
Ontological Concepts Dependencies Driven

Methodology to Design Ontology-Based

Databases

Chedlia Chakroun1, Ladjel Bellatreche1, and Yamine Ait-Ameur1

LISI/ENSMA - Poitiers University
Futuroscope, France

(chakrouc, bellatreche, yamine)@ensma.fr

Abstract. Nowadays, a large number of applications are producing and
manipulating ontological data. Managing a huge amount of these data
needs the development of scalable solutions. Ontology-based database
(OBDB) is one of these solutions. An OBDB stores in the same reposi-
tory ontological data and the ontology describing their meanings. Several
architectures supporting these OBDB were proposed by academicians
and industrial editors of DBMS. Unfortunately, there is no available
methodology for designing such OBDB. To overcome this limitation, this
paper proposes to scale up the traditional database design approaches
to OBDB. Our approach covers both conceptual and logical modeling
phases. It assumes the availability of a domain ontology composed by
canonical and non canonical concepts. Dependencies between properties
and classes are captured and exploited to define a two levels normal-
ized logical model without redundancy (canonical): at class level and at
class properties level. A prototype implementing our methodology on the
OBDB OntoDB is outlined.

1 Introduction

Roughly speaking, ontologies [16] have been introduced in information systems
as knowledge models that provide with definitions and descriptions of the con-
cepts of a target application domain [21, 24, 28, 26]. Nowadays, we assist to a
spectacular explosion of ontological data manipulated and produced by a large
number of applications in various domains such as scientific computation, Web
service, engineering, social networks, etc. This is mainly due to three factors:
(i) the development of domain ontologies, (ii) the availability of commercial and
open source software tools for building, editing and deploying ontologies and (iii)
the existence of ontology model formalisms (OWL, PLIB, etc.) which have con-
siderably contributed to the emergence of ontology based applications exploiting
ontological data. Faced to this situation, managing, storing, querying these data
and reasoning on them require the development of software tools capable of han-
dling these activities. Moreover, due to the wide usage of such data, the need
of a systematic and consistent development process appeared, taking into ac-
count the central objectives of persistence, scalability and high performance of

the applications. Persistence of ontological data (also called ontology store [11])
was advocated by academic and industrial researchers. As a consequence, a new
type of databases, named ontology-based databases (OBDB) dedicated to store,
manage and exploit ontological data emerged. An OBDB is a database model
that allows both ontologies and their instances to be stored (and queried) in
a single and homogeneous repository [13, 20]. Since an OBDB is a database, it
should be designed according to the classical design process dedicated to the
database development, identified in the ANSI/X3/SPARC architecture. At the
origin, this architecture does not recommend the use of ontologies as a domain

Fig. 1. Big picture on designing OBDBs

knowledge model, but it refers to the notion of dictionary or catalog. In [14],
an extension of this architecture giving ontologies their right place during the
life cycle of database scheme process design has been proposed. But, the real-
ity is different. Indeed, when exploring the database literature, we figure out
that most of the research efforts were concentrated on the physical design phase,
where various storage models for ontological data were given. Rdfsuite [3], Jena
[9], Ontodb [13], Sesame [7], Owlgres [27], SOR [20], Oracle [12], etc. are exam-
ples of such systems. Note that each system has its own storage model. They are
built according to three main architectures. In the first one, the ontology and
its associated data are stored in a RDF triples structure: (subject, predicate, ob-
ject). In this architecture, there is no identified separation between ontology and
data [9]. In the second architecture, ontology and its ontological data are stored
independently into two different schemes. Sesame is an example of such architec-
ture. The storage model used for the ontology is based on RDFS, whereas data
may be represented using different storage models: (1) a unique table of triples
containing extensions of all concepts of the ontology. (2) a unary distinct table

for each class of the ontology and a binary table for each property of the ontol-
ogy. Observe that the management of ontology and data parts is different. This
storage model scales quite well, especially, when queries refer to a small number
of properties [1]. These two architectures share a common property: they both
hardly encode the ontology model (RDF or RDFS). Unlike logical models in the
ANSI/X3/SPARC architecture, their physical structure is static and does not
evolve according to the stored ontological data model. The third architecture ex-
tends the second one, by adding a new part, called, the meta schema part. As a
result, it contains three parts: meta schema, ontology and data. The presence of
the meta schema offers flexibility of the ontology part modeling, since it is repre-
sented as an instance of the meta schema. Moreover, flexibility is also offered in
the design of the ontology logical model. This approach offers a generic access to
both ontology and data. Note that different storage models may be used for the
data part. For instance, OntoDB [13] uses a horizontal storage model, where a
single table is associated to each class of the ontology with one column per each
used property. This architecture is more efficient than the previous ones for cer-
tain types of queries [13]. To facilitate the exploitation of these OBDB systems,
different query languages were proposed (OntoQL [17], RQL [19], SPARQL [23],
etc.). Figure 1 depicts the three addressed OBDB architectures.

Fig. 2. Intra table redundancy

The fact that OBDB become mature and since they have been used in several
projects, the proposition of a concrete design methodology, like in traditional
databases, becomes a crucial issue for companies. The development of such a
methodology needs to follow the main steps of traditional database design ap-
proaches: conceptual, logical and physical. Actually, if one wants to design an
OBDB from a given domain ontology, she/he should perform the following tasks

[27]: (i) choose her/his favorite architecture, (ii) identify the relevant storage
models, (iii) establish mapping between ontology concepts and the target enti-
ties of the chosen storage model. This design procedure has several drawbacks:
(a) redundancy intra and inter relations (Figure 2), (b) designers need to deeply
understand the physical storage models and architectures to develop their own
applications, (c) lack for data access transparency, since users have to know the
physical storage model to query the final OBDB.

Recently, some research studies recommending the use of ontologies to de-
sign traditional databases and data warehouses raised up in the literature. The
similarities between ontologies and conceptual models [26] and the reasoning
capabilities offered by ontologies have motivated such studies. Indeed, [28] used
linguistic ontologies to conceptually design traditional databases while [21, 24]
use ontology to design multidimensional data warehouses. The reader may ob-
serve that in the last decade, data warehouses faced the same phenomena as
for OBDB, where most of the studies focused on the physical design [10]. So,
although conceptual design and requirement analysis are two of the key steps
within the database and data warehouse design processes [15], they were par-
tially neglected in the first era of OBDB.

In the classical databases, the redundancy is usually resolved by normaliz-
ing the logical model obtained from conceptual model. This normalization is
performed thanks to the exploitation of the available functional dependencies
(FD) between properties. Recently, a couple of studies enriched ontology mod-
els by FD defined on properties and classes [5, 8, 25]. The similarities between
conceptual models and ontologies and their support of functional dependencies
motivate us to develop a complete methodology for designing OBDB. Keeping
in mind the ANSI/X3/SPARC model, this paper gives answers to the lack of
design methodology of OBDB, including conceptual, logical, physical phases and
offering a transparent access to data via the classes of the domain ontology.

This paper is divided into five sections: section 2 describes the basic concepts
related to dependencies between ontological concepts and a formal model of
ontology. The main steps of our methodology are presented in section 3. Section
4 validates our methodology using the Lehigh University Benchmark ontology.
Finally, section 5 concludes the paper by summarizing the main results and
suggesting future work.

2 Basic Concepts and Formalization

In this section, we present a taxonomy of ontologies, dependencies between the
ontological concepts and a formal model of ontologies. Our classification is driven
by information systems modeling.

2.1 Taxonomy of ontologies

In [18], a taxonomy of ontologies, namely the onion model, has been proposed.
It considers the concept with a set of properties as the basic notion for ontology

design rather than the term as in semantic web based approaches. The three lay-
ers of the onion model are: (1) Conceptual Canonical Ontologies (CCO) can be
considered as shared conceptual models. They contain the core classes concepts.
(2) Non Conceptual Canonical Ontologies (NCCO) extend CCO by allowing the
designers to introduce derived classes and concepts. NCCO give the same func-
tionalities offered by views in databases. Therefore, a non canonical concept can
be seen as a virtual concept defined from canonical concepts. (3) Linguistic On-
tologies (LOs) are the upper extension. They may be used to document existing
databases or to improve the database-user dialog or to support multi-lingual
applications. This taxonomy helps designers to identify canonical and no canon-
ical classes of a given domain ontology. The following example shows how this
taxonomy is set up for this purpose.

Example 1. Figure 3 represents an extended fragment of the Lehigh Univer-
sity Benchmark (LUB)1, where the concept University defined as the union
of two canonical concepts: PublicUniversity (PU) and PrivateUniversity (PRU)
(University ≡ PU ∪ PRU) is added . Based on the definition of the ontology
concepts, canonical (CC) and non canonical classes (NCC) are identified as fol-
lows:
NCCLUB = {University, Student Employee,MasterCourse}, CCLUB = CLUB−
NCCLUB , where CLUB represents all classes of LUB. Starting from the fact that
non canonical concepts are directly or indirectly defined from canonical ones, a
dependency relation between canonical and non canonical concepts may exist.
For instance, if we consider the previous definition of the University concept, a
dependency relation is defined as: (PU,PRU) 7−→ University. Note that other
types of dependencies between ontological concepts detailed in the next section
have been studied in the literature.

Fig. 3. Extended LUB Ontology

1 the ontology and its class definitions described in OWL are available:
http://www.lehigh.edu/ zhp2/2004/0401/univ-bench.owl

2.2 Dependencies between Ontological Concepts

In this section, we show the interest of capturing dependencies between onto-
logical concepts on designing OBDB. Our analysis on dependencies identified in
the ontology context [5, 8, 25] gives rise to the following classification: instance
driven dependencies (IDD) and static dependencies (SD). IDD is quite similar
to functional dependencies (FD) in traditional databases [2]. IDD may concern
either properties [8] or classes [25] of a given ontology. Calbimonte et al. [8]
proposed a formal framework for handling and supporting FD constructors for
any type of OWL ontology. They distinguished three categories of FDs: classical,
keys and explicit dependencies. Classical and keys correspond to the traditional
FD, whereas the last one is a particular case of tuple generating dependency. In
[5], we supposed the existence of FD involving simple properties of each ontol-
ogy class. For instance, if we consider a class Student (Figure 3) with a set of
properties id, age and name, a FD may be defined as: (id → name, age).

In [25], the authors proposed an algorithm to discover FD among concepts
of a domain ontology that exploits the inference capabilities of DL-Lite. A FD
among two concepts C1 and C2 (C1 → C2) exists if each instance of C1 deter-
mines one and only one instance of C2. The FD between concepts is an extension
of classical FD between properties defined in databases. The identification of FD
is performed by the means of functional roles between the concerned concepts.
For instance, if we consider a role MasterDegreeFrom with a domain and range
Person and University, the following FD is defined: Person → University.

SD are defined between classes based on their definitions (see Example 1).
A SD between two concepts Ci and Cj (denoted by Ci 7−→ Cj) exists if the
definition of Ci is available then Cj can be derived. The OWL2 constructors
that we consider in this paper are: hasValue, unionOf, intersectionOf, allVal-
uesfrom. For example, hasValue allows specifying classes based on the existence
of particular property values. If we consider a class University having status as
one of its properties, a class PublicUniversity may be defined as an University

with a public status (PublicUniversity ≡ ∃status. {Public} ;Domain(status) =
University). Based on this definition, the following dependency University 7−→
PublicUniversity is obtained. Figure 4 summarizes the different dependencies
identified in the ontology context.

2.3 A Formal Model for Ontologies

Formally, an ontology O may be defined as follows: < C,P, Applic, Sub, FDP,CD >,
where:

– C is the set of the classes used to describe the concepts of a given domain.
– P is the set of all properties used to describe the instances of C.
– Applic is a function defined as Applic : C → 2P . It associates to each class

of O, the properties that are applicable for each instance of this class. Note
that for each ci ∈ C, only a subset of Applic(ci) may be valued in a particular
database, for describing ci instances.

2 http://www.w3.org/TR/owl-guide/

– Sub is the subsumption relationship defined as Sub : C → 2C , where for
a class ci ∈ O, it associates its direct subsumed classes3. Sub defines a
partial order over C. In our model, two kinds of subsumption relationships
are introduced: Sub = OOSub ∪ OntoSub, where:
• OOSub is the usual object oriented subsumption of single inheritance

relationship. Through OOSub, the whole set of applicable properties are
inherited.

• OntoSub is a subsumption relationship without inheritance. Through
OntoSub (also called case-of in the PLIB ontology model [22], or defined
as partial inheritance), whole or part of the whole applicable properties
of a subsuming class may be explicitly imported by a subsumed class.

– FDP : a mapping from the powerset of P onto P (2P → P) representing
IDD defined on the applicable properties of P of a class in O.

– CD : a mapping from the powerset of C onto C (2C → C) representing either
static or instance-driven dependencies

Fig. 4. Dependencies Classification

3 Our proposal

Now, all ingredients to propose a complete methodology to design OBDB from
an OWL domain ontology O respecting the above formal model are available.

3.1 Different Phases of our Methodology

The proposed methodology is inspired from the database design process. It starts
from a conceptual model to provide logical and physical models. According to
figure 5, our approach is a five steps method. It starts from the extraction of a
local ontology (step 1) and then it identifies canonical and non canonical classes

3 c1 subsumes c2 iff ∀x instance of c2, x is instance of c1.

Fig. 5. Steps of our approach.

by exploiting class dependencies (step 2). As a further step, it defines in parallel
a placement of the NCC (step 4) and a logical model for each CC (step 3).
Once these steps are performed, it becomes possible to generate a logical model
for the OBDB as shown in figure 7 where:(i) a relational view is associated to
each CC, (ii) a class view (a DL expression) on the CC is associated to each non
canonical class.
Step 1. During this phase, the designer extracts a fragment of the domain
ontology O (that we call local ontology(LO)) according to her/his requirements.
The LO plays the role of conceptual model (CM). Three extraction scenarios
may occur:

1. LO = O means that O covers all the designer requirements.

2. LO ⊂ O means that O is rich enough to cover the user requirements. The
construction of LO is performed using the operator OntoSub (see section
2.3). This relationship is an articulation operator allowing to connect LO to
a O while offering a large independence of LO. Through this relationship, a
local class may import or map all or part of the properties that are defined
in the referenced class(es).

3. LO ⊇ O means that the ontology O does not fulfill the whole designer
requirements. In this case, designer extracts from the O a fragment corre-
sponding to her/his requirements and locally enriches it by adding new con-
cepts/properties. Note that dependencies may exist between the new added
and imported properties and concepts.

Step 2. Once LO is extracted, an analysis needs to identify canonical and non
canonical classes is performed. Let CLO, CCLO and NCCLO be, respectively,
the set of all classes, canonical classes and non canonical classes of LO. De-
pendencies between different ontology classes may be represented by a directed
graph G : (CLO, A), called dependency graph, where the nodes are CLO, and an
edge ak ∈ A between a pair of classes ci and cj (∈ CLO) exists, if a dependency
between ci and cj has been established (Figure 6). This graph is used to deter-
mine the minimum closure-like classes that will represent the canonical classes.
Our graph dependency is quite similar to functional dependency graph in the
classical databases to generate minimum closure and normalize tables [4]. The
sole difference is that we have classes as nodes whereas; in functional depen-
dency graph we have attributes (properties) as nodes. Based on this similarity,
we adapt [4]’s algorithm to generate our CCLO (see Algorithm 1). Note that this
algorithm may generate different sets of canonical classes (when several candi-
date classes may occur) as shown in Figure 6. In this case, the designer may
choose her/his relevant set.

Fig. 6. Example of Class identification

Step 3. Based on the obtained CCLO and NCCLO, two scenarios may be
distinguished:
1- NCCLO = φ: Only CCLO exists. Then, the FD defined on their properties
are used for normalization and for the definition of their primary keys (for more
details see [5]).
2- CCLO 6= φ and NCCLO 6= φ). For each class in CCLO, the same mecha-
nism described in Step3.1 above is applied. Then, for each class in NCCLO,
a relational view is computed. For example, let nccj ∈ NCCLO be a non
canonical class defined as the union of two canonical classes cc1(p1, p2, p3) and
cc2(p1, p2, p4), a view corresponding to nccj is defined as follows:

input : G : (CLO, A): a dependency graph G with a set of classes CLO of LO
and a set of edges A ;
Domain(G): set of nodes (classes) not having a predecessor node
(class);
Range(G): set of nodes (classes) having at least a predecessor node
(class) ;
SMin: set of classes representing one of the solutions of CCLO ;
SSMin: set of SMin representing all solutions of CCLO ;
Ai : (LC, RC): an edge Ai ∈ A has a source LC (set of classes) and
a destination RC (a class) ;
NKnown: set of classes deduced from the knowledge of SMin ;
NUnknown: set of not deductible classes from the knowledge of SMin ;

output : SSMin

Init ;
Domain(G) ← LCA ∪

{

CLO|CLO /∈ {RCA ∪ LCA}
}

;
Range(G) ← RCA;
SMin ←

{

CLO|CLO
i ∈ Domain(G)&CLO

i /∈ Range(G)
}

;
NKnown ← SMin;
SSMin ← Φ;

Canonical class generation ;
if SMin = Domain(G) then

SSMin ← SSMin ∪ SMin

G ← Φ
else

SSMin ← Canonicity(G, NKnown, SMin, SSMin)

end

Function Canonicity(G, NKnown, SMin, SSMin);
while LCAi ⊂ NKnown do

if RCAi /∈ NKnown then

NKnown ← NKnown ∪ {RCAi};

end

G ← G − Ai;

end

if G = Φ then

SSMin ← SSMin ∪ SMin;

else

NUnknown ←
{

CLO
i |((CLO

i ∈ Domain(G))&(CLO
i /∈ NKnown))

}

while NUnknown 6= Φ do

foreach CLO
i ∈ NKnown do

NKnown ← NKnown ∪
{

CLO
i

}

;

SMin ← SMin ∪
{

CLO
i

}

;

NUnknown ← NUnknown −
{

CLO
i

}

;
SSMin ← Canonicity(G, NKnown, SMin, SSMin);
SMin ← SMin −

{

CLO
i

}

;

NKnown ← NKnown −
{

CLO
i

}

;

end

end

end

Algorithm 1: Canonicity Algorithm

((Select p1, p2 From cc1) Union (Select p1, p2 From cc2)).
One of the advantages of using views to represent non canonical classes is to en-
sure the transparency to access data. A designer may query an OBDB via these
classes without worrying about the physical implementation of those classes.
Figure 7 summarizes these steps.
Step 4. The ontology classes may be defined without specifying the subsumption
relationship. Thus, we propose to store all ontology classes regardless of their
types (CC and NCC) in the OBDB taking into account the subsumption hier-
archy of classes. The complete subsumption relationship for the ontology classes
is produced by a reasoner such as Racer, Pellet [6], etc. For example, the class
PublicUniversity (PublicUniversity ≡ ∃status. {Public}), will be a subclass of
the University class.
Step 5. Once the normalized logical model obtained and NCC placed in the
subsumption relationship, the database administrator may choose any existing
database architecture offering the storage of ontology and ontological data.

Fig. 7. Generation of normalized logical model.

4 Validation of our Design Methodology.

In this section, we propose a validation of our design approach. We use OntoDB
[13] as storage model architecture for our physical design phase (Step 5). On-
toDB is chosen for three main reasons: (i) it belongs to the third architecture
(Section 1) that allows us to enrich the meta schema by dependencies defined on
classes and properties. (ii) OntoDB outperforms most of existing systems belong-
ing to architecture I and II [13]. (iii) A prototype is available, it has been used in
several industrial projects (Peugeot and Renault French Car companies, French
Institute of Petroleum, etc.) and it is associated with a query language called
OntoQL [17] defined as an extension of SQL for exploiting both data and their
semantics stored in an OBDB. OntoQL has the capability to express queries
on data independently of their schemes and allows users to query ontologies,

instances and both ontologies and data. Our two algorithms for determinating
canonical and non canonical classes and for normalizing each class using func-
tional dependencies defined on its properties were encoded within Java. Note
that these algorithms are based on graph dependencies [4].

Fig. 8. (a) MMPCD of meta model, (b) Extended OntoDB by PFDs and CDs

4.1 Validation Process Main Steps

To validate our proposal, we follow the different steps of our proposal. Before we
start the application of our approach, we show how dependencies can be made
persistent in the OntoDB OBDB of type III architecture. The meta schema
of OntoDB contains two main tables Entity and Attribute encoding the meta-
meta model level of the Meta-Object Facility (MOF) architecture. To conduct
our validation, the support of the ontological concept dependencies in the ini-
tial kernel of OntoDB is required. Faced to this requirement, we extended the
meta schema of Ontodb by incorporating dependencies defined on properties
and classes. First, we develop a meta model describing both dependencies. Fig-
ure 8 shows the UML model of this meta model called (MMPCD). Once this
model is encoded, the obtained extended meta schema gives us the possibility
to store (in a persistent form) ontologies with their dependencies (Figure 8 b).
The following OntoQL statements instantiate the two main tables Entity and
Attribute with dependency description.

CREATE ENTITY #C.Left.Part (#its.LeftPart.Classes REF(#Class) ARRAY)

CREATE ENTITY #C.Right.Part (#its.RightPart.Class REF(#Class))

CREATE ENTITY #CD (#its.C.RightPart REF(#C.Right.Part),

#its.C.LeftPart REF(#C.Left.Part))

CREATE ENTITY #P.Right.Part(#its.RightPart.Prop REF (#Property));

CREATE ENTITY #P.Left.Part(#its.LeftPart.Prop REF (#Property)ARRAY);

CREATE ENTITY #PFD (#itsClass REF (#Class), #its.P.Right.Part

REF (#P.Right.Part), #its.P.Left.Part REF(#P.Left.Part));

Step 1. Once the meta schema is extended, the local ontology defined from
user’s requirements is created in the the ontology part of OntoDB architecture.
The following OntoQL statements create PublicUniversity class (defined in Ex-
ample 1) with the following properties: IdUniv, Name, City, Region, Country
and UniversityStatus.

CREATE #Class PublicUniversity(DESCRIPTOR (#name[en] = ’PublicUniversity’)

PROPERTIES(IdUniv INT, Name STRING, City STRING, Region STRING,

Country STRING,UniversityStatus STRING))

After creating the structure of a class, their dependencies defined on proper-
ties and classes should be attached. Let us assume that the following dependency
between two classes University and PublicUniversity exists (University 7−→
PublicUniversity) (PublicUniversity class defined as an University having
Public as value of its property UniversityStatus). This dependency is defined
by the following OntoQL statement:

Insert Into #CD (#its.C.RightPart, #its.C.LeftPart)

Values((Select #oid from #Class c Where c.#name=’PublicUniversity’),

(Select #oid from #Class c Where c.#name=’University’))

Instantiation of dependencies between properties is handled in a similar way.
For instance, if a dependency between two properties IdUniv and Name of
PublicUniversity exists, it is defined by the following statement:

Insert Into #PFD (#itsClass, #its.P.Right.Part, #its.P.Left.Part)

Values ((Select #oid from #Class c Where c.#name=’PublicUniversity’),

(Select #its.RightPart.Prop.#oid from #P.Right.Part Where

#its.RightPart.Prop.#name=’Name’),[Select #oid From #Propert p Where

p.#name=’IdUniv’])

Fig. 9. Exploitation of PFD in generating a normalized logical model.

Step 2. To identify canonical and non canonical classes, we use the algorithm
described in Section 3.1. Note that the second solution described in figure 6 is
chosen.

Step 3. We exploit PFD defined on each CC to generate normalized relations
per CC. Figure 9 shows an example of the generation of the normalized logical
model of PublicUniversity class. Normalized tables are stored in the data part
of OntoDB.

Step 4. To place non canonical classes in the ontology hierarchy of OntoDB
ontology part, we use Pellet 1.5.2 [6]. Figure 10 shows an example of the asserted
and inferred hierarchy of University, PublicUniversity and PrivateUniversity

classes.

Fig. 10. Use of Pellet in generating classes subsumption relationship

5 Conclusion

This paper presented a five steps methodology handling the consistent design
of an OBDB from the conceptual model till the logical model. The approach
considers local ontologies as conceptual models and borrows formal techniques
issued from both graph theory for dependency analysis, from description logics
reasoning for class placement and from relational database theory for creating re-
lational views, on normalized tables, associated to canonical classes. To the best
of our knowledge, this work is the sole that considers different types of depen-
dencies between ontological concepts at different design levels of an integrated
methodology. This approach is sound and consistent; the different refinement
steps preserve the functionalities offered by the local ontology. It is based on for-
mal models and is independent of the chosen target OBDB architecture. Finally,
this approach is tool supported and some experiments were conducted within
the produced tool suite.

This work led several open research issues. Among them, we can cite 1) need
of validation through a wider set of case studies and deployment in an industrial
setting, 2) handling evolution and instance migration in case the ontology evolves

or in the presence of integration requirements and 3) proposition of optimization
structures (e.g., indexing schemes) during the physical design phase.

References

1. D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable semantic web
data management using vertical partitioning. In VLDB’2007, pages 411–422, 2007.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The
ICS-FORTH RDFSuite: Managing voluminous RDF description bases. In Proceed-
ings of the Second International Workshop on the Semantic Web (SemWeb), 2001.

4. Giorgio Ausiello, Alessandro D’Atri, and Domenico Saccà. Graph algorithms for
functional dependency manipulation. Journal of the ACM, 30(4):752–766, 1983.

5. L. Bellatreche, Y. Aı̈t Ameur, and C. Chakroun. A design methodology of ontology
based database applications. In Logic Journal of the IGPL, 2010.

6. S. Evren P. Bijan. Pellet: An owl dl reasoner. In International Workshop on
Description Logics (DL2004), pages 6–8, 2004.

7. J. Broekstra, A. Kampman, and F. V. Harmelen. Sesame: A generic architec-
ture for storing and querying rdf and rdf schema. In International Semantic Web
Conference, pages 54–68, 2002.

8. J. P. Calbimonte, F. Porto, and C. Maria Keet. Functional dependencies in owl
abox. In Brazilian Symposium on Databases (SBBD), pages 16–30, 2009.

9. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: implementing the semantic web recommendations. In 13th international
conference on World Wide Web (WWW’2004), pages 74–83, 2004.

10. S. Chaudhuri and V. Narasayya. Self-tuning database systems: A decade of
progress. In VLDB, pages 3–14, September 2007.

11. L. Chen, M. E. Martone, A. Gupta, L. Fong, and M. Wong-Barnum. Ontoquest:
Exploring ontological data made easy. In Proceedings of the International Confer-
ence on Very Large Databases, pages 1183–1186, 2006.

12. S. Das, E. I. Chong, G. Eadon, and J. Srinivasan. Supporting ontology-based
semantic matching in rdbms. In VLDB, pages 1054–1065, 2004.

13. H. Dehainsala, G. Pierra, and L. Bellatreche. Ontodb: An ontology-based database
for data intensive applications. In DASFAA, pages 497–508, April 2007.

14. C. Fankam, S. Jean, L. Bellatreche, and Y. Aı̈t Ameur. Extending the ansi/sparc
architecture database with explicit data semantics: An ontology-based approach.
In Second European Conference on Software Architecture (ECSA’08), pages 318–
321, 2008.

15. M. Golfarelli and S. Rizzi. Data Warehouse Design: Modern Principles and
Methodologies. McGraw Hill, 2009.

16. T. R. Gruber. A translation approach to portable ontology specifications. In
Knowledge Acquisition, volume 5, pages 199–220, 1993.

17. S. Jean, Y. Aı̈t Ameur, and G. Pierra. Querying ontology based databases - the
ontoql proposal. In Proceedings of the 18th International Conference on Software
Engineering & Knowledge Engineering (SEKE’2006), pages 166–171, 2006.

18. S. Jean, G. Pierra, and Y. Aı̈t Ameur. Domain ontologies: A database-oriented
analysis. In WEBIST (1), pages 341–351, 2006.

19. Greg Karvounarakis, Vassilis Christophides, and Dimitris Plexousakis. Querying
semistructured (meta) data and schemas on the web: The case of RDF & RDFS.
Technical Report 269, 2000.

20. J. Lu, L. Ma, L. Zhang, J. S. Brunner, C. Wang, Y. Pan, and Y. Yu. Sor: A practical
system for ontology storage, reasoning and search. In VLDB, pages 1402–1405,
2007.

21. V. Nebot, R. Berlanga, J. M. Perez, M. J. Aramburu, and T. B. Pedersen. Multi-
dimensional integrated ontologies: A framework for designing semantic data ware-
houses. Journal on Data Semantics, 13:1–36, 2009.

22. G. Pierra. Context representation in domain ontologies and its use for semantic
integration of data. Journal on Data Semantics, 10:174–211, 2008.

23. E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. Available at
http: // www. w3. org/ TR/ rdf-sparql-query/ .

24. O. Romero and A. Abelló. Automating multidimensional design from ontologies.
In DOLAP, pages 1–8, 2007.

25. O. Romero, D. Calvanese, A. Abelló, and M. Rodriguez-Muro. Discovering func-
tional dependencies for multidimensional design. In DOLAP, pages 1–8, 2009.

26. P. Spyns, R. Meersman, and M. Jarrar. Data modelling versus ontology engineer-
ing. SIGMOD Record, 31(4):12–17, 2002.

27. M. Stocker and M. Smith. Owlgres: A scalable owl reasoner. In The Sixth Inter-
national Workshop on OWL: Experiences and Directions, 2008.

28. V. Sugumaran and V. C. Storey. The role of domain ontologies in database design:
An ontology management and conceptual modeling environment. ACM Transac-
tions on Database Systems, 31(3):1064–1094, 2006.

