i , Sch(c) is computed as Sch(c) = SchLi(c). If c belongs
to C before extension and it is a leaf class, its schema is explicitly defined as
Sch(c) = Sch(c) ∪ SchLi(c). Whereas, if c is a non-leaf class, its schema is
computed recursively using a post-order tree search by:
Sch(c) = ∪cj∈Sub(c)Sch(cj).



MIRSOFT: mediator for integrating and reconciling sources 95

6 We update the mapping of the mediator classes by adding the mapping of the
new classes and updating the mapping of the existing classes
(∀ c ∈ CLi M(c) = M(c) ∪ Si.c).

This scenario shows that it is possible to leave a large autonomy to each source
and compute in a fully automatic, deterministic and exact way the corresponding
integrated system.

We notice that when a data source uses an independent ontology without
referencing a shared ontology, the task of establishing the mapping between its
ontology and the mediator ontology may be done manually or semi automatically.
But the rest of the integration process will be performed automatically.

Example 9: Figure 9 shows the integration of a new source following the
integrated ontology scenario. After this integration the components of the mediator
Med : < G,S,M > contain:

The mediator ontology is extended by adding the classes GraduateStudent and

Course and their properties.

C = {Person, Student, Employee, GraduateStudent, Course},

P = {personId, name, age, telephone, takesCourse, courseId, courseName },

Sub(Student) = {GraduateStudent}.

Sch(Person) = {personId}, Sch(Student) = {personId, age},

Sch(GraduateStudent) = {personId, age, takesCourse}, Sch(Course) =
{courseId, courseName} and Sch(Employee) = φ.

S = {S1} with OLi and SchLi as shown in Figure 8.

M(Person) = {S1.P erson}, M(Student) = {S1.Student},

M(GraduateStudent) = {S1.GraduateStudent}, M(Course) = {S1.Course} and

M(Employee) = φ.

Figure 9 Example of integrating a new source following the integrated ontology scenario
(see online version for colours)
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5.4 Deleting a source from the mediator

There are many reasons to remove a source from the mediator. For example, the
source is physically deleted, inaccessible, unavailable for a long time, the content is
judged uninteresting, etc. To delete a source Si :< OLi, SchLi >, we propose the
following steps:

1 We update the mapping of the mediator ontology classes by deleting the
mapping to the classes of the ontology OLi (∀ c ∈ CLi M(c) = M(c) − Si.c).

2 We update eventually the schema of the mediator ontology classes by
removing the properties valued only in the source Si from the schema of the
corresponding classes
(Sch(c) = Sch(c) − {p ∈ Sch(c)|∀Sj ∈ S − {Si}p /∈ SchLj(c)}).

3 Finally we delete the source from S by deleting its schema SchLi and its
ontology OLi.

5.5 Query answering

We consider Union of Conjunctive Queries (UCQ). Each query is given using
datalog notation as: Qi(X):- pr1(X1), ..., prn(Xn), where the predicate pri is
defined on one of the following ontological concepts:

1 a class c(x) where x is a variable and c ∈ C

2 a property p(x1, x2) where x1 and x2 are variables and p ∈ P

3 ordinary atom a(x1, . . . , xm) with (x1, . . . , xm) is a variables vector and a is
a predicate.

X = (xn, . . . , xn) are distinguished variables whereas x /∈ X are existential
variables serving to express constraints on distinguished variables.

We denote PPi = {p ∈ P | p(x1, x2) ∈ Qi ∧ x2 ∈ X} the projected properties
asked by the query Qi,

Clsi = {c ∈ C | c(x) ∈ Qi} the classes appearing in the query Qi,
JCPi = {p ∈ P | p(x1, x2) ∈ Q ∧ p is an object property} the join clause

properties of the query Qi,
and CCPi = {p ∈ P | p(x1, x2) ∈ Q ∧ x2 /∈ X} the condition clause properties

of the query Qi.

Example 10: Let Q(x, y, z) be a query asking for the names of graduate
students, the names of courses that they take and the names of their
organisations. Q(x, y, z):- GraduateStudent (x1), takesCourse(x1, x2),
Course(x2), memberOf(x1, x3), Organisation(x3), name(x1, x), courseName(x2, y),
OrganisationName(x3, z).

To answer the query Qi, the mediator performs four steps:

• Finding the FD that hold in the query,

• Deriving the reconciliation key,
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• Query evaluation

• Results reconciliation and fusion.

5.5.1 Finding the FD that hold in the query

Two types of FD that hold in a query, may be distinguished:

1 direct FD (F d) already exist in the mediator ontology

2 generated FD obtained from key FD (F k) and from basic FD (F b).

The FD that hold in the set of query classes Clsi, denoted by FClsi , are computed
as: FClsi = F d ∪ F k ∪ F b.

• F d = fd1 ∪ fd2 ∪ · · · ∪ fdn are the existing classic FD on the classes of the
query Clsi where the right part is a projected property from PPi or a
property from the join clauses JCPi.

• F k is the set of FD generated from key FD. F k indicates that the left part of
a key FD (R : LP →) determines all the functional properties of its root class
FP (R).

F k = {LP → p | p ∈ PPi ∪ JCPi ∧ (δ(p) : LP →) ∈ FD(δ(p)) ∧ p ∈
FP (δ(p))} where δ(p) is the domain class of the property p.

• F b is the set of FD generated from basic FD having a property from JCPi

as right part. F b indicates that the functional property determines all the
candidate keys of its range class and the inverse of an inverse functional
property determine all the candidate keys of its domain class.

F b = {p → CK(ρ(p)) | p ∈ JCPi ∧ (δ(p) : → p) ∈ FD(δ(p))}.

The FD that hold in Qi, denoted by FQi
, are computed as:

FQi = {X → Y | X → Y ∈ F+
Clsi

}.

5.5.2 Deriving the reconciliation key

Before deriving the reconciliation key, we determine the relevant sources (SQi)
among sources of S. We keep in SQi only the sources in which one of the projected
properties PPi at least is valuated (SQi = {Sj ∈ S | ∃ p ∈ PPi ∃ c ∈ CLj p ∈
SchLj(c)}).

The reconciliation key is derived using the Algorithm 1 which has in input
the query Qi, the concerned sources SQi

, the mediator components (Med :<
G,S,M >) and the left parts (K) of the functional dependencies that hold in the
query FQi . The algorithm generates as output reconciliation key (KR). We start by
a reconciliation key KR containing all the elements of K. If two left parts in KR

determine the same set of properties of PPi ∪ JCPi, we keep the left part which
is valuated in all sources. We remove then the properties that can be functionally
determined by an other left part in KR.
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Example 11: Consider the query Q(x, y, z) of Example 10. We have the following
fds on the classes GraduateStudent, Course and Organisation:

• The key FD fd1 : GraduateStudent : personId →

• The key FD fd2 : GraduateStudent : email →

• The basic FD fd3 : GraduateStudent : → memberOf

• The key FD fd4 : Course : courseId →

• The key FD fd5 : Organisation : organisationId →.

The FD that hold in Q(x, y, z) are FQ(x,y,z) = {X → Y | X → Y ∈ F+
Clsi

} with:
FClsi = F d ∪ F k ∪ F b

F d = φ,

F k = {personId → email, personId → name, personId → memberOf,

email → personId, email → name, email → memberOf, courseId →
courseName, organisationId → organisationName} ,

F b = {memberOf → organisationId},

K = {personId, email, courseId, organisationId, memberOf}.

The Algorithm 1 removes organisationId and memberOf and derives one of the
two reconciliation keys {personId, courseId} or {email, courseId}.
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5.5.3 Query evaluation

Each query Qi will be written into the union of sub queries over the concerned
sources Q

Sj

i .
Qi = QS1

i ∪ ... ∪ QSr
i with Sj ∈ SQ where Q

Sj

i being a query over the ontology
OLj :< CLj , PLj , ApplicLj , SubLj > of the source Sj having the following form:

Q
Sj

i (X): pr1(X1), . . . , prn(Xn) where the predicate pri is:

• Sj .c(x) with x a variable and Sj .c(x) ∈ M(c) with c ∈ Clsi

• p(x1, x2) with x1 and x2 are variables and p ∈ (PPi ∪ JCPi ∪ CCPi) ∩ PLj

• a(x1, . . . , xm) with ∀ xi ∈ {x1, . . . , xm} p(xj , xi) ∈ Q
Sj

i .

The source Sj does not necessarily valuate all the properties of JCPi, therefore
the query Q

Sj

i may not be valid on this source (e.g., Qi(x): Person(x, y),
memberOf(x, y), Department(y). In a source Sj where the property memberOf is
not valued, the query Q

Sj

i (x, y): Person(x), Department(y) is no valid because it
returns a Cartesian product). So, we test the validity of the query, if it is not valid,
we can answer only a part of this query (e.g., Q

Sj

i (x):- Person(x) for the previous
query). To do so, the Algorithm 2 is used to set the projected properties PP

Sj

i ,
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the classes Cls
Sj

i , the join clause properties JCP
Sj

i and condition clause properties
CCP

Sj

i of the query Q
Sj

i . We start by Cls
Sj

i containing the class considered by
the user as the most important in the query (this class must be a domain class of
a property from the reconciliation key). Using the join clause properties valuated
in the concerned source, we add to Cls

Sj

i all the classes accessible from the started
class. Condition clause properties CCP

Sj

i (respectively projected properties PP
Sj

i )
are the properties of CCPi (respectively PPi) valuated in Sj and having the domain
classes in Cls

Sj

i .

Finally, the resulting query Q
Sj

i is sent to the source Sj to be evaluated.

5.5.4 Results reconciliation and fusion

To avoid redundancy and conflicting information, data integration systems
implement data reconciliation and fusion techniques to find the true values, but
most of these methods need to query all sources and are designed for offline
data aggregation that can take a long time. Instead of this approach, we propose
an incremental and online reconciliation and fusion method allowing to return
a primary answer as soon as possible. The system starts with returning answers
from the first concerned source and refreshes the answers as it asks more sources
by applying reconciliation and fusion techniques on the retrieved data. For each
returned answer, it shows the asked sources, and stops retrieving data at the request
of the user satisfied by the current answer.

The answer of the initial query Q, denoted by ans(Q), are ans(Q) = ans(Q1) ∪
... ∪ ans(Qn).

The set of instances satisfying the query Qi from all the concerned sources
SQi is ans(Qi) = ans(QS1

i ) ∪KR
... ∪KR

ans(QSr
i ) where ∪KR

is the union with
reconciling the instances using the reconciliation key KR.

The set of instances satisfying the query Q
Sj

i in the source Sj are tuples from
the Cartesian product of the Cls

Sj

i class populations that satisfy join clauses and
condition clauses of the query Q

Sj

i . ans(QSj

i ) = {t ∈ Popj(c1) × . . . × Popj(cm) |
t |= Q

Sj

i } with c1, ..., cm ∈ CLi.
KR is the reconciliation key of the query Qi means that KR functionally

determines all the projected properties of the query (∀ p ∈ PPi KR → p) in all
sources. In other word ∀ p ∈ PPi, ∀ i1 ∈ ans(QSv

i ), ∀ i2 ∈ ans(QSw
i ) i1[KR] =

i2[KR] ⇒ i1[p] = i2[p] where i1[KR] = i2[KR] ⇔ ∀ p ∈ KR i1[p] = i2[p]. i[KR] is the
vector of values that take the properties of KR in the instance i.

Let Reconcile be a binary predicate. Reconcile(i1, i2) means that the two
instances, denoted by i1 and i2, refer to the same world entity.

For two instances i1 and i2, a decision of reconciliation is taken
(Reconcile(i1, i2)) if both instances have the same values for all properties
composing the reconciliation key.

i1[KR] = i2[KR] ⇒ Reconcile(i1, i2).

Similarly, a decision of non-reconciliation is taken (¬Reconcile(i1, i2)) if there is a
property of the reconciliation key KR for which the values of the two instances are
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different.

i1[KR] �= i2[KR] ⇒ ¬Reconcile(i1, i2)

where i1[KR] �= i2[KR] ⇔ ∃ p ∈ KR i1[p] �= i2[p].
So, the reconciliation of the result coming from a source and the global result

can be performed by the Algorithm 3. This algorithm takes each instances of source
result and check if there is an instance in the global result that can be reconciled
with this source instance. If such an instance exists, the algorithm fuses the property
values of the two instances as a single instance in the global result, otherwise the
source instance is added to the global result as a new instance.

5.6 Implementing our methodology

To implement our methodology, several choices are feasible to persist the
component of the mediator (the global schema < O,Sch >, source schemas <
OL, SchL > and mappings M).

• First, using text files (XML, OWL, . . . ) which is a simple structure to
implement but the interrogation of ontologies became costly when the
number of concepts is very important.

• Second, using a database we can accelerate the interrogation but we need to
develop a support for ontology and a query interface or language to query
ontologies.

• Finally, using a 4-quarters ontology-bases database that offer a support of
ontologies, a query language to interrogate ontologies, an extendible
meta-schema allowing to add FD to ontologies and a data part that can be
used as a caching to accelerate the response time of queries; the only
drawback of this choice is that it needs a little more effort to implement it for
the first time. From advantages and drawbacks of these three choices, we opt
for the use of an OBDB.
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5.6.1 Overview of the implemented architecture

Different modules composing our integration system are described in Figure 10:

• an OBDB repository

• a user interface

• a query engine

• a result reconciliator.

Figure 10 Different modules composing our integration system

1 The OBDB repository: Our mediator uses the same structure as the used
sources participating in the integration process. It follows OntoDB model
(Dehainsala et al., 2007), where the meta-schema part (Section 2) is extended
by

i a mediator and source schema model,

ii a model of mapping between the mediator ontology and source
ontologies

iii a FD model.
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In the ontology part, we store the mediator ontology, source ontologies and
schemas, the mapping between the mediator ontology and source ontologies
and the FD between the classes and properties of the mediator ontology.
The data part can be used as a caching to optimise frequently queries (in this
work this issue is not addressed).

2 The user interface: It allows the user to express her or his query and displays
its results. After parsing the input query, the user interface send to the query
engine a conjunctive queries defined on a set of classes and properties of the
mediator ontology. The user interface is responsible also on displaying
answers from the first visited sources and refreshing the answers when the
answers of more sources coming from the reconciliator are available.

3 The query engine: for a given user query Qi, the query engine performs the
following tasks:

1 Finding the FD that hold in the query,

2 identifying then the concerned sources and deriving the reconciliation key

3 rewrites the query defined on mediator ontology in local queries defined
in sources ontologies, where each one is sent to relevant sources. It sends
then the reconciliation key to the reconciliator.

4 The result reconciliator: the role of this module is to reconcile the results
using the reconciliation key, to merge instances refering to the same real
world following the selected technic and to send progressively obtained results
to the user interface in an incremantal way.

5.6.2 Make persistency of FD and the data integration system components

The meta-schema of OntoDB contains two main tables Entity and Attribute
encoding the meta-model level. Entity describes ontological concepts like class,
property or data type. Attribute describes attributes related to each ontological
concept (name, description, comment . . . ). An extension of the meta-schema of
OntoDB is proposed to support the FD, the mapping and the schemas of the
classes of mediator, source ontologies.

Precisely, three meta-models describing the FD concepts, mapping concepts
and class schemas concepts are first proposed (Figure 11). Secondly the three

Figure 11 Extension of OntoDB meta-schema
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meta-models are instanciated in the meta-schema of OntoDB using OntoQL–an
ontology query language proposed to querying OntoDB (Jean et al., 2006a). The
following statements encode these instantiations.

6 Validation of our architecture

To validate the feasibility and efficiency of our system, we conduct experiments
using dataset of Lehigh University Benchmark (LUBM) and its 14 queries1.
The used ontology of LUBM has 45 classes and 32 properties (including 25
object properties, and 7 data type properties). Based on this ontology a set of
ontology-based databases is generated. All experiments have been carried out on
an Intel Pentium IV machine, with 3,2 GHz processor clock frequency, equipped
with 1 Gb of RAM, under the operating system Windows XP professional.

Two main experiments are conducted to evaluate the scalability of
our system based on the number of sources and instances. Figure 12
shows the results of executing 14 queries in (millisecond) by varying the
number of sources participating in the integration process from 10 to
50 (following a fragmentation scenario). Generated sources have the same
schema (22 relations). The biggest relation has 2000 tuples. The obtained
results show that our system executes efficiently queries involving a small
set of classes (less joins) (e.g., Q3(x): Publication(x), publicationAuthor(x,
http://www.Department0.University0.edu/AssistantProfessor0)), but, for queries
involving large number of classes (e.g., Q9(x): Student(x), Faculty(y), Course(z),
advisor(x, y), takesCourse(x, z), takesCourse(y, z)), the response time is quite
high, but still reasonable. The execution time comprises the time needed for
mediator processing time (including finding the functional dependencies that
hold in the query, deriving the reconciliation key and reconciliation of results),

Figure 12 (a) Query response time and (b) reconciliation time vs. number of sources
(see online version for colours)
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and local query evaluation. Figure 12(b) points out that the time needed for
mediator processing is negligible w.r.t. the overall execution time, and that the
major time consuming process is the evaluation of the query over the sources.
However, the reconciliation time of queries (Q6(x):- Student(x) and Q14(x):
UndergraduateStudent(x)) increases progressively because the number of instances
of these queries results is very important.

In the same direction of the previous experiment, we conduct another one by
varying the number of instances of 10 used sources. Figure 13 shows the obtained
results. Also, we notice that the high costly queries are Q7 and Q9 considered
as low costly queries in the first experiments, but when the number of instances
increases, join operation becomes costly where these queries (Q7 and Q9) become
costly. This experiment shows that the query response time depends heavily on the
sources and their ability of processing queries and not on the mediator.

Figure 13 (a) Query response time and (b) reconciliation time vs. number of instances
(see online version for colours)

7 Conclusion

Actually, we assist to an exposition of data and data sources over the web.
As a result, integration solutions have become an important phase for many
applications in various domains: engineering, medicine, traveling, biology, etc.
In parallel to this trend, ontologies have been largely developed in these domains.
Consequently, a large amount of ontological instances have been generated.
To facilitate their management, commerical and academic database management
systems offer solutions to store, query and manage these data. These efforts gave
rise to a new type of databases called, ontology-based databases. They store
in the same repository the data and the ontology describing their sense. As a
consequence, these databases are potential a candidate for data integration. The
presence of the ontologies within these database sources may contribute in resolving
the heterogeneity. Note that most of the actual integration systems follow two
extreme scenarios for data reconciliation:

1 Some suppose that the manipulated sources have similar keys to ensure data
integration. This usually violates the autonomy characteristic of sources.

2 Others use statistical techniques to reconcile data.
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In sensitive domains, where exact solutions are required from data integration
systems such techniques cannot be used. In this paper, we proposed a complete
ontology-based integration methodology, called, MIRSOFT, for ontology-based
sources. It deals with heterogeneity by the means of ontologies enriched by
functional dependencies defined on each ontological class. These functional
dependencies allows the relaxation of the two extreme scenarios for the data
reconciliation. Finally, our approach is evaluated using the dataset of the Lehigh
University Benchmark. The obtained results show its efficiency and scalability.

We are currently running more experiments using a large scale dataset to
evaluate the real efficiency of MIRSOFT. An important issue that should be
considered is the proposition of quality metrics for integration systems taking into
account the use of reconciliation methods.
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Köpcke, H. and Rahm, E. (2010) ‘Frameworks for entity matching: a comparison’, Data &
Knowledge Engineering, Vol. 69, No. 2, pp.197–210.

Lawrence, R. and Barker, K. (2001) ‘Integrating relational database schemas using a
standardized dictionary’, Proceedings of the ACM Symposium on Applied Computing
(SAC), March, pp.225–230.

Leone, N., Greco, G., Ianni, G., Lio, V., Terracina, G., Eiter, T., Faber, W., Fink, M.,
Gottlob, G., Rosati, R., Lembo, D., Lenzerini, M., Ruzzi, M., Kalka, E., Nowicki, B.
and Staniszkis, W. (2005) ‘The infomix system for advanced integration of incomplete
and inconsistent data’, Proceedings of the ACM SIGMOD International Conference
on Management of Data, Baltimore, Maryland, USA, pp.915–917.

Levy, A.Y., Rajaraman, A. and Ordille, J.J. (1996) ‘The world wide web as a collection of
views: Query processing in the information manifold’, Proceedings of the International
Workshop on Materialized Views: Techniques and Applications (VIEW’1996), June,
pp.43–55.

Liu, X., Dong, X.L., Ooi, B.C. and Srivastava,‘D. (2011) ‘Online data fusion’, Proceedings
of the International Conference on Very Large Databases, Vol. 4, No. 11, pp.932–943.

Lu, J., Ma, L., Zhang, L., Brunner, J-S., Wang, C., Pan, Y. and Yu, Y. (2007) ‘Sor: a
practical system for ontology storage, reasoning and search’, Proceedings of the
International Conference on Very Large Databases, Vienna, Austria, pp.1402–1405.

Mena, E., Kashyap, V., Sheth, A.P. and Illarramendi, A. (1996a) ‘Observer: an approach
for query processing in global information systems based on interoperation across
pre-existing ontologies’, CoopIS, pp.14–25.



MIRSOFT: mediator for integrating and reconciling sources 109

Mena, E., Vipul Kashyap, V., Illarramendi, A. and Sheth, A.P. (1996b) ‘Managing
multiple information sources through ontologies: relationship between vocabulary
heterogeneity and loss of information’, Proceedings of Third Workshop on Knowledge
Representation Meets Databases (KRDB), Budapest, Hungary.

Motro, A., Berlin, J. and Anokhin, P. (2004) ‘Multiplex, fusionplex and autoplex: three
generations of information integration’, Sigmod Record, Vol. 33, pp.51–57.

Naumann, F., Bilke, A., Bleiholder, J. and Weis, M. (2006) ‘Data fusion in three steps:
resolving inconsistencies at schema-, tuple-, and value-level’, Bulletin of The Technical
Committee On Data Engineering, pp.21–31.

Nguyen, H-Q., Taniar, D., Rahayu, J.W. and Nguyen, K. (2011) ‘Double-layered schema
integration of heterogeneous xml sources’, Journal of Systems and Software, Vol. 84,
No. 1, pp.63–76.

Nodine, M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M. and Unruh, A. (2000) ‘Active
information gathering in infosleuth’, International Journal of Cooperative Information
Systems, Vol. 9, Nos.1–2, pp.3–28.

Pierra, G. (2003) ‘Context-explication in conceptual ontologies: the plib approach’,
Proceedings of the 10th ISPE International Conference on Concurrent Engineering
(ISPE CE 2003), Madeira, Portugal, pp.243–253.

Rahm, E. and Bernstein, P. (2001) ‘A survey of approaches to automatic schema matching’,
VLDB Journal, Vol. 10, pp.334–350.

Raman, V. and Hellerstein, J.M. (2001) ‘Potter’s wheel: an interactive data cleaning system’,
Proceedings of the International Conference on Very Large Databases, Roma, Italy,
pp.381–390.

Reynaud, C. and Giraldo, G. (2003) ‘An application of the mediator approach to services
over the web’, Special track "Data Integration in Engineering, Concurrent Engineering
(CE’2003), July, pp.209–216.

Reynaud, C. and Safar, B. (2009) ‘Construction automatique d’adaptateurs guide par
une ontologie pour l’integration de sources et de donnes xml’, Technique et Science
Informatiques (TSI), Vol. 28, pp.199–228.

Romero, O. and Abelló A. (2010) ‘A framework for multidimensional design of data
warehouses from ontologies’, Data Knowledge Engineering (DKE), Vol. 69, No. 11,
pp.1138–1157.

Romero, O., Calvanese, D., Abello, A. and Rodriguez-Muro, M. (2009) ‘Discovering
functional dependencies for multidimensional design’, ACM 12th International
Workshop on Data Warehousing and OLAP (DOLAP), pp.1–8.

Roth, M.T., Arya, M., Haas, L., Carey, M., Cody, W., agin, R., Schwarz, P., Thomas, J.
and Wimmers, E. (1996) ‘The garlic project’, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Montreal, Canada, p.557.

Saïs, F., Pernelle, N. and Rousset, M.C. (2009) ‘Combining a logical and a numerical
method for data reconciliation’, Journal of Data Semantics (JoDS), Vol. 12, pp.66–94.

Sarma, A.D., Dong, X.L. and Halevy, A.Y. (2011) ‘Data integration with dependent
sources’, Proceedings of 14th International Conference on Extending Database
Technology (EDBT), Uppsala, Sweden, pp.401–412.

Singh, M.P., Cannata, P.E., Huhns, M.N., Jacobs, N., Ksiezyk, T., Ong, K., Sheth, A.P.,
Tomlinson, C. and Woelk, D. (1997) ‘The carnot heterogeneous database project:
implemented applications’, Distributed and Parallel Databases Journal, Vol. 5, April,
pp.207–225.

Toman, D. and Weddell, G.E. (2008) ‘On keys and functional dependencies as first-class
citizens in description logics’, J. of Automated Reasoning, Vol. 40, Nos. 2,3,
pp.117–132.



110 A. Bakhtouchi et al.

Ullman, J.D. (1997) ‘Information integration using logical views’, Proceedings of the
International Conference on Database Theory (ICDT), Delphi, Greece, pp.19–40.

Visser, P.R.S., Beer, M., Bench-Capon, T., Diaz, B.M. and Shave, M.J.R. (1999) ‘Resolving
ontological heterogeneity in the kraft project’, Proceedings of 10th International
Conference on Database and Expert Systems Applications (DEXA), Florence, Italy,
pp.668–677.

Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.
and Hübner, S. (2001) ‘Ontology-based integration of information – a survey of
existing approaches’, Proceedings of the International Workshop on Ontologies and
Information Sharing, August, pp.108–117.

Wiederhold, G. (1992) ‘Mediators in the architecture of future information systems’, IEEE
Computer, Vol. 25, No. 3, pp.38–49.

Xuan, D.N., Bellatreche, L. and Pierra, G. (2006) ‘A versioning management model for
ontology-based data warehouses’, Proceedings of the International Conference on
Data Warehousing and Knowledge Discovery (DaWaK), Krakow, Poland, pp.195–206.

Yin, X., Han, J. and Yu, P.S. (2008) ‘Truth discovery with multiple conflicting information
providers on the web’, IEEE Transactions on Knowledge and Data Engineering,
Vol. 20, No. 6, June, pp.796–808.

Zhao, H. and Ram, S. (2008) ‘Entity matching across heterogeneous data sources:
an approach based on constrained cascade generalization’, Data & Knowledge
Engineering, Vol. 66, No. 3, pp.368–381.

Note

1http://swat.cse.lehigh.edu/projects/lubm/




