
1

Schedulability analysis of
multiple criticality real-time tasks

François DORIN1, Joël GOOSSENS2, Pascal RICHARD1 and Michaël RICHARD1

1 LISI / ENSMA, France
{francois.dorin, pascal.richard, michael.richard}@lisi.ensma.fr

2 Université Libre de Bruxelles, Belgium
joel.goossens@ulb.ac.be

Keywords: Multiple criticality model, sensitivity analysis, schedulability analysis

1 Introduction

Real-time applications are modeled using the task model introduced in Liu and Lay-
land’s seminal paper (Liu et al. 1973). A task is periodically released and generates an
infinite set of jobs. A job of a task τi that is released at time t has a worst-case exe-
cution time Ci and must be completed in the time window [t, t + Di], where Di is the
deadline relatively to the job release. The next job of τi will be released at time t + Ti,
where Ti is time interval between two successive releases of τi (i.e. the period). Since only
a bound of tasks execution requirement are known, tasks are usually scheduled using on-
line scheduling strategies: EDF (Earliest Deadline First) or FPP (Fixed-Priority Policy).
Next, we consider FPP that defines one static priority to every task and at any time the
highest ready priority task is executed. Preemption is allowed at no cost. We consider the
schedulability analysis problem, that consists on checking that deadlines for all jobs will be
met at run-time. A classical approach to perform a schedulability analysis is to compute
the worst-case response time of a task, that is the maximum interval of time between the
release and the completion of a task job while considering all the task jobs (Joseph et
al. 1986).

In avionic systems, numerous tasks having different criticality levels are executed on
a same processor (i.e., as specified by the international norm DO-178B on the design of
avionic softwares). The multiple criticality model is a recent model of tasks introduced by
Vestal (Vestal 2007) which allows to take into account different worst-case execution times
for every task.

Task Di Ti Li Ci(1) Ci(2)

1 4 4 2 2 2
2 7 7 1 2 5

Fig. 1. Example of multiple criticality task system

In the example given in the Figure 1, classical characteristics are defined like the dead-
line Di or the period Ti. The notion of criticality level introduced by Vestal is denoted by
Li, and for this system having 2 criticality levels ({1, 2}), 2 execution times per task are
defined, Ci(`) corresponding to the execution time when considering the criticality level `.
An important assumption in the model is:

Ci(`− 1) ≤ Ci(`),∀` (1)



2

Using this model is quite simple. Let us suppose that we want to compute the response
times of the tasks 1 and 2. Since the task 1 has a criticity level 2, we only consider the
Ci(2) while computing its response time. Doing this, we can compute the response time
of the task 1 by considering only a classical system with C1 = 2 and C2 = 5 and using
classical response time computations (Joseph et al. 1986). It is the same principle for the
task 2, but since task 2 has a criticity level of 1, we consider the execution time Ci(1).

The interest of the method is to reduce the pessimism. For example, if we consider
task 1 having the highest priority (and so task 2 has the lowest one), then the system is
schedulable if we take into account the criticity levels, but is not schedulable if we only
consider a classical Liu and Layland task system using the worst-case execution times (i.e.,
C1 = 2 and C2 = 5).

The main results about this new model were first performed by Vestal, which introduced
the model and defined a priority assignment algorithm (Vestal 2007) that is based on
Audsley’s one by introducing a tie breaking rule at each priority level. Then, Baruah and
Vestal (Baruah et al. 2008) provided several important results:

– they showed that EDF and Fixed-Task Priority (FTP) algorithms are not comparable,
– they introduced an hybrid algorithm which can schedule any task systems which can

be schedule either by EDF or by a FTP algorithm.

In our works, we are interested by the optimality of Audsley’s algorithm, the properties
of the Vestal’s algorithm (Vestal 2007) and by adapting a sensitivity analysis developed by
Bini (Bini et al. 2006) to this new task model.

2 Vestal’s algorithm

Vestal’s algorithm is a particular case of the algorithm of Audsley. The priority assign-
ments are realized from the lowest priority to the highest. But when Audsley’s algorithm
assigns at a level the first task which can be scheduled at this given priority level, the
algorithm will use a tie breaker, based on the notion of critical scaling factor as introduced
by Lehoczky (Lehoczky et al. 1989).

The critical scaling factor is the maximum reduction factor which can be applied to the
processor speed in such a way the system is still schedulable (i.e., task execution times are
stretched). By extension, we define the critical scaling factor of a task, which corresponds
in this case to the scaling factor when considering only a subset of tasks, composed of a
given task i and all the tasks with a higher priority than the task i.

Vestal chooses the task having the highest critical scaling factor for a given level (cf.
Figure 2(a) and 2(b)). The critical scaling factor of the tasks can be computed since we
only need to know the set of higher priority tasks and not their relative priority order. The
priority column in Figure 2(a) denotes the priority of the tasks computed by the algorithm
and a value of 0 corresponds to the highest priority.

For example, to compute the scaling factor of the task 1 at the priority level 2, the set
of higher priority task is composed of the remaining tasks 2 and 3 (cf. Figure 2(b)).

2.1 Optimality of Audsley’s algorithm

We have proved that Audsley’s algorithm, known to be optimal for fixed-priority tasks
system, is still optimal when considering the multiple criticality task model. Thus, the tie
breaking rule introduced in Vestal’s algorithm is not necessary to find a priority assignment
leading to a feasible schedule if one exists.

The proof sketch is the following: based on the proof provided by Audsley, we made
another one using the notion of scaling factor as defined by Lehoczky instead of the notion



3

Task Pi Di Li Ci(1) Ci(2) Priority
1 164 104 1 7 17 2
2 89 44 2 4 4 0
3 191 80 1 12 16 1
4 283 283 2 85 85 3

(a) Example of a priority assignement

Task 1 Task 2 Task 3 Task 4
Level 3 – – – 1.69
Level 2 3.87 1.19 3.47
Level 1 2.2 5
Level 0 11

(b) Trace of the assignment

Fig. 2. Vestal’s algorithm

of interference. We proved that a scaling factor of a task can only be increased if the
priority of this task is increased. Please note that this new proof is also valid for showing
the optimality of the algorithm of Vestal, since it is a particular case of the algorithm of
Audsley.

2.2 Maximization of the scaling factor

Since the algorithm of Audsley is already optimal, we can think that the tie breaker
introduced by Vestal to choose which task has to be assigned at a given level is useless. We
shown that using Vestal’s tie breaker provides a very interesting property to the algorithm:
it maximizes the critical scaling factor. In other word, it does not exist any valid schedule
which can have a higher critical scaling factor than the critical scaling factor of the schedule
returns by Vestal’s algorithm. This property is very interesting in the context of embedded
systems since it allows to define the optimal processor speed modulation for reducing power
consumption of the system.

The proof sketch is to introduce a transformation which will modify a valid schedule in
another one in such a way that the new schedule has a higher critical scaling factor than
the previous one. The transformation is simple and consists in reducing the priority of one
task under condition. Applying the transformation until the system remains unchanged
will conduce to the schedule returned by the Vestal’s algorithm.

3 Sensitivity analysis

Sensitivity analysis consists in studying the modification which can be made to a system
while still meeting all deadlines. A basic example is to find how the execution time of a
task can be increased in such a way the whole system is still schedulable.

One of the first work about sensitivity analysis was realized by Lehoczky (Lehoczky et
al. 1989) with the notion of critical scaling factor. The approach was extended by Vestal
(Vestal 1994) by introducing slack variation in the result of Lehoczky. Later, Bini performed
(Bini et al. 2006) a deeper analysis which introduces the notion of feasibility region and
which generalizes the previous works, but for the Liu and Layland’s task model. Our work
was about adapting the works of Bini for the multiple criticality tasks model.

3.1 C-space

The analysis on the C-Space developed by Bini define a scalar λ for evaluating how can
vary processing times. Precisely, λ is defined by the following formula:

λ = min
i=1,...,n

max
t∈sched(Pi)

t− ni(t)Ci

ni(t)di
(2)



4

In the above equation, n is the number of the tasks of the system, Ci is a vector which
is equal to Ci = (C1, C2, . . . , Ci), sched(Pi) is the set of the scheduling point of the task
i, ni(t) =

(⌈
t

T1

⌉
,
⌈

t
T2

⌉
, . . . ,

⌈
t

Ti−1

⌉
, 1
)

and di is the direction on which the sensitivity
analysis is performed. For example, if we want to perform schedulability analysis on the
task k only, then di must be equal to 0 except for the kth component that will be set to 1.

The λ factor is such that replacing Ci by Ci + λCi conduces to a schedulable system,
but any higher value of λ will lead to a non schedulable system.

3.2 Adaptation for multi-criticality task systems

The main idea is to perform a sensitivity analysis per criticality level, and so having
one factor per level of criticity instead of one factor for the whole system.

λ(`) = min
i=1,...,n∧Li=`

max
t∈sched(Pi)

t− ni(t)Ci(`)
ni(t)di

(3)

Attention must be paid when performing this analysis, since it is possible to break the
basic rule introduce with the model and stated by the Equation 1. If the rule is broken
then a normalization step must be perform. This step consists in copying the value of the
execution of the higher criticality level to the lower criticality level in such a way that the
basic rule is satisfied.

4 Conclusion

We presented several results on multi-criticality task systems to be schedule upon a
fixed-priority on-line scheduling algorithm. We first establish that the tie breaking rule
introduced by Vestal in his scheduling algorithm is not useful for computing a feasible
schedule (i.e., so that all deadlines will be met at run-time). Nevertheless, we proved that
the tie breaking rule is useful if processor speed modulation is allowed(e.g., for reducing
energy consumption). We then extend an existing sensibility analysis algorithm to multi-
criticality task systems. In a further work, we shall study some extensions of our sensibility
analysis algorithm.

References

Bini E., Di Natale M. and Buttazzo G., 2006, “Sensitivity analysis for fixed priority real-time
systems”, Real-Time Systems, Vol. 39, pp. 5-30.

Joseph M. and Pandya P., 1986, “Finding Response Times in a Real-Time System”, The Computer
Journal, Vol. 29, pp. 390-395.

Lehoczky J.P., Sha L. and Ding Y., 1989, “The rate-monotonic scheduling algorithm: exact charac-
terization and average case behavior”, 10th IEEE Real-Time Systems Symposium, pp. 166-171.

Liu C.L. and Layland J.W., 1973, “Scheduling algorithms for multiprogramming in a hard real-time
environment”,Journal of the Association for Computing Machinery, Vol. 20, pp. 46-61.

Vestal S., 1994, “Fixed-Priority Sensitivity Analysis for Linear Compute Time Models”, IEEE
Transactions on Software Engineering, Vol. 20, pp. 308-317.

Vestal S., 2007, “Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Ex-
ecution Time Assurance”, RTSS’07

Vestal S. and Baruah S., 2008, “Schedulability Analysis of Sporadic Tasks with Multiple Criticality
Specifications”, ECRTS’08


