
Towards Connecting Database Applications to Ontologies

Chimène Fankam, Stéphane Jean, Guy Pierra, Ladjel Bellatreche, Yamine Aı̈t-Ameur
LISI/ENSMA Poitiers University

Futuroscope 86960 France
(fankamc, jean, pierra, bellatreche, yamine)@ensma.fr

Abstract

Most database applications are designed according the
ANSI/SPARC architecture. When it is used, a large amount
of semantics of data may be lost during the transforma-
tion from the conceptual model to a logical model. As a
consequence exchanging/integrating various databases or
generating user interfaces for data access become difficult.
Ontologies seem an interesting solution to solve these prob-
lems, since they allow making explicit the semantics of data.
In this paper, we propose an ontology-based approach for
designing database applications, and then, for represent-
ing explicitly the semantics of data within the database.
It consists in extending the ANSI/SPARC architecture with
the ontological level. Note that this extension may also
be added to existing applications designed according to
the ANSI/SPARC architecture, since it preserves an upward
compatibility.

1 Introduction

Currently, databases are the main tool used for large data
storage. Traditionally, designing a database involves four
data models: (1) conceptual modeling, (2) logical modeling,
(3) physical modeling, and (4) external modeling. A con-
ceptual model (CM) represents knowledge on a given do-
main. It is characterized by (a) the domain addressed (uni-
verse of discourse, UoD), (b) the formalism used to define it
(e.g., entity-relationship model), and (c) the modeling point
of view that corresponds to specific user requirements and
queries. The CM is translated into a logical model corre-
sponding to a data specification implemented in a database
system. This translation is obtained by applying transfor-
mation rules which produce data descriptions conforming
to database theory requirements (normal forms). The phys-
ical model defines how data are stored and can be accessed
(e.g., index mechanisms). External models or user’s views
allow a database designer to adapt data according to user’s
requirements. This database design process follows the tra-

ditional ANSI/SPARC architecture proposed by Bachman
[1]. This architecture led to several implementations and it
has proved its efficiency during the last thirty years. Regard-
ing the semantic exploitation of the resulting data models,
this architecture has three major drawbacks:
1. a difficulty related to domain modeling when the de-
signer has no initial knowledge of the targeted domain. For
example, in the engineering domain a number of ontologies
already exists [15] and could be used to generate CM.
2. a strong dependency of models with designer’s style
and specific application requirements. Indeed, two concep-
tual models designed by two different designers targeting
the same functionalities are in general, (1) partially differ-
ent from the point of view of the modeled domain, and (2)
largely different from the point of view of the structure of
the resulting models. This corresponds to the classical prob-
lem of data integration [3].
3. a gap between conceptual and logical models that in-
creases with the discrepancy of the modeling languages.
For instance, in relational databases (RDB), the translation
from the conceptual model to the logical model involves
complex transformation operations. The resulting logical
model is very different from the initial conceptual model
(e.g., entities and relationships are decomposed into sev-
eral tables). The semantics of the resulting logical model
becomes much less explicit requiring database designer to
develop specific application for end-users.

We present in this paper, a new design methodology
whose goal is both to help designer in her/his domain mod-
eling task, in particular when domain ontologies already ex-
ist and to easy data accessibility and integrability. The basic
idea is to enrich the ANSI/SPARC architecture by one more
level representing domain ontology. In this approach, the
design of a conceptual model (CM) is preceded by the se-
lection and possibly the extension/specialization of existing
domain ontology. Then the CM is extracted by specializa-
tion from the ontology and it maintains references to that
ontology. Note that since every model developed during
the design process is linked to the ontology, the meaning of
each data is explicitly represented in a database. We call

2009 First International Conference on Advances in Databases, Knowledge, and Data Applications

978-0-7695-3550-0/09 $25.00 © 2009 IEEE

DOI 10.1109/DBKDA.2009.22

131

such a database an ontology-based database (OBDB) and
we discuss some aspect of its implementation.

This paper is composed of 7 sections. Section 2 presents
a comparison between ontologies and conceptual models.
Section 3 proposes our extension of the ANSI/SPARC ar-
chitecture with the ontological level. The new capabilities
of this extension are presented in section 4. Section 5 dis-
cusses some implementation of these capabilities. Section
6 presents the state of art. Finally, section 7 summarizes the
main results and suggests future work.

2 Ontologies and Databases

Our approach suggests extracting CM from ontologies,
it is then necessary to compare domain ontologies and CM.
We summarize this comparison in this section.

2.1 Some aspects of Ontology and CM

Several definitions have being proposed for ontology
[9, 10]. In our work [13], we will define a domain ontology
as a domain conceptualization in terms of classes and
properties that is formal, consensual and referencable.
This definition emphasizes the three criteria that distinguish
ontologies from all other models used in Computer Science.
An ontology is:
1. formal : its contains logical axioms and may be
processed by computers; so checking consistency and
performing automatic reasoning are made possible
2. consensual in a community i.e., several members have
agreed upon the concepts represented in the ontology,
3. each concept in the ontology (i.e., class and property)
has the capability to be referenced through a universally
unique identifier. This mechanism allows defining the
semantic of a piece of data, whatever are the modeling
schema of the ontology and the data model.

When we compare more precisely ontologies with con-
ceptual models, two more differences appear [17, 7].
1. canonicity of information modeling. When a domain
model is design, various modeling constructs may be used
for representing the same information. For instance, a
woman may be represented either as an instance of Person
whose gender is female, or as an instance of Woman. A
crucial characteristic of databases is that all similar pieces
of information, (i.e., that belong to the same class) shall be
modeled the same way. In the above example, no represen-
tation is always better to be represented. The CM define
a canonic language in the sense that there exists only one
description for each information. Contrary wise, most on-
tology models allow to define conceptual equivalences be-
tween different constructs and to use them simultaneously
in the same ontology. Fortunately, all ontology models also

distinguish the set of concepts that cannot be defined over
other concepts. These concepts, called primitive concepts,
define a canonical language. The other concepts, called de-
fined concepts [9] may be defined over the primitives con-
cepts. 2. the modeling objectives. CMs prescribe informa-
tion to be represented in a given information system, while
ontologies describe concepts of a domain independently of
any application or information system where the ontology
could be used; thus several systems may share the same on-
tology even if their data model are different, and instances
of similar classes may be described differently. It eases on-
tology usage for data exchange or integration. This last dif-
ference is important for our purpose that we further discuss
in the next section.

2.2 Classification of Domain Ontologies:
the Onion Model

The differences between canonical and non canonical
ontologies led to a classification of the various ontologies
modeling languages and ontologies. They may be classified
in the three following categories.
- Conceptual Canonical Ontologies (CCOs) provide con-
cept definitions without redundancy. In CCOs (for example
[11]), each information is represented only in a single man-
ner. Note that each conceptual ontology includes a CCO:
namely the set of its primitive concepts.
- Non Conceptual Canonical Ontologies (NCCOs) contain
not only primitive concepts (canonical) but also defined
concepts, i.e. concepts for which the ontology provides a
complete axiomatic definition by means of necessary and
sufficient conditions expressed in terms of other - primitive
or defined - concepts. NCCOs are extension of CCOs.
- Linguistic Ontologies (LOs) define terms appearing in the
universe of discourse of a given domain. In addition to
these textual definitions, a number of linguistic relation-
ships (synonym, hyponym, etc.) are used to capture in a
semi-formal way relationships between terms. An example
of LO is Wordnet 1.

These three categories of ontologies can be combined
into a layered model, called the Onion Model and shown
in Figure 1. At the heart of this model is a CCO. It pro-
vides a formal basis to model and to exchange efficiently
the knowledge of a domain. From the primitive concepts of
a CCO, a NCCO may be designed. This NCCO provides
constructors relating different conceptualizations. Finally,
a natural language representation of NCCO concepts, pos-
sibly in the various natural languages where these concepts
are meaningful, can be provided by a LO.

From a database point of view, each category of ontol-
ogy offers particular capabilities:

1http://wordnet.princeton.edu/

132

CCO

age: Int

grandfather: Person

NCCO

grandfather

LO

grandpa

Individual

Person

Human

Man

Male

age lifetime

NCCO conceptual equivalences:

Man ≡ Person ∩ gender = ‘M’

age ≡ today - birthdate

grandfather(x,z) ≡ father(x,y) ∩ father(y,z) ∪

 mother(x,y) ∩ father(y,z)

Person

gender: String

birthdate: Date

father: Person

mother: Person

Man

��������� �� ���	
�
�� ������ ���� ���
�� ���� ������

��������� �� ���	
�
���� ������ ����
��� ������

Figure 1. Example of the Onion Model of do-
main ontology

- CCOs provide a canonical and precise description of all
the concepts of a given domain. They provide in particular
a formal basis for data exchange between different data
sources; every subset of a CCO fulfill the canonicity
requirements of a CM.
- Operators of NCCO allow in particular, to connect several
ontologies defined over the same domain: non-canonical
concept being defined over canonical concept, each non-
canonical concept may be represented as a view over a
database that represents the relevant canonical concepts.
- LOs provide linguistic capabilities over both categories
of concepts (primitive and defined) of the domain. From
a database point of view, a LO would provide natural
language access to the database content.

Example 1. Figure 1 presents an ontology composed of the
three layers of the Onion Model. The CCO part is com-
posed of the class Person with its properties gender,
birthdate, father and mother. From this class and
these properties, the non canonical concepts Man, Woman,
age and grandfather are built. The conceptual equiv-
alences, used to define them and expressed by logical ex-
pressions, are given in the bottom part of this figure. Fi-
nally, the LO part of this ontology is composed of the var-
ious names in English that can be used to refer to the de-
fined concepts. For instance, the Person, Individual
or Human are synonymous names for the class Person.
At the LO level also appear some words that can hardly be
formally described since their meaning depend upon the lo-
cutor. These words include e.g., boy, child or miss.

3 Applying Ontologies to Databases: a Pro-
posed Extension of the ANSI/SPARC Ar-
chitecture

The major objectives of a database are to ensure an
efficient management of data and to provide access to
data independently of their physical representation. The
ANSI/SPARC architecture has been proposed to fulfil these
objectives. It distinguishes two main access levels:
- the physical level defining how data are stored and
managed using a file management system;
- the logical level defining how data are structured on the
database data model (e.g., relational or object model).

When designing a database according to this architec-
ture, a large amount of data semantics may be lost during
the transformation from the conceptual model to a logical
model. Moreover, the meaning of the CM is not formally
documented, and thus it cannot be stored in the database.
To solve these difficulties, reference to an ontology appears
as a relevant solution. We then propose to extend this ar-
chitecture (see Figure 2) with the ontological level. This
level defines explicitly data semantics. Moreover, the CM
will be modeled by referring their absolute identifier to the
ontology concept to which they correspond.

�������� �����

������� �����

 �!��"#$�� �����

%!#�������� �����

�%
& %
 %

'() *��+�#��!�� (&,- +�#�.��� �����#��#$�� '/) ���"���+ �����#��#$��

#��!�0��1�#��!

�1"��1�!#�#��!
�1"��1�!#�#��!

#��!�0��1�#��!

��1�!#�� ��!2�

������� �����

�������� �����

 �!��"#$�� �����

Figure 2. Proposed extension of ANSI/SPARC
architecture

Figure 2(A) presents the traditional database architec-
ture. A conceptual model is represented in a modeling lan-
guage like Entity-Relationship. Then, it is often used to
generate automatically the logical model of data. This log-
ical model is represented at the physical level by a set of
files. In Figure 2(B) we propose to extend this architecture
with the following elements.
- Ontological level. It is composed of one (or several if
the scope of the system encompasses the domain of several
existing ontologies) ontology defining the concepts of the
UoD in terms of well-defined classes and properties. It is

133

possible that this ontology needs to be specialized to rep-
resent some concepts w.r.t the system requirements. In this
case, our method consists in extending the pre-existing on-
tology to develop a local ontology that covers all the re-
quirement of the target application. This ensures that all
concepts extracted to define the CM will have, at the onto-
logical level, the same formal and precise definition.
- Subsumption links. They link the ontological and con-
ceptual levels, thus defining the set of ontology concepts
used to fulfill applications requirements. The meaning of
these links, represented in the CM by the absolute iden-
tifier of an ontology concept, is that the CM concept is
equal or is a special case of the referenced ontology con-
cept (i.e., subsumption). Notice that non-canonical con-
cepts are not referenced for defining the CM. A CM being
necessary canonic, extracting or specializing only from the
canonic part of the ontology will ensure that the result will
be canonic. Non canonic concepts will be referenced, in a
second step, for defining the meaning of views.
- Logical level. As usual; the logical level is generated from
the conceptual level by a set of rules. If these rules leads to
several tables for the same class, a view is automatically
created that represents (virtually) the class instances.
Example 2. Figure 3 illustrates the proposed extension of
ANSI/SPARC architecture. The ontological level is com-
posed of the classes Person (canonical) , Man and Woman
(non canonical) of the previous ontology (see example 1).
The subsumption links define the fact that a customer in
the CM is a person in the meaning of the ontology. More-
over, a customer has a subset of the person properties
(gender and father). Then, as usual, this class is trans-
formed into tables at the logical level and its properties are
translated to columns of this table. One single table being
generated, no view needs to be created.
The four levels of the proposed architecture (physical, log-
ical, conceptual and ontological) are intended to be all im-
plemented in the database. Our approach offers specific ca-
pabilities that we discuss in the next section.

4 New Capabilities of the Proposed Database
Architecture

Compared to the ANSI/SPARC architecture, the pro-
posed database architecture that we have implemented in
our prototype OntoDB2 offers five major new capabilities.

4.1 Capabilities resulting from the four
level architecture

One of the most important characteristics of the
ANSI/SPARC architecture is to separate the physical and
logical representation of data. Our proposed architecture

������� ���	

�����

���

������ ��
���
��������� ���	
������ �	
 ��
!����� �	
 ��

"�!��

�����

������ ��
���
������ �	
 ��

�����
����� �����

#
����

$ %&' (

(%&')*��

+���������� ���	

 	,����� ���-

�.� ���� ���	

�
�� /�
,�����

�,0�	,	�������

1���	0�2�� ���	

Figure 3. Example of the proposed extension
of ANSI/SPARC architecture

adds one more independency. Representing both the con-
ceptual and the ontological description of the represented
data, our new levels make it possible to exploit data inde-
pendently of their logical schema. Provide that an ontology
query language is used. In our prototype we use OntoQL
[12].
Capability 1: The database management system (DBMS)
allows expressing query at the ontological level indepen-
dently of the logical representation (schema) of data.
Another fundamental characteristic of the ANSI/SPARC ar-
chitecture is to define an external level. This level defines
external schemas (views) that reflect user’s perception of
the application domain data (e.g., woman in place of person
[gender = female]).

In our proposed architecture, the NCCO layer of ontolo-
gies allows each user to represent its own perception of the
application domain by using non canonical concepts. Thus,
defining and exploiting such concepts is a new capability of
this architecture.
Capability 2: The DBMS supports the definition of non
canonical concepts defined as views over the canonical con-
cepts of ontology. Queries may be expressed using canoni-
cal and non canonical concepts and the query engine inter-
prets them in terms of canonical concepts.
The last layer of the Onion Model is composed of the LO
part. The LO part associates to each concept one or several
terms and textual definitions. These linguistic definitions
(often given in different natural languages) allow human
users to understand ontology and names reference ontology
concepts. To make it easy for members of different coun-
tries to use the same ontologies, the database exploitation
language may support the definition of multilingual LO. It
is the case in the OntoQL language that we use.
Capability 3: The DBMS may support the definition and

134

exploitation of linguistic definitions of concepts that may be
defined in different natural languages.
The above capabilities result from the three layer decom-
position of the ontological level according to the three lay-
ers of the Onion Model. Another characteristic of our pro-
posed architecture is to enforce upward compatibility with
the ANSI/SPARC architecture. This feature leads to other
capabilities.

4.2 Capabilities for Preserving Compati-
bility with the ANSI/SPARC Archi-
tecture

Our proposed architecture extends the ANSI/SPARC ar-
chitecture, and thus, it also includes the usual logical level.
Since our objective is to define a DBMS for manipulating
data at the different levels of our proposed architecture, our
system supports manipulation of data not only at the onto-
logical level but also at the logical level.
Capability 4: The DBMS permits the manipulation of data
also at the logical level preserving SQL compatibility.
Designing a layered architecture has the drawback to in-
crease the complexity of data processing in upper levels.
Thus, to optimize query processing at the ontological level,
the DBMS shall provide an access to the lower level, i.e. the
conceptual level. It is done in OntoDB2.
Capability 5: The DBMS handles access to data at the
conceptual level from the ontological level.
Capabilities 1, 2 and 3 allow expressing ontological queries
using canonical, non canonical and linguistic definitions
provided by ontology. Capability 4 permits to access the
logical level using SQL. Capability 5 allows accessing the
conceptual level from the ontological level in order to opti-
mize data processing.

In this section we have presented capabilities resulting
from the implementation of the proposed extension of the
ANSI/SPARC architecture. These capabilities are in the
process to be implemented in the OBDB OntoDB2 whose
software architecture is outlined in [8]. In particular, On-
toDB2 supports the definition of non canonical concepts
(capability 2). We explain in the next section how the non
canonical constructs in an ontology may be used for creat-
ing theses views.

5 Representation of Non Canonical Concepts

The non canonical class constructions available in
the ontological layer define equivalences between non-
canonical classes and the canonical class to which they cor-
respond. Thus, they define the semantics of views.
Example 3. In figure 1, the non-canonical concept Man
is defined as Person ∩ gender = ’M’. In the database,
all persons are represented as customer with properties

gender and father. Thus if Man is requested, the
system may generate the view :
CREATE VIEW Man AS

SELECT * FROM customer WHERE gender = ’M’

In fact, according to the ontology model used, various
equivalence constructors are defined. These operators make
it possible to enrich the external layer with new derived se-
mantic concepts for the data stored in the database.

The main problem when representing non canonical con-
cepts is that constructors provided by ontology models are
numerous and various. Constructors of non canonical con-
cepts we have chosen to consider are presented in table 1.
According to their origin, these constructors can be grouped
in four categories:
- constructors that define classes come from Description
Logic. The formal description of these constructors can be
exploited to generate the corresponding views.
- logical rules. They come from Frame Logic. To imple-
ment them we need recursive query languages. Our proto-
type being on PostgreSQL, We did not implement this ca-
pability.
- algebraic expressions. They come from the data
processing community. For instance : diameter =
2*radius. This capability has been implemented in our
prototype.
We outline below how the mechanisms in Table1 are cur-

Constructor Ontology
Model

Constructors of classes by boolean expressions OWL
(Union, Intersection, Complement)
Constructors of classes as restrictions OWL
(of domain, value or cardinality) see example 3
Characteristic of properties
(inverse, symmetric, transitive) OWL
Logical rules
(grandfather (x,y) :- father(x,z) ∧ father(z,y)) F-Logic
Algebraic expressions PLIB

Table 1. Constructors of non canonical con-
cepts proposed by ontology models

rently implemented.

5.1 Defined Classes

To manage defined classes, the goal is to avoid redun-
dancy of data. Defined classes being defined using set op-
erations (union, intersection) or restrictions operators, our
approach (see example 3) consists in computing their ex-
tension as a view rather than storing them. This approach is

135

implemented using the view mechanism (with triggers) that
is used to compute union, intersection or selection over sets.

5.2 Algebraic Characteristics of Proper-
ties

In this case, following the closed world assumption, we
materialized all the data.
- Symmetry: we materialize a priori all data. This approach
is easy to implement and support update and delete of data.
- Transitivity: materializing all the derived facts is also the
solution we adopted. We assume at the beginning, that all
data are materialized. Thus, when a new relation concerning
a transitive property is added, the new facts are materialized
by a trigger in a non recursive manner as follow:
... ON INSERT P(x,y)

FOR EACH EXISTING PAIR P(i,x)
ADD a new pair P(x,j)

FOR EACH EXISTING PAIR P(y,j)
ADD P(x,j)

Notice that a difficulty is that we cannot remember why
some pair is in the database. But anyway, there are no
reason why dropping a particular pair should remove other
pairs. It depends upon the new state of the world that is
unknown and should be specified by the user.

5.3 Algebraic Expressions

Like for defined classes, the value of a derived property
is computed by evaluating its expression. This expression
is generated by the system and its evaluation is also encap-
sulated by a view.

6 Related work on ontologies and databases

Three approaches have been proposed for using together
ontologies and databases.

The first approach, that we call a posteriori, uses an on-
tology for accessing to a pre-existing database. In particu-
lar, a language called R2O [2] has been proposed for defin-
ing the mapping from a relational schema to the ontology.
This approach is not intended to be used for designing a
new database even if the R2O language may be used for
expressing the mapping between ontology and the logical
model.

The second approach suggests using an existing ontol-
ogy for helping a designer to define a conceptual model.
We call this approach the a priori approach. Two research
teams have proposed such an approach. Roldan-Garcia and
its colleagues [16] just outline a methodology where an ex-
isting ontology is extended to address the application needs,
and then a subset is selected to define the CM. But nothing is

define about the relationships between the various models,
nor on the representation of the ontology in the database.
Sugumaran and its colleagues [18] propose a natural lan-
guage processing approach for extracting from the textual
description of the system requirements, and from a linguis-
tic ontology those ontology terms that are suggested in the
CM. On the basis of practical experimentation, the paper
proves the efficiency of this approach. But nothing in the
proposal allows neither to represent formally the link be-
tween ontology and CM, nor to represent the ontology in
the model. Our approach is a priori approach, but it defines
formally the link between ontology and data. Moreover,
the database may contain ontology-based data, the ontology
and provides access to data through ontology.

The third method results from the growth of RDFS and
OWL in the Semantic Web. The data defined in this con-
text are represented as ontology class instances by means
of RDF triples. This approach, that we call ontology-
structured database, directly uses the ontology instance
structure for defining the instance model. This model may
be either a single triple table both for ontology and for
data [4, 6], or a set of ontology-specific tables for ontolo-
gies and unary tables for class belonging and binary tables
for property values [5, 14]. The major drawbacks of all
these approaches from database design perspective is that
the data structure is completely defined by the ontology.
The database designer has no control at all : once the on-
tology is selected the database structure is fixed. Moreover,
most of these approaches do not require data to be described
in a canonic way, thus either reasoning is requested for an-
swering query or data are duplicated. Our goal is also to
embed the ontology in the database, but we need the capa-
bility first to extend the ontology for missing concepts, then
to choose the CM as a subset of this extended ontology.
It should be noticed that the proposal from Oracle group
[6] permits to manage together the ontology in a particular
RDF structure and data in a particular structure chosen by
the database administrator. Thus this structure should also
be a candidate for storing the result of our proposed method.

7 Conclusion and Future Work

In this article we have presented a new design method
that extends the traditional ANSI/SPARC architecture.
An additional layer is added on top of the layered
ANSI/SPARC architecture: the ontology layer. This layer
describes the semantics of the data prescribed in conceptual
models independently of any conceptual modeling language
and of any database model. The reference mechanism of-
fered by ontologies is used to annotate concepts of the CM.
Indeed, each CM concept references, by its unique identi-
fier, the semantic definition available in ontologies. This
method is mainly interesting when some domain ontolo-

136

gies already exist in the application domain. Nevertheless,
it is seldom the case that a pre-existing domain ontology al-
ready addresses all the application requirements. Thus our
method allows extending and/or specializing the existing
ontology into a local ontology that covers all the applica-
tion requirements.

When this additional design level is also implemented in
the database, as we did within our OntoDB2 prototype, the
resulting database is an ontology-based database (OBDB).
When equipped with this level, OBDBs represent the se-
mantics of data and support access to data at the knowledge
level. It is in particular possible to implement an ontology
query language such as OntoQL, to query data at the onto-
logical level. Notice that processing in such way preserves
an upward compatibility with the traditional ANSI/SPARC
architecture; logical data being also possibly queried in
SQL.

In, this article we have mainly focused on the definition
of the ontology layer. Canonical, non canonical and lin-
guistic ontologies can be represented in this layer. Their
presence allows a user or a designer to access the database
through rich semantics definitions ignoring the logical and
physical database models. The more ontologies are rich
in non canonical concepts, the more a user can access the
database using different semantic point of views. We are
currently validating the OntoDB2 prototype that support all
the capabilities defined in this paper.

References

[1] C. W. Bachman. Summary of current work -
ansi/x3/sparc/study group - database systems. volume 6,
pages 16–39, 1974.

[2] J. Barrasa, scar Corcho, and A. Gmez-Prez. R2o, an ex-
tensible and semantically based database-to-ontology map-
ping language. Second Workshop on Semantic Web and
Databases (SWDB’2004)., August 2004.

[3] L. Bellatreche, G. Pierra, D. Nguyen Xuan, H. Dehainsala,
and Y. Ait Ameur. An a priori approach for automatic inte-
gration of heterogeneous and autonomous databases. Inter-
national Conference on Database and Expert Systems Ap-
plications (DEXA’04), pages 475–485, September 2004.

[4] B.McBride. Jena: Implementing the rdf model and syntax
specification. Proceedings of the 2nd International Work-
shop on the Semantic Web, 2001.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame:
A Generic Architecture for Storing and Querying RDF and
RDF Schema. In I. Horrocks and J. Hendler, editors, Proc.
of the 1st Int.. Semantic Web Conference (ISWC’02), number
2342, pages 54–68. Springer Verlag, July 2002.

[6] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An ef-
ficient sql-based rdf querying scheme. In VLDB ’05: Pro-
ceedings of the 31st international conference on Very large
data bases, pages 1216–1227. VLDB Endowment, 2005.

[7] H. Dehainsala. Explicitation de la sémantique dans les bases
de donnes : Le modèle OntoDB de bases de données à base

ontologique. PhD thesis, LISI/ENSMA et Université de
Poitiers, 2007.

[8] C. Fankam. OntoDB2: Support of Multiple Ontology Mod-
els within Ontology. In Proceedings of the EDBT 2008 PhD
Workshop. Co-located with the 11th International Confer-
ence on Extending Database Technology (EDBT’08), 2008.

[9] T. R. Gruber. Formal ontology in conceptual analysis and
knowledge representation. Chapter: Towards principles for
the design of ontologies used for knowledge sharing. Kluwer
Academic Publishers., 1993.

[10] N. Guarino and R. Poli. Formal ontology in conceptual
analysis and knowledge representation. Special issue of
the International Journal of Human and Computer Studies,
43(5/6):625–640, 1995.

[11] IEC61360-4. Standard data element types with associated
classification scheme for electric components - Part 4 : IEC
reference collection of standard data element types, compo-
nent classes and terms. Technical report, ISO, 1999.

[12] S. Jean, Y. Aı̈t-Ameur, and G. Pierra. Querying ontology
based database using ontoql (an ontology query language).
In Proc. of On the Move to Meaningful Internet Systems :
CoopIS, DOA, GADA, and ODBASE, OTM Confederated
Int. Conf. (ODBASE), pages 704–721. Springer, 2006.

[13] S. Jean, G. Pierra, and Y. Aı̈t-Ameur. Domain Ontologies :
a Database-Oriented Analysis, volume 1 of Lecture Notes in
Business Information Processing, pages 238–254. Springer
Berlin Heidelberg, 2007.

[14] J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, and
Y. Yu. Sor: a practical system for ontology storage, reason-
ing and search. In VLDB ’07: Proceedings of the 33rd inter-
national conference on Very large data bases, pages 1402–
1405. VLDB Endowment, 2007.

[15] G. Pierra. Context representation in domain ontologies and
its use for semantic integration of data. Journal Of Data
Semantics (JODS), pages 173–210, 2008.

[16] Roldan-Garcia, M. Navas-Delgado, Aldana-Montes, and
J. Aldana-Montes. A design methodology for semantic web
database-based systems. Third Int. Conf. on Information
Technology and Applications(ICITA’05), 1:233–237, 2005.

[17] P. Spyns, R. Meersman, and M. Jarrar. Data modelling ver-
sus ontology engineering. volume 31, pages 12–17, New
York, NY, USA, 2002. ACM Press.

[18] V. Sugumaran and V. C. Storey. The role of domain on-
tologies in database design: An ontology management and
conceptual modeling environment. In ACM Trans. Database
Syst., volume 31, pages 1064–1094, New York, NY, USA,
2006. ACM Press.

137

