
INCREMENTAL DESIGN OF ONTOLOGIES:
A model transformation-based approach

Henry Vaĺery Téguiak1,2, Yamine Ait-Ameur1, St́ephane Jean1, Eric Sardet2
1LISI/ENSMA and University of Poitiers,2CRITT Informatique CRCFAO

{teguiakh, yamine, jean, sardet}@ensma.fr

Keywords: mapping, meta-modeling, model transformation, ontology, terminology.

Abstract: This paper focuses on Model Driven Engineering (MDE) techniques tobuild ontology incrementally. The
global building process consists of building ontologies from texts through astepwise approach. Our approach
consists of modeling each step independently and defining a mapping model to express relationships between
these steps. Results of this work are applied in the ANR DAFOE project, whichaims to propose a platform
for building ontologies from several kind of resources (texts, terminologies, thesauri or existing ontologies).

1 INTRODUCTION

Although text-based ontology engineering gained
much popularity in the last 10 years, very few ontol-
ogy engineering platforms exploit the full potential of
the connection between texts and ontologies. The on-
tology designers use ontology editors to design their
ontologies. Unfortunately, the process leading to this
ontology is not recorded and therefore, it is not main-
tained. As a consequence, traceability is lost.
Thus, we present DAFOE1, a new platform for build-
ing ontologies using different types of linguistic en-
tries (text corpora, results of natural language pro-
cessing tools, terminologies or thesauri). DAFOE
supports knowledge structuring and conceptual mod-
eling from these linguistic entries as well as ontol-
ogy formalization. The requirements of the platform
and its development focus on (1) integrating various
kinds of tools usually used within a single modeling
platform, (2) guaranteeing persistence and traceabil-
ity of the whole building process, and (3) developing
the platform in an open source paradigm with possible
plug-in extensions. Taking into account the diversity
of information resources and extraction tools used, it
is difficult to represent such a construction process in
a single and static model. Indeed, in the scenario of
ontologies building from texts, the platform must be

1http://dafoe4app.fr

able to exploit results coming from various Natural
Language Processing (NLP) tools. The difficulty of
building such a system consists in the implementation
of configuration mechanisms for handle various tools.
This implementation requires a bit more abstraction in
the design.
Borrowed from the MDE, our approach is based on
the definition of model transformations. Indeed, the
first model, characterizing terms, is transformed, in a
stepwise transformation process, to an ontology. In
order to be reusable, this transformation process is
applied at the meta-modeling level. This paper fo-
cuses on (1) the loosely coupled modeling approach
that we suggest to manage each step independently,
(2) the meta-modeling based approach for handling
models of each step so that the models can evolve
independently and autonomously and (3) the mod-
els transformation-based approach that we propose
for handling relationships between models. After
an overview of the methodology led by the DAFOE
project, we present our meta-model for encoding ob-
jects together with concepts and the transformation
meta-model allowing to map concepts to some other
ones. We finally conclude and give some perspectives
about this work.



2 RELATED WORK

2.1 Ontology building problem

The study of current tools for developing ontologies
leads to classify these tools into two groups. The first
group are ontology editors, which assume that the on-
tology is already designed (on a paper for example),
and therefore it remains only to edit it in order to make
it interpretable by computers. The second group con-
sists of tools that aim to design ontologies in a su-
pervised work (semi-automatic) according to one or
more design steps. Next sections discuss some meth-
ods and tools for building ontologies.

2.1.1 Ontologies Editors

In the domain of ontologies design, there exist sev-
eral design tools. This section presents some of these
tools.

Protéǵe. Prot́eǵe (Knublauch et al., 2004) is a
platform for developing OWL ontologies. Its archi-
tecture, based on plug-ins, allows a designer to add
new features like intelligent reasoning, test, mainte-
nance, etc. Originally designed on a frame-based
model, nowadays the most used version is Protéǵe-
OWL. This version consists of a set of plug-ins devel-
oped above the Protéǵe kernel and dedicated for on-
tology construction according to the OWL ontology
model.

PLIBEditor. PLIBEditor supports the creation of
ontologies conforming to the PLIB ontology model
(Pierra, 2003). This editor has the advantage of per-
sisting ontologies objects in a database designed ac-
cording to a database architecture called ontology-
based database (Dehainsala et al., 2007). This
database stores ontologies model, ontologies and their
instances.

DOE. Unlike Prot́eǵe and PLIBEditor that put a
strong emphasis on the formal representation of con-
cepts of an ontology, the DOE editor (Troncy et al.,
2003) suggests to structure the informal description
of concepts to describe more precisely these concepts.
This editor uses a specific semantics called ”differen-
tial semantics” to document the generalization / spe-
cialization hierarchies by applying four basic rules
(Bachimont et al., 2002): (1) similarity with parent,
(2) difference with parent, (3) similarity with siblings
and (4) difference with siblings.
In addition to the tool features, annotation techniques
allow the designer to keep for example, relationship
between ontologies and annotated documents. But
another way to maintain this relationship consists in
using texts to build ontologies.

2.1.2 Tools for supervised design: designing
ontologies from texts

Designing ontologies, on the basis of its consensual
nature, is a very difficult task. Some tools however,
propose building approaches to lighten this problem.
Some of these tools provide an ontology construction
starting from texts.

Text2Onto. Developed at the University of Karl-
sruhe, Text2Onto is a tool that implements text min-
ing algorithms on textual data for building ontologies
semi-automatically (Cimiano and Volker, 2005). It in-
cludes several data processing: terms extraction using
either statistical calculations or regular expressions,
identification of relations using lexico-syntactic pat-
terns or proximity computation.

TERMINAE. TERMINAE is a software platform
supporting the development of terminology and ontol-
ogy from texts (Aussenac-Gilles et al., 2008). This
tool integrates a terminology learning environment,
an environment to assist the conceptualization and an
ontology management system. Like Text2Onto, TER-
MINAE stores the link between the designed ontol-
ogy and the texts. This link takes into account lin-
guistic phenomena like polysemy or synonymy, and
keeps track of designer choices about the organiza-
tion of the ontology hierarchy.
The approach suggested in this paper has been ap-
plied to the DAFOE platform that also ranks among
the tools for supervised design of ontologies and fo-
cuses on setting the transition rules from one step of
modeling to another. The setting process is based on
model mapping strategies.
Indeed, Text2Onto and TERMINAE assume that one
well knows in advance in which concept of the next
step a concept of the previous step will be transformed
(e.g., aClassresulting from aTerm). In DAFOE, this
matching assumption is not done. Thus, a mapping
space is needed to represent transformations so that
mapping could be easily improved.

3 PRELIMINARIES

This section provides a terminology with defini-
tions used in this paper, explain the goal of mappings
and presents the EXPRESS modeling language that
we used to formally implements our approach. Some
of these definitions are borrowed from the ontology
domain (de Bruijn et al., 2004) and are generalized
for models in general.



3.1 Definitions

Mapping. A mapping is a specification of the seman-
tic overlap between two modelsMs andMt . Note that
a model mapping is often partial, which means that
the mapping does not specify the complete semantics
overlap between two models, but just a piece of this
overlap which is relevant for the mapping application.
Throughout this paper, mapping and transformation
term will be used indifferently.

Mapping Language. The mapping language is
the language used to formalize mappings. Mappings
can also be represented through a model. This model,
called a mapping model, manages mappings as ob-
jects and provides more flexibility on mapping man-
agement.

Mapping Constructor. A mapping constructor
can be seen as a template for mappings which oc-
cur very often. Constructors can be ranked from very
simple (e.g., a mapping between a concept and a re-
lation) to very complex, in which case the constructor
captures comprehensive substructures of the models,
which are related in a certain way.
More discussions on topics around mapping prob-
lems and provided solutions can be founded in (Rahm
and Bernstein, 2001), (Yan et al., 2001), (Bernstein,
2003), (Euzenat and Shvaiko, 2007), (Claypool et al.,
2001).

3.2 Model mapping problem

At the heart of the issue of building a mapping be-
tween models is the issue of instance mediation (Eu-
zenat and Shvaiko, 2007). By instance mediation,
we understand the issue of identifying a target in-
stance from a source instance, each one described by
a model. This includes the specification of a map-
ping model and the use of these mappings to rewrite
queries for instance transformation.
Other work (Wache et al., 2001), (Kalfoglou and
Schorlemmer, 2003) address the problem of mapping
discovery. Without describing the discovery process,
we assume that the discovery process has been made.
This work deals with mapping specification and in-
stance mediation.
In instance mediation, if we consider a source model
Ms and a target modelMt , the question of instance
transformation can be summarized by ”how to com-
pute a target instanceIt of Mt from a source instanceIs
of Ms using theMAP mapping betweenMs andMt?”
as represented in Figure 1. TheGeneric Transformer
(a model-independent program) read an instance of
mapping (Imap) betweenMs and Mt and produces
a Specific Transformer(a program depending onMs

Figure 1: Instance Mediation.

andMt). This Specific Transformeris used to com-
puteIt from Is.

3.3 The EXPRESS modeling language:
an overview

EXPRESS is a data modeling language that combines
ideas from the entity-attribute-relationship family of
modeling languages with object modeling ideas of the
late 1980s. It became an international standard (ISO
10303-11) in 1994.
The major advantage of this language is its capability
to describe structural, descriptive and procedural con-
cepts in a common data model and semantics. This
integration avoids the use of several models and lan-
guages that require bridging over the gap between all
the defined models. A data model in EXPRESS is
represented by a set of schemas that may refer to each
other. Each schema contains two parts. The first part
is a set of entities that are structured in an object-
oriented approach. The second part contains proce-
dures, functions and global rules used to express con-
straints on that entities.

3.3.1 Entity definition

Entities are named and defined by a set of attributes
(which may be an empty set) assigned to each entity.
A value domain (a data type) is assigned to each at-
tribute. This value domain can be either simple (e.g.,
integer, string, etc), a collection domain (e.g., list, set,
etc) or an entity type meaning that an attribute value
is an instance of another entity.

3.3.2 Constraining entities

EXPRESS makes possible to limit the allowed set of
instances of the data models to those instances that
satisfy some given constraints. For example, the age
of a person must be a positive integer. EXPRESS
uses first order logic which is completely decidable



since the set of instances is finite. Constraints are in-
troduced thanks to the WHERE clause that provides
for instance invariant, and to the global RULE clause
that provides for model invariant. Derivations, inver-
sions and constraints (respectively illustrated by the
DERIVE, INVERSE, and WHEREkey words) are the
only places where functions may occur.

3.3.3 Examples

Tables 1 and 2 illustrate entity definitions. Entity
B is described using three attributesb1, b2 and b3
whose datatype are respectively real, list of strings
and relationship with another entityA, itself being de-
scribed using a single attributea1. Additionally, two
attributesa2 anda3 are defined. Thea2 attribute is
an inverse attribute of the entityA, corresponding to
the inverse link defined by attributeb3 in the entityB.
The a3 attribute is a derived attribute, that means its
value is calculated by a function. Instances may be
built from entity definition. An identifier is assigned
to each instance for referencing purposes. Instances
are then described according to the entity definition
they are referred to (using the entity name). The de-
scription consists of an enumeration of values compli-
ant with each attribute datatype. It can be noticed that
inverse attribute are not represented, because they can
be computed later on.

Table 1: Definition of entity A.

ENTITY DEFINITION

ENTITY A ;

a1:INTEGER;

INVERSE

a2: B FORb3;

DERIVE

a3: INTEGER:= f(a1);

END ENTITY ;

FUNCTION f(x: INTEGER): INTEGER;

return (x*2)

END FUNCTION;

INSTANCE DEFINITION

#1= A(3);

Table 2: Definition of entity B.

ENTITY DEFINITION

ENTITY B ;

b1: REAL;

b2: LIST [0:?] OF STRING;

b3: A;

WHERE

wr: b1 > 0.0;

END ENTITY ;

INSTANCE DEFINITION

#2= B(4.0,(’hello’,’world’), #1);

An instance definition is provided for illustration

purposes. In Table 1, the “#1” identifier is assigned
to the instance. The underlying type of the instance
is the entity “A”. The integer value “3” is assigned
to the a1 attribute. The deriveda2 attribute is not
a user assigned value but an automatically assigned
value computed using the value of the attributea1. In
this example, querying the value ofa2 will return here
the value “6” according to the derivation functionf. In
the same manner, in Table 2, the “#2” instance of the
entity B, whereb1 is evaluated to 4.0,b2 is the list
(’hello’, ’world’) and b3 reference the particular in-
stance “#1” of the entity A.

4 THE DAFOE METHODOLOGY

To face with the difficulty of building ontolo-
gies, the DAFOE project proposes a stepwise ontol-
ogy design approach. As stated in introduction, this
methodology consists of 3 main steps: Terminologi-
cal, Termino-Conceptual and Ontological. This paper
does not address the ontology learning problem (Nav-
igli and Velardi, 2004), (Maedche and Staab, 2001).
Nevertheless, it provides an infrastructure with model
transformation (cf. Section 5) in order to enrich the
building process.

4.1 DAFOE Terminological Step

The terminological step takes a corpus of texts as in-
put. This corpus needs to be processed by NLP tools
such as term extractors in order to extract terms and
their relationships . As an alternative, an ontology
designer can use a preexisting terminology. The un-
derlying assumption is threefold: text analysis can
extract term candidates that are relevant for a given
domain. These terms are likely to be turned into on-
tology concepts and the distribution of these terms re-
flects their semantics (Harris, 1968). The result of this
step is represented as instance of the terminological
model shown in Figure 2. ASaillanceentity is asso-
ciated to a Term so that terms can be filter according
to some “saillance” criteria like its frequency.

4.2 DAFOE Termino-Conceptual Step

This step transform the terms resulting from the
previous step into a structure of unambiguous
termino-concepts (TC) and termino-conceptual rela-
tions (TCR). As an alternative, the knowledge engi-
neer may build that step by importing a preexisting
termino-conceptual resource such as a thesaurus or
results of the analysis of the terminological step. In
this case, he/she analyses the meanings of terms and



Figure 2: Terminological model: UML diagram excerpt.

relations that appear at the terminological step with
respect to each other by taking into account their oc-
currences. Then, he/she can cluster terms and rela-
tionships that have the same meaning, distinguish the
various meanings of ambiguous terms, compare the
contexts in which they are used.
The termino-conceptual step is central for transform-
ing linguistic elements into conceptual ones and for
tracing the ontology concept back to the linguistic
elements they are coming from.TCsare associated
with differentiation criteria, for describing them by
differences and similarities as proposed by the Ar-
chonte method (Bachimont et al., 2002). Four textual
fields make explicit semantic differences and similari-
ties of aTCwith its father and siblings. This traceabil-
ity improves ontology readability and maintenance.
Terms and terminological relations that are connected
to termino-conceptual elements are said ”conceptu-
alised”. The result of this step is represented as in-
stance of the Termino-conceptual model shown in
Figure 3.

4.3 DAFOE Ontological Step

The ontology data model formalizesTCs and TCRs
in a formal language equivalent to OWL-DL. Con-
cepts are described as classes, individuals as instances
of classes, properties between classes as object prop-
erties or datatype properties. An automatic process
translatesTCsandTCRsinto formal concepts in a hi-
erarchy with inherited properties subsumption. This
translation exploits the structure of the semantic net-
work represented in the termino-conteptual step and
the differential criteria associated withTCsandTCRs.
The result of this step is represented as instance of the

Figure 3: Termino-conceptual model: UML diagram ex-
cerpt.

Ontological model shown in Figure 4.

Figure 4: Ontological model: UML diagram excerpt.

The next section presents the two main approaches
to express transformation between models and ex-
plains our proposal for representing relationship be-
tween steps of the DAFOE methodology.

5 MODELING RELATIONSHIPS
BETWEEN STEPS

Due to the numerous types of information man-
aged in each step of the methodology led by DAFOE,
we explicitly separate the modeling of each step
and then bind these steps through a transformation



layer. This loosely coupled modeling of the DAFOE
methodology eases model evolution of each step in-
dependently. Figure 5 presents an overview of this
process.

Figure 5: Process for modeling relationships between steps.

When encoding this transformation process, two
approaches are possible: (1) hard encoding of the
transformation or (2) specification of the transforma-
tion as an instance of a transformation meta-model.
These two approaches are discussed below.

5.1 A first attempt: hard encoded
transformation

The first approach consists in hard encoding the map-
pings between the concepts of the source and target
models.

5.1.1 Managing Transformations

Representing transformations between models re-
quires to be careful about transformation arities. For
example, the 1:1 arity means that one source entity is
mapped to a single target entity, the N:1 (respectively
1:N) arity means that many sources entities (respec-
tively one source entity) may be transformed together
to one target entity (respectively many target entities).
It is also possible to have a N:M arity.
The following EXPRESS code represents an illustra-
tion of modeling transformations. Derivation func-
tions are defined: they produce target entities from
source entities. We just present a simple part with a
1:1 transformation betweenTERMandTC (in the en-
tity E TERM to TC 1 1) or betweenTC andCLASS
(in the entityE TC to CLASS1 1). In this approach,
the transformation from the source element to the tar-
get element is embedded in a program, here a deriva-
tion function (buildtarget function). This function
shows for example that the propertyid of a TERM
matches with the propertyid of aTC. In the same way,
the label of aTC is the concatenation of the String
’tc ’ with the TERM.label.

Table 3: HardencodedtransformationTM1.

SCHEMA hard encodedtransformation TM1 ;

ENTITY E Term to TC 1 1;
source: TERM;

DERIVE

target: TC:= buildtarget(SELF.source);

END ENTITY ;

FUNCTION build target(t: TERM): TC;

LOCAL;

tc:= !TC;

END LOCAL;

tc.id:= source.id;

tc.label:= ’tc ’+source.label;

...;

return (tc);

END FUNCTION;

...;

END SCHEMA;

Table 4: HardencodedtransformationTM2.

SCHEMA hard encodedtransformation TM2 ;

ENTITY E TC to CLASS 1 1;
source: TC;

DERIVE

target: CLASS:= buildtarget(SELF.source);

END ENTITY ;

FUNCTION build target(tc: TC): CLASS;

LOCAL;

cls:= !CLASS;

END LOCAL;

...;

return (cls);

END FUNCTION;

...;

END SCHEMA;

5.1.2 Limitations

This solution is not satisfactory. Indeed, assume that
one changes the structural representation of the model
of one step (for example, the entityTERM is modi-
fied). In this case, the buildtarget function of the en-
tity E TERMto TC 1 1 must be rewritten. Another
drawback of this approach is the necessity to master in
advance the different possible transformations before
building a sequence of transformations between the
entities of each model. So, the “hard encoded” trans-
formation approach is model-dependent. It is then not
recommended in a context of heterogeneous models
with various transformation rules. Indeed, the trans-
formation is highly tiled to structural representation of
the models at a given time. Consequently, one needs
to manipulate models and their transformation at each
evolution. Terminae, Text2Onto,... are example of
such tools.



5.2 Our approach: transformation as
instances

The main idea behind our approach is, on the
one side, to deal with the numerous transforma-
tion programs to be written and on the other
side, to offer a configurable space for setting
up correspondences between steps. Furthermore,
one does not need to known in advance all the
possible transformations. Indeed, if we look
closely at thehard encodedtransformationTM1and
hard encodedtransformationTM2 , we notice a set
of similarities like:
s1) Both programs transform a source entity of a
source model in a target entity of a target model.
s2) Inside both programs, we find code statements
(the build target function) that transform a kind of
data to a kind of another data (TERM to TC or TC
to CLASSfor example).
The objective of a data model based transformation
is to abstract the previous similarities by offering the
capability to replay a single transformation on dif-
ferent model instances. In this case, meta-modeling
techniques are required not only for representing data
model instances, but also the transformation function.
Indeed, functions are reified by data models that may
be instantiated several times. A single interpretation
function is associated for code generation. This pro-
cess has been adopted on the DAFOE platform, it
is described below. Using a more abstract specifi-
cation, one can handle these similarities in a generic
way. Thus, as presented in Figure 6 we use a meta-
model for representing the models of each steps and
we also use a meta-model of transformation for build-
ing transformation dynamically.

Figure 6: our approach: a generic process.

5.2.1 A Metamodel for concept modeling

Meta-modeling appears as the use of a modeling for-
malism to represent a modeling formalism. This vi-

sion of models has two fundamental advantages: (1)
it is possible to represent in the same way models and
instances and (2) it is also possible to write programs
based on both metamodel and models.

The Entity-Attribute Meta-model. For handling
model life cycle during their transformations, we need
a model to express models (the metamodel). For us,
a model will consist of a set of entities, instances
of these entities, and attributes to describe these in-
stances (cf. Figure 7). Instances representation is
also based on a model (instance model). This instance
model is used for example, to migrate instances of a
source model to a target model using mappings be-
tween these two models.
For our experiments in ontology design, the entity-
attribute model has proved to be powerful enough
to play the role of meta-model for Terminological,
Termino-conceptual and ontological models.

5.2.2 Examples

The previous Entity-Attribute meta-model can be in-
stantiated in order to describe the terminological,
termino-conceptual and ontological models.

Table 5: Instantiate the Terminological model.

– Create Terminological model ;

#1=MODEL(1, ’Terminological’);

...

– Create entities

#4=ENTITY(’Term’, #1, $);

#5=ENTITY(’TermRelation’, #1, $);

...

– Create simple attribute type

#8=STRINGTYPE(’String’);

#9=INT TYPE(’Integer’);

...

– Create attributes of Term

#10=ATTRIBUTE(’id’, #4, #9);

#11=ATTRIBUTE(’label’, #4, #8);

#12=ATTRIBUTE(’language’, #4, #8);

...

– Create attributes of TermRelation

#15=ATTRIBUTE(’id’, #5, #8);

#16=ATTRIBUTE(’term1’, #5, #4);

#17=ATTRIBUTE(’term2’, #5, #4);

5.2.3 Encoding Transformations

In the same manner, we propose a meta-model sup-
porting the description of transformations. This meta-
model is composed of two main parts: the structural
mapping model and the procedural mapping model.

The structural mapping model. This model
records the different mappings that could be set up
between entities of the source model and the ones of
the target model. Cardinalities and typing constraints



Figure 7: The Entity-Attribute Metamodel.

Table 6: Instantiate the TerminoConceptual model.

– Create TerminoConceptual model

#20=MODEL(20, ’TerminoConceptual’);

...

– Create entities

#21=ENTITY(’TerminoConcept’, #1, $);

#22=ENTITY(’TerminoConceptRelation’, #1, $);

...

– Create attributes of TerminoConcept

#23=ATTRIBUTE(’id’, #21, #9);

#24=ATTRIBUTE(’label’, #21, #8);

#25=ATTRIBUTE(’dialect’, #21, #8);

...

are identified in such model. An extract of the struc-
tural mapping model is described on Figure 8.

The procedural mapping model. This model
supports the description of the derivation functions
and of the constraint expressions. In other words, this
model provides for any resources needed to build ei-
ther expressions for computing target concepts from
source ones, or to define boolean expressions that
describe the constraints that may apply on a given
concept. Figure 9 illustrates the simplified expres-
sion model that we used. Any kind of expression
is a subtype of an abstractGeneric Expressionthat
we represent by an acyclic graph. Since we provide
a formal approach with model checking principle, a
consistence rule ensure that an expression is acyclic.
Furthermore, this expression model is not only lim-
ited to boolean, numeric or string expression. It can
be extended for handling numerous types of expres-

sion. Once the data model describing the transforma-
tion is set up, MDE techniques are used. Then, either
the EXPRESS data modeling language is used to run
transformations, or a specific program interpreting in-
stances is written. In our case, we have chosen the
second option.

Figure 8: Structural Mapping Metamodel.

Notice that with the Expression model, we are al-
ready able to write mappings. These syntactic map-
pings can be seen as a repository of mapping patterns.
It remains to create a semantic environment to bind
variables and constants of syntactic mappings to con-
cepts of the meta-model. The semantic mapping re-
sults to the projection of syntactic mapping in a se-
mantic environment. Figure 10 presents the projec-
tion model used to add semantics to mappings. It is
important to note that unlike SWRL (Semantic Web
Rule Language) (Horrocks et al., 2004), the projec-
tion model is not only used for writing formal param-
eters. A syntactic mapping can be reused in a new



Figure 9: Simplified model for mapping and expression.

environment with a new semantics. As example, the
computation of aTC from aTermis illustrated in ex-
amples below (cf. Section 5.2.4).

Figure 10: Model for semantic interpretation.

5.2.4 Examples

The following EXPRESS instances shows a partial
view of the mapping between TERMs and TCs. In
this example, we present how to express thatTC.label
= ’tc ’+TERM.label.

Table 7: Instantiate the TerminoConceptual model.

– create variables and constant

#30= ElementVar(3O, ’X’);

#31= ElementVar(31, ’Y’);

#33= CONSTANT(’tc’);

– create the concatenation #34= ConcatExp(#33, #31);

#35= FunctionalRule(#31, #34);

#40= MAPPING(’TERMTO TC 1 1, #35);

...

– #50= VariableEnvironment(#11, #30);

#51= VariableEnvironment(#24, #31);

#60= SEMANTICS(#40, (#50, #51));

...

6 CONCLUSION

This paper presents a stepwise ontology design
methodology. The proposed approach uses MDE ap-
proaches in order to define model transformations. It
consists in identifying the meta-models of the manip-
ulated (transformed) models and the one of the possi-
ble mappings. It has been fully formalized with the
EXPRESS modeling language and a prototype has
been developed on the top of the OntoDB ontology
based database in order to persist instances resulting
from models instantiations. It has been also integrated
in the DAFOE platform, an open source platform for
building ontologies from texts, terminologies, the-
sauri or existing ontologies. The proposed mapping
approach has been experimented by the DAFOE con-
sortium. In the medical course for example, encour-
aging results has been obtained when building ontol-
ogy of pneumonology from a corpus of the same do-
main.



Currently, mappings defined with our transformation
meta-model are unidirectional and we are still work-
ing on making them bidirectional. Another chal-
lenge will be to define a mapping language in a
database persistent context supporting our mapping
meta-model. Indeed, most of the current mapping lan-
guages use a XML representation for the description
of mappings. However, to ensure scalability of our
approach, manipulated data are stored in a database.
For this reason, it would be interesting to have a map-
ping constructors integrated in the query language of
underlying database environment. A possible issue
will be to look closely at the Ontology Query Lan-
guage (OntoQL) (Jean et al., 2006), the exploitation
language associated with OntoDB to manage both on-
tologies and data. We will study how to extend On-
toQL with mapping operators so that it will be possi-
ble to query both created models and mappings in a
database environment.

ACKNOWLEDGEMENTS

The authors would like to thank the partners of the
ANR DAFOE project for their contribution.

REFERENCES

Aussenac-Gilles, N., Despres, S., and Szulman, S. (2008).
The TERMINAE method and platform for ontology en-
gineering from texts. InBridging the Gap between
Text and Knowledge. IOS Press.

Bachimont, B., Troncy, R., and Isaac, A. (2002). Semantic
commitment for designing ontologies: a proposal. In
European Conference on Knowledge Modelling and
Knowledge Management, Ekaw 2002, Sigenza, Spain.
Springer Verlag, LNCS.

Bernstein, P. A. (2003). Applying model management to
classical meta data problems. InCIDR, pages 209–
220. CIDR SIGMOD Record.

Cimiano, P. and Volker, J. (2005). Text2onto - a frame-
work for ontology learning and data-driven change
discovery. In Montoyo, A., Munoz, R., and Metais,
E., editors,Proc. of the 10th International Conference
on Applications of Natural Language to Information
Systems (NLDB), volume 3513 ofLecture Notes in
Computer Science, pages 227–238, Alicante, Spain.
Springer.

Claypool, K. T., Rundensteiner, E. A., Zhang, X., Su, H.,
Kuno, H. A., Lee, W.-C., and Mitchell, G. (2001).
Gangam - a solution to support multiple data models,
their mappings and maintenance. InSIGMOD Con-
ference, page 606.

de Bruijn, J., Foxvog, D., and Zimmerman, K. (2004). On-
tology mediation patterns library. Deliverable D4.3.1,
SEKT.

Dehainsala, H., Pierra, G., and Bellatreche, L. (2007).
Ontodb: An ontology-based database for inten-
sive applications. In12th International Confer-
ence on Database Systems for Advanced Applica-
tions(DASFAA’07), pages 497–508.

Euzenat, J. and Shvaiko, P. (2007).Ontology matching.
Springer-Verlag, Heidelberg (DE).

Harris, Z. (1968). Mathematical Structures of Language.
Interscience Publishers.

Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S.,
Grosof, B., and Dean, M. (2004). SWRL: a seman-
tic web rule language combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/.

Jean, S., Ait-Ameur, Y., and Pierra, G. (2006). Querying
ontology based database. the ontoql proposal. InIN:
18 th International Conference on Software Engineer-
ing and Knowledge Engeeniring, pages 166–171.

Kalfoglou, Y. and Schorlemmer, M. (2003). IF-Map: an
ontology mapping method based on information flow
theory.Journal on Data Semantics, I:98–127.

Knublauch, H., Fergerson, R. W., Noy, N. F., and Musen,
M. A. (2004). The protg owl plugin: An open devel-
opment environment for semantic web applications.
pages 229–243. Springer.

Maedche, E. and Staab, S. (2001). Ontology learning for the
semantic web.IEEE Intelligent Systems, 16:72–79.

Navigli, R. and Velardi, P. (2004). Learning domain ontolo-
gies from document warehouses and dedicated web
sites roberto navigli and paola velardi.Computational
Linguistics, 30:2004.

Pierra, G. (2003). Context-explication in conceptual on-
tologies: The plib approach,. In R. Jardim-Gonsalves,
J. C. and Steimer-Garo, A., editors,Proc. of 10th
ISPE International Conf. on Concurrent Engineering:
Research and Applications (CE’03) : Special Track
on Data Integration in Engineering, pages 243–254,
Madeira, Portugal. UNINOVA.

Rahm, E. and Bernstein, P. (2001). A survey of approaches
to automatic schema matching.The VLDB Journal,
10(4):334–350.

Troncy, R., Isaac, A., and Malais, V. (2003). Using xslt
for interoperability: Doe and the travelling domain
experiment. InProc. 2nd workshop on evaluation of
ontology-based tools (EON), Sanibel Island (FL US),
pages 92–102.

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H., and Hübner, S. (2001).
Ontology-based integration of information – a survey
of existing approaches. InProc. IJCAI Workshop on
Ontologies and Information Sharing, pages 108–117,
Seattle (WA US).

Yan, L. L., Miller, R. J., Haas, L. M., and Fagin, R. (2001).
Data-driven understanding and refinement of schema
mappings. InSIGMOD ’01: Proceedings of the 2001
ACM SIGMOD international conference on Manage-
ment of data, pages 485–496, New York, NY, USA.
ACM.


