
Tutorial on real-time scheduling 

Emmanuel Grolleau 

Laboratoire d’Informatique Scientifique et Industrielle 

grolleau@ensma.fr 

 

Abstract 

This presentation is a tutorial given as a survey of the 

basic problems arising in real-time schedulability 

analysis on uniprocessor systems. It mainly focuses on 

on-line scheduling policies (fixed priority policies - FPP, 

and dynamic priority scheduling) on a preemptive 

scheduling scheme, and insists on the basic concepts of 

busy period and processor demand. This tutorial is an 

extract of a lecture given in Masters of Computer 

Science and most of the results presented here can be 

found in books [Liu00][But04]. 

1. Introduction 

1.1. Real-Time systems and programming 

A real-time system is interacting with a physical 

process (UAV, aircraft, car, etc.) in order to insure a 

correct behaviour. The system computes a view of the 

state of the process and of the environment through 

sensors (e.g. an inertial measurement unit) and acts using 

actuators (e.g. the flaps). For now, let’s say that sensors 

can be passive or active: passive sensors are meant to be 

polled (the system has regularly to get its value), while 

active sensors send a value to the system, which is 

informed of the arrival of a new value by an interrupt. 

Unlike a transformational system, which computes an 

output from an input (hopefully) in a strict deterministic 

behaviour (for the same input, the output is always the 

same), the behaviour of a real-time system is hardly 

repeatable (the environment is usually different from a 

test to another). This characteristic is shared with 

reactive systems (usually, real-time systems are in the 

category of reactive systems, since they react to external 

events). We can split reactive systems into two 

categories: the synchronous ones, and the asynchronous 

ones. The synchronous hypothesis assumes that the 

reaction to an event is instantaneous, therefore, the 

system is supposed to react immediately (or in a time 

compatible with the minimal inter-event duration) to an 

event in any case. The asynchronous hypothesis is used 

when the CPU load is too high for a synchronous 

hypothesis. 

We focus on asynchronous real-time systems. Such 

systems are multitask because the rhythms involved are 

different in a reactive system: a polling task reading a 

sensor could have a period of 10 milliseconds, while 

another one has a period of 5 ms, and a third one is 

triggered by an interrupt, while a 4
th

 one should send a 

command to an actuator every 20 ms. 

There are two ways to program a (asynchronous, we 

are now always in the asynchronous hypothesis) real-

time system: event-driven programming, and time-driven 

programming. On one hand, in event-driven systems, 

events are interrupts. Events are either coming from 

sensors (including a keyboard or a pointing device) or 

from the internal clock. Thus, a task is released by an 

event, treats it, and then waits for the next event. On the 

other hand, time-driven systems are based on a time 

quantum: a task is awaken at its time, does a treatment 

anyway (even if nothing happened since its last release) 

and then sleeps until its next release time. Active sensors 

can also be used in time-driven systems: in this case, the 

data sent by the sensor is read by the interrupt service 

routine (ISR) and put into a buffer. The task in charge of 

this sensor will read the buffer during its next release 

(unless it’s replaced in the meantime by a new data sent 

by the sensor). In time-driven systems, tasks act like if 

active sensors were passive sensors: they are polling 

their value which has been stored previously by the ISR. 

Thus, event-driven systems are more reactive to external 

events delivered by active sensors (the task is released as 

soon as possible after the occurrence of the event), but 

their release dates are unknown. This particularity is 

really important in the sequel and in the models used for 

schedulability analysis. 

1.2. Different basic real-time task models 

Supposing all the tasks are independent and don’t 

share critical resources, or communicate (tough 

hypothesis!), we first consider independent task models. 

1.2.1. Non concrete task systems 

Since we only focus on time and processor 

requirement, Liu and Layland [LL73] proposed a 

periodic model (fitting to time-driven and event-driven 

programming) based on a worst case execution time Ci 

(WCET) needed by the CPU to complete a task i and its 

release period Ti.  

A task is thus denoted i::=<Ci,Ti>. 

Note that this task model is non concrete: the first 

release date of a task is unknown (it corresponds to 

event-driven systems).  



1

2

Response time 2,1 = 12 Response time 2,2 = 13

time

C2

T1=D1r1

 

Figure 1: example of a task system <Ci,Ti> 

S={1<1,4>,2<10,14>} 

Moreover, for such a model, the task has to finish 

before its next period: its relative deadline Di is assumed 

to be Ti. The usual non concrete task model is denoted 

i::=<Ci,Di,Ti>. Figure 1 shows a possible schedule for a 

non concrete task system when the release date (or 

offset) of 1 is r1=4 while r2=0. 

Note that an instance i,j of the task i can be called a 

job. 

The periodic task models fits with a lot of real-life 

task systems: in fact, most of the rhythms are periodic 

(polling passive sensors, then treatment chains, and even 

for active sensors, they usually behave periodically, or it 

is possible to find a minimal inter-event duration that can 

be used as a worst case period). Keep in mind that a 

WCET is a worst-case time, so when validating a 

system, we usually have to consider an execution time 

varying from 0 to the WCET of the task. It’s the same 

for the period: the period should be considered varying 

from Ti to +. 

What is the worst-case scenario for a task, since the 

release dates, the WCET, and the periods may vary? 

1.2.2. Concrete task model 

When the system to study is time-driven, all the 

release dates are known: in this case, the task system is 

said concrete, and a task can be defined by 

i::=<ri,Ci,Di,Ti> when ri is the release date of the first 

instance of i. When all the release dates are the same, 

the system is called synchronous (see Figure 2). When 

some tasks are not released for the first time at the same 

instant, the system is called non synchronous or 

asynchronous. 

1

2

Response time 2,1 = 14 Response time 2,2=13

time

 

Figure 2: same system, but synchronous 

1.3. Scheduling problems 

A schedule is feasible if the worst-case response time 

of every job of every task is smaller than the task’s 

relative deadline, in other words if all the deadlines are 

met during the life of the system. Most researchers 

propose scheduling policies or feasibility tests, or 

consider some quality of service or cope with more 

complex task models. 

Except for basic problems, the feasibility problem is 

NP-hard, thus there are two choices: being exact at an 

exponential cost, or being pessimistic at a polynomial or 

pseudo-polynomial cost. Of course, better not to be 

optimistic when talking about feasibility. 

Real-time scheduling community is usually bi-polar: 

- on one hand, on-line scheduling (or priority-driven 

scheduling): during the execution of the system, a 

simple scheduling policy is used by the executive in 

order to choose the highest priority job in the set of 

ready jobs. This algorithm (usually called policy) is 

used when the executed job is finished or when it’s 

blocked, or when another job is released or even 

sometimes at every time unit (quantum based 

scheduling). In this case researchers propose efficient 

schedulability tests (polynomials or pseudo-

polynomials) that can be used off-line (i.e. in order to 

validate a scheduling policy for a system), rarely new 

scheduling policies, or they can study more specific 

task models. In fact, the more specific a model is for 

a problem, the less pessimistic the schedulability tests 

are. Some other interesting problems deal with 

optimality of scheduling algorithms or of feasibility 

tests; 

- on the other hand, off-line scheduling (or time-driven 

scheduling) techniques, model based or using branch 

and bound or meta-heuristic algorithms, create a 

feasible schedule that can be executed endlessly by a 

dispatcher. In this case, researchers choose to deal 

with an exponential problem and have to cope with 

the state explosion problem. 

Fixed priority
RM,DM,Audsley…

Dynamic priority
EDF,EDL,ML, Pfair…

Conservative algorithm

(the CPU is never idle if there is

at least one active job)

Non conservative schedules

On-line scheduling policies

(priority-driven scheduling)

Knowledge of the active

jobs only

Off-line scheduling

(time-driven scheduling)

Knowledge of the past and future

 

Figure 3: scheduling algorithms ordered 
by scheduling power 

2. Fixed priority scheduling 

The most widely used scheduling policy is FPP. The 

reason can be that most or all commercial off-the-shelf 

real-time executives offer FPP. The most important 

concepts to understand are the critical instant concept 

(for non concrete systems and synchronous concrete 

systems) and the busy period concept. We will see the 

impact of critical sections on the schedulability analysis 

in a third part. For this section, we assume that the tasks 



are ordered by priority level (priority(1)> 

priority(2)>…). 

2.1. Critical instant 

Since the duration, the periods, and for non concrete 

systems, the first release date may vary, it is important to 

study the worst-case behaviour of the tasks. 

Critical instant theorem [LL73][Aud91][BHR93]: for 

independent task systems, in a context <Ci,Di,Ti> or 

<ri=0,Ci,Di,Ti>, the critical instant for a task i, leading 

to its worst-case response time, occurs when i is 

released simultaneously with all the higher priority tasks. 

In Figure 1 and Figure 2, we can see an illustration of 

this theorem: the worst-case response time of 2 occurs 

when it’s released at the same time as 1. A task is 

delayed by higher priority tasks releases. 

2.2. Busy period 

A level-i busy period is a time period where the CPU 

is kept busy by tasks whose priority is higher or equal to 

priority(i), where there is no idle point. An idle point 

corresponds to a point where the Time Demand Function 

meets the Time line (it corresponds to a point where all 

the previous requests of this priority level have been 

completed). Figure 4 shows the “classic view” of a busy 

period: initially, 1 and 2 are released; therefore, the 

CPU has to compute C1+C2 time units. The processing 

power is given on the diagonal: the CPU can process 1 

time unit of work per time unit. When the time demand 

function crosses the time (line Time demand=Time), it is 

the end of a busy period. When there is no demand, the 

CPU remains idle until the next release, which is the 

beginning of the next busy period. A flattened view is 

presented in Figure 5: the time is subtracted to the time 

demand function, giving the workload to process. 

Theorem [Aud91][ABTR93]: the worst-case response 

time for a task i occurs during the longest level-i busy 

period. 

Theorem [Aud91] [ABTR93]: the longest busy period 

is initiated by the critical instant. 

Therefore, we know the worst-case for a task i (case 

of non concrete task systems and synchronous task 

systems): we just have to consider the critical instant, 

build the first level-i busy period, study all the jobs of i 

occurring in the busy period, and claim the worst 

response time of these jobs as the worst-case response 

time of i. Does a busy period always end? Yes, if and 

only if the processor utilization ratio U=i=1..nCi/Ti1 

which is a trivial necessary schedulability condition on 

one CPU. 

 

time

Time

demand

1

2

1 1 1 2 1 1 1 11

2

Idle time

Busy period starting at the critical instant

Busy period

Idle point

 

Figure 4: level-2 busy period for the task 
system S 

time

Workload to

process

1

2

1 1 1 2 1 1 1 11

2  

Figure 5: flattened view of the level-2 busy 
period for the task system S 

We can notice that if the processor utilization ratio is 

less than 1, then the processor will remain idle at the 

same time instants (idle slots left into the level-n busy 

period) for any conservative algorithm. If the system is 

synchronous, there will be LCMi=1..n(Ti)(1-U) in any 

time period of length LCMi=1..n(Ti). 

Only problem: it’s exponential in time if we build the 

time demand function time unit per time unit! In fact 

with a processor utilization ratio of 100%, the level-n 

busy period ends at LCMi=1..n(Ti) which is bounded by 

3
max(Ti)

. 

In fact, the end of a busy period is given by the first 

time the time demand function meets the line y=x (in 

Figure 4) except at 0. [JP86] gives a pseudo-polynomial 

test when only one job of i can be in the busy period 

(the authors suppose that DiTi, thus if 2 jobs of i are in 

the busy period, the system is not feasible with the 

chosen FPP): 

Starting from Ci the length of the level-i busy period 

Ri is given by the smallest fixed point of the equation: 




















)(

)(
)1(

)0(

ihpj

j

j

n

i
i

n

i

ii

C
T

R
CR

CR

 

With hp(i) the set of indices of higher priority tasks 

than i. Wi(t)=i=1..jt/TiCi is called the processor 

demand function of level i: it represents the amount of 

CPU requested by tasks whose priority is greater or 

equal to priority(i) in the interval [0,t[. Using this 

notation, Ri
(*)

 is the smallest fixed-point of the equation 

t=Ci+Wi(t). 

This equation consists in taking Ci as the shortest 

possible busy period Ri
(0)

. For the next step, we consider 

that the higher priority jobs released in the interval 

[0..Ri
(0)

[ will grow the busy period by their WCET. We 

carry on until all the jobs in the busy period have been 

taken into account, let’s note the length of the busy 

period Ri
(*)

. If Ri
(*)
Ti (thus i doesn’t occur more than 

once in the busy period), following the critical instant 

theorem, and Audsley’s theorems, we can conclude that 

Ri
(*)

 is the longest busy period, and that the worst-case 

response time of i occurs in this busy period. Since ri 

was assumed to be 0, the worst-case response time RTi 

of i is Ri
(*)

. 

What is really interesting in this test is the fact that 

the priority order of higher priority jobs has no influence 

on the response time of i. 

Nevertheless, if Ri
(*)

 is greater than Ti, the busy period 

is not over, since i is released at least a 2
nd

 time. We 

thus have to carry on the test taking the following 

instances of i into account. This is exactly what is 

proposed in [Leh90][LSST91]: k represents the number 

of occurrences of i in the busy period. Starting with k=1 

(obtaining exactly [JP86] test). 


















)(

)(
)1(

)0(

)(

)(

ihpj

j

j

n

i
i

n

i

ii

C
T

R
kCkR

kCkR

 

The difference is that if Ri
(*)

(1)>Ti then the busy 

period initiated by the critical instant contains at least 

two occurrences of i, therefore, the test has to be carried 

out for k=2. If Ri
(*)

(2)>2Ti, we have to carry on for k=3 

and so on until Ri
(*)

(k)kTi. The worst-case response 

time of i is found in this busy period, but it is not 

necessarily the first job’s response-time. The response 

time of the job i,k (k starting at 1) is Ri
(*)

(k)-(k-1)Ti (date 

of its termination minus date of its release). 

As an example, consider the system (<Ci,Di,Ti>) 

S={1<26,26,70>, 2<62,118,100>}. 

The application of the formula is straightforward for 

1 since there is no higher priority job: 

R1
(1)

(1)=C1=26 

R1
(2)

(1)=C1=26=R1
(1)

(1)=R1
(*)

(1) 

R1
(*)

(1)T1, therefore, no additional job of 1 is 

involved in the busy period, and the worst-case response 

time RT1=R1
(*)

(1)-(1-1)T1=26. We can conclude that 1 

always meets its deadline, since RT1Di. 

For 2, the formula has a really interesting behaviour: 

R2
(1)

(1)=C2=62 

R2
(2)

(1)=C2+62/70C1=88 

R2
(3)

(1)=C2+88/70C1=114 

R2
(4)

(1)= C2+114/70C1=114=R2
(3)

(1)=R2
(*)

(1). The 

response time of the first job is 114, which meets the 

deadline, but R2
(*)

(1)>T2. That means that the 2
nd

 job is 

part of the same busy period. We thus have to continue 

for k=2: 

R2
(1)

(2)=2C2=124 

R2
(2)

(2)=2C2+124/70C1=176 

R2
(3)

(2)=2C2+176/70C1=202 

R2
(4)

(2)=2C2+202/70C1=202=R2
(3)

(2)=R2
(*)

(2). The 

2
nd

 job ends at the time 202. That means that its response 

time is 202-(2-1)T2=102. This response time is greater 

than the period, so the 3
rd

 job is part of the busy period 

and the test has to be led for k=3. 

We carry on for k=3 and the following until we reach 

k=7, where we finally find the end of the level-2 busy 

period: 

R2
(*)

(3)=316  the response time of 2,3 is 116 

R2
(*)

(4)=404  the response time of 2,4 is 104 

R2
(*)

(5)=518  the response time of 2,5 is 118 

R2
(*)

(6)=606  the response time of 2,6 is 106 

R2
(*)

(7)=696  the response time of 2,7 is 96 which 

is less than T2, ending the busy period… 

We see that the worst-case response time is given by 

the 5
th

 job: RT2=118D2, thus all the tasks meet their 

deadline and the system is feasible. 

We will see in the sequel that this test has been 

widely used with more specific task models, and 

constraints. Just note that the number of values to test for 

k can be exponential (up to LCMj=1..n(Tj)/Tj for each task 

i). 

2.3. Specific feasibility tests 

The response-time calculation is not related to any 

specific policy, it is exact (necessary and sufficient 

condition), but it’s not polynomial. Some authors 

proposed polynomial sufficient feasibility tests based on 

specific policies. These conditions consider only 

independent tasks, and don’t give good results as soon as 

some critical sections are present in the system. The 

reader can refer to [ABDTW95] for a survey. A lot of 

results are presented in a practical handbook [RMA]. 

Rate Monotonic (RM) was the scheduling policy 

proposed in [Ser72][LL73]: the lower the period, the 

higher the priority. In the model studied by the authors, 

Di=Ti. Thus the tasks with a lower period have a lower 

relative deadline: that makes RM the most intuitive FPP 

for tasks systems with Di=Ti. 

RM is optimal for synchronous, independent task 

systems with implicit deadline (Di=Ti) [LL73] in the 



class of FPP. That means that if the system is 

schedulable with a FPP, then it is schedulable with RM. 

Keep in mind that the worst-case scenario occurs for non 

concrete task system when tasks are considered 

synchronous, therefore, results standing for synchronous 

task systems stand for non concrete task systems. 

When Di<Ti, the most used priority policy is know as 

Deadline Monotonic [LM80][LW82], where the lower 

the relative deadline, the higher the priority. In fact, RM 

is a particular case of DM. DM is optimal for 

synchronous independent tasks systems whose relative 

deadline is less or equal to their period, in the class of 

FPP. 

Therefore, when the systems are concrete and 

synchronous, or when the system are non concrete, DM 

is the most widely used FPP. RM and DM have been 

intensively studied, and a lot of authors proposed 

polynomial time feasibility tests. Some tests are exact for 

some specific task systems, but they are necessary (thus 

pessimistic) conditions for the general case. 

The best known test for RM is proposed in [LL73]: if 

a tasks system is synchronous, is composed of n 

independent tasks, whose Di=Ti, then Un(2
1/n

-1) is a 

sufficient necessary schedulability condition. This 

technique is reducing the field of uncertainty with a 

polynomial time test (see Figure 6). The more tasks in a 

system, the bigger the uncertainty (starting at 82% for 2 

tasks, 78% for 3 and tending to a limit of 69% for an 

infinite number of tasks). This bound is quite low, since 

simulations [LSD89] showed that the average bound was 

around 88%. We can note that [DG00] showed that the 

proof in [LL73] was incomplete and completed it. 

Liu and Layland’s test has been tweaked in [KM91], 

where the simply periodic task sets are used (a simply 

periodic task set is such that for every couple i and j of 

the set, if period Ti>Tj, then Ti is an integer multiple of 

Tj. In this case, if there are k simply periodic task sets, 

then the necessary condition is Uk(2
1/k

-1). That means 

that if a system contains only simply periodic tasks, k=1, 

and the system is feasible with RM if and only if U1. 

When the tasks are not simply periodic, the test of 

[LL73] can still be improved using the fact that the 

closer the tasks are to being simply periodic, the larger 

the utilization can be [BLOS96]. Another exact test for 

RM can be found in [LSD89]: based on the processor 

demand function Wi(t)=i=1..jt/TiCi, the test consists, 

for each priority level, in checking the fact that the 

processor demand function meets the time line (i.e. 

W(t)/t1) at least once in the interval  ]0,Ti]. Since the 

local minima of this function correspond to the release 

date of the higher priority tasks, and to the release of the 

next instance of I, only these points need to be tested. 

More recently, Bini and al. proposed two tests for 

RM: the hyperbolic bound (H-bound) [BBB03] and the 

-HET [BB04]. The H-bound is simply i=1..n(Ci/Ti + 

1)2 which is a sufficient condition for a system to be 

feasible with RM. H-bound has been proven to be the 

tightest possible test based on the processor utilization. 

-HET is based on [LSD89] test, wisely studied as an 

hyperplane representation, allowing the authors to 

provide a test that can be tuned to control the complexity 

from polynomial (sufficient condition) to exact pseudo-

polynomial time with less steps than a classic response-

time analysis. 

We can find an exact test for the DM policy in 

[LSST91]. A test in O(n.2
n
) is proposed in [MA98]. 

uncertaintyschedulable with RM not feasible with RM

0% 100%

 


n

i i

i

T
CU

1

)12( /1 nn  

Figure 6: reducing uncertainty with the 
processor utilization 

2.4. Non synchronous tasks 

All the discussed tests assume a critical instant to 

exist, while it’s not always the case when the task system 

is asynchronous (i,j/ rirj) in a concrete system. In fact, 

forbidding the critical instant to happen can be 

interesting in order to increase the schedulability of a 

system, that wouldn’t be feasible otherwise. There are 

mainly two problems: choosing the right release dates to 

avoid the critical instant (offset free systems), and 

feasibility analysis.  

For example, if two tasks i and j should never be 

released at the same time, there are gcd(Ti,Tj)-1 possible 

integer values for their relative offset [Goo03]. Then 

choosing wisely the release times may improve 

schedulability, moreover, [Aud91] proposes an optimal 

priority assignment for such systems by testing O(n
2
) 

priorities. Nevertheless, testing the feasibility of a 

priority assignment for asynchronous independent task 

systems is NP-hard [LW82]. We can’t just focus on one 

busy period and conclude, but all the busy periods have 

to be studied, depending on the task system, at least until 

LCM (Ti) up to max(ri)+2LCM(Ti) [LW82][GG04]. 

2.5. Practical factors 

The practical factors are the most interesting ones for 

the researchers’ community of uniprocessor scheduling: 

most citations for independent “classic” task systems are 

dating from the 70’s to the mid-90’s. Usually, it seems 

that when someone has a problem involving a new 

practical factor, he is proposing a feasibility test, or even 

a new scheduling algorithm, improved later by other 

people. So starting in the 90’s, researchers have been 

proposing adaptations of classic scheduling theory to the 

real world. 

2.5.1. Critical sections and non-preemptible tasks 

Except for deadlock potential problems, the respect of 

mutual exclusion introduces new problems in real-time 

scheduling: scheduling anomalies, and priority inversion. 



A scheduling anomaly is presented in Figure 7: recall 

that for on-line scheduling, the WCET is a worst-case 

time. Therefore, even if on a simulation starting at the 

critical instant the system given in the form <Ci,Di,Ti> 

S={1<2,15,16>, 2<6,15,16>,2<6,16,16>} seems to be 

feasible with DM, it is not (note: it would be feasible if 

we were using the schedule in a dispatcher). When C2=6, 

all the deadlines are met in the schedule, but not when 

C2=5. This phenomenon is known as a scheduling 

anomaly: reducing the execution time or increasing the 

period can be worse than the worst-case temporal 

parameters. Therefore, even if the simulation could be 

used to validate a system composed with independent 

tasks, it can’t be used as soon as critical sections are 

involved.  

3

1

time

2

Sharing resource R

3

1

time

C2=5 => 2 is missing a deadline

C2=6 => on the simulation, deadlines are met

Task is blocked when taking the resource,

It’s normal, and is called a direct blockage

2

 

Figure 7: a scheduling anomaly due to 
resource sharing 

The problem of priority inversion is illustrated by the 

Figure 8: a priority inversion occurs when a task is 

delayed by a lower priority task that does not share a 

resource with it. In this figure, 2 is running while the 

highest priority job is waiting for 3 to complete its 

critical section. 

1

2
time

3

Sharing resource R

Priority inversion : 2 is executed while 1 is blocked by a lower priority task

Missed deadlines

 

Figure 8: a priority inversion due to 
resource sharing 

An intuitive way to avoid the priority inversion is to 

use the Priority Inheritance Protocol (PIP) [SRL90]: a 

task holding a resource which is blocking a higher 

priority task inherits the higher priority task’s priority 

until it frees the resource (see Figure 9). 

1

2
time

3

blockage

inheritance

R is freed => getting back its priority

Sharing resource R

 

Figure 9: priority inheritance protocol 

The PIP avoids any priority inversion, but it does not 

reduce the number of blockages that a task can suffer 

when trying to enter in a critical section: in Figure 9, if 3 

was using another resource R2 while using R, and if R2 

was already used by a lower priority task, then 1 would 

have to wait for both critical sections to end. Moreover, a 

task using several resources can be blocked each time 

it’s trying to enter in critical section. Studying a graph of 

resource uses, we can compute for a system how many 

resources can block a job, and how long the longest 

critical section would be. We can deduce a blocking 

factor Bi of a job. Note that during a level-i busy period, 

a task can be blocked at most once, thus, the worst-case 

response time of a task is written: 


















)(

)(
)1(

)0(

)(

)(

ihpj

j

j

n

i
ii

n

i

iii

C
T

R
kCBkR

kCBkR

 
We assume the worst-case scenario as being an 

instant where all the higher priority jobs are released at 

the critical instant, while all the lower priority jobs have 

just started their longest critical section, implying the 

longest blocking time. Note that when using this 

protocol, a task can be delayed by a lower priority task 

even if it’s not sharing a resource with it. This is called 

indirect blocking. The task 2 is indirectly blocked by 3 

in Figure 9. 

Sha and al. [SLR90] use PIP as an intuitive protocol 

but they show its inefficiency compared to the priority 

ceiling protocol (PCP). In PCP each resource R has a 

ceiling R, defined as the highest priority among the 

tasks using it. The system ceiling is defined as S=max 

resource in use R(R). The protocol functions exactly like the 

PIP, with an additional resource access rule: a task can 

access a resource if its priority is strictly higher than the 

system ceiling or if it is itself the cause of the value of 

the system ceiling. PCP avoids any priority inversion 

(like PIP), moreover, a task can be blocked only once per 

busy period, even if it is using several resources. A 

blocking time can’t exceed the length of one critical 

section. This is due to the rule introduced by PCP: if 

there is a critical section using a resource R1 required by 

a task i (thus, R1priority(i) and SR1), then no other 

task can enter in critical section unless its priority is 

strictly greater than the priority of i (because 

Spriority(i)). An interesting side effect of PCP is that 

no deadlock can occur. 



While PIP can’t be implemented efficiently, and has a 

poor behaviour regarding the value of Bi, PCP can be 

implemented efficiently in its immediate version (having 

the behaviour of the super priority protocol proposed in 

[Kai82]). The exact same worst-case behaviour takes 

place when the inheritance occurs as soon as a task 

enters in a critical section. As a result, Immediate PCP is 

the most widely used protocol in commercial off-the-

shelf real-time executives (e.g. POSIX, OSEK/VDX, 

Ada standards). 

Non-preemptible tasks are a particular case of tasks 

sharing resources (we can consider that all the tasks 

share the same resource), thus scheduling anomalies can 

occur too (even if, of course, priority inversion can’t 

occur). Validating a non-preemptible task system is NP-

hard [LRKB 77][JSM 91]. Their behaviour is closer, 

though, to the non-preemptible critical section [Mok83]. 

2.5.2. Precedence constraints 

The task model considers communicating tasks to be 

in a canonical form (e.g. if a task has to wait for a 

message, the message has to be awaited at the beginning 

of the task, and messages are sent at the end): it supposes 

that the original communicating tasks are split into 

several canonical tasks. The period of the tasks are 

assumed to be the same. When the priorities are not 

consistent with the precedence constraints (a higher 

priority task waiting for a lower priority task to 

complete), scheduling anomalies can occur (releasing a 

precedence constraint, or reducing the duration of a job 

can lead to a worse behaviour) [RRGC02].. 

2.5.3. Multiframe model and transactions 

Alternative more accurate models than the one of 

[LL73] have been introduced in the last decade. We 

focus here on the multiframe and the transaction models. 

Different task models are presented in [Bar98]. 

The multiframe model has been introduced by 

[MC96][MC97]. A multiframe task is non concrete, and 

characterized by <Ti, Pi> where Ti is the period of the 

task, and Pi is a set of execution times. For example, 

<10,{3,2,1,5}> represents a task of period 10, whose 

first job has a WCET of 3, 2
nd

 job of 2, 3
rd

 job a WCET 

of 1, 4
th

 job a WCET of 5, 5
th

 job a WCET of 3, and so 

on, repeatedly. In works concerning multiframe tasks, 

this task has 4 frames. The longest one is called the peak 

frame. The relative deadline is equal to the period. This 

model can be used when tasks have various amounts of 

data to treat during their execution. Note that a periodic 

task is a particular case of a multiframe task. Mok and 

Chen proposed a utilization-based sufficient feasibility 

test for RM, improved in [HT97][KCLL03][LLWS07] . 

Some other tests are based on a fixed-point lookup like 

in [BCM99]. 

The main problem is that determining the worst-case 

scenario for a multiframe set is intractable in general 

[MC96]: determining the critical instant requires to 

compute all the combinations of the releases of the tasks 

in each multiframe task (i=1..nni combinations). 

For some particular patterns, when the peak frame 

and the successive frames (modulo the number of 

frames) always generate the worse interference pattern, 

the task is said Accumulatively Monotonic (AM). For an 

AM task, by construction, there is only one task that can 

lead to the worse-case interference on a lower priority 

task. Therefore in this case, when there are only AM 

tasks, the problem is tractable since there is only one 

known worst-case scenario which is the one where a 

frame (the validation is lead frame by frame for a task) is 

released at the same time as all the higher priority peak 

frames. 

The multiframe model has been extended in 

[BCGM99] as the generalized multiframe model (gmf) 

where the frames don’t have the same deadline, and not 

the same period (i.e. not the same interval between 

successive frames of a task). In this model, a task is thus 

characterized by 3 vectors (WCET, relative deadline, 

minimal interval to the next frame (called period)). They 

study the time demand function of the tasks in order to 

validate the frames. 

In parallel to the development of this model, the 

transaction model, derived from Tindell’s task model 

with offsets, has been investigated. This model is a little 

similar to the gmf, except that the priority of the frames 

can differ, that the frames can have a jitter, may overlap, 

and of course that the vocabulary is quite different. A 

transaction is defined as a set of tasks. In fact, the 

transaction itself is non concrete (event-driven), but the 

tasks inside of a transaction are released a certain time 

after the release of the transaction, this time is the offset 

of the task (note that the difference between the offsets 

of two successive tasks would be the period of the first 

task in the gmf model), thus defined as the offset 

compared to the beginning of the transaction. This model 

has been introduced in [PH98]: a transaction 

i=<{i,1,…, i,|i|},Ti> where Ti is the period of the 

transaction (minimal interval between 2 successive 

activations), and each task of a transaction is defined as 

i,j:=<Ci,j, i,j, Di,j, Ji,j, Bi,j, Pi,j> where Ci,j is the WCET, 

i,j is the offset relative to the beginning of the 

transaction, Di,j the relative deadline, Bi,j the blocking 

factor due to resource sharing, Pi,j the priority, and Ji,j the 

release jitter. The concept of release jitter has been 

introduced in [Tin94]. A release jitter translates the fact 

that a task can have to wait up to a certain time before 

being able to start after its release date. For example, a 

task awaiting a message coming from a network could 

be activated between a planed release time and this 

release time plus its jitter (which could be the difference 

between the latest arrival time of the message and its 

earliest arrival time). This parameter is widely used in 

the holistic analysis used to validate distributed real-time 

systems. 



Going back to the transaction model, let’s call 0 the 

date when transaction i is released, the task i,j is 

released at the date i,j but may be delayed until the date 

i,j+Ji,j. 

[PH98] proposed a interference based sufficient 

method using the time demand function, whose calculus 

is optimized in [TN04]. The test has been improved in 

[TN05]: the authors noticed that the classic time demand 

function had chances to miss the fixed-point and slowed 

it down, by forbidding it to grow faster than the time. 

The obtained worst-case is far less pessimistic than in 

[PH98]. [TGC06] showed that the transactions were a 

generalization of the gmf model (itself generalizing the 

multiframe model), and studied similar properties as the 

ones used for the multiframe model (AM transactions), 

not taking the jitter into account. 

2.5.4. Miscellaneous 

Other practical factors have been studied, like the 

tasks that self-suspend (e.g. during an I/O operation) 

There are scheduling anomalies when tasks can self-

suspend, and the feasibility problem is NP-hard 

[RRC04]. Therefore, the self-suspension can be 

replaced, like in the case of critical sections, by a 

blocking factor [Liu00]. Some studies split the self 

suspension tasks and use the jitter to compute a worst-

case response time [KCPKH95]. An exact but 

exponential worst-response time calculation method is 

proposed in [RR06] and several approximation tests are 

compared. 

Different other practical factors have been studied 

recently, like energy aware scheduling that takes profit 

of CPU ability to change their execution speed in order 

to save energy; another example is taking into account 

the bounded number of priority levels of some 

executives, considering hierarchical schedulers, take the 

context switch time into account, etc. Some authors 

focused on relaxing the timing constraints, since for 

several kinds of real-time systems, the deadlines don’t 

have to be all met (e.g. model (m,k)-firm, Quality of 

Service, etc.). 

 

 

3. Dynamic priority scheduling 

3.1. Optimality 

The most well know algorithm is Earliest Deadline 

First (EDF), where the priority increases with the 

urgency (proximity of the deadline). The first known 

version was called Earliest Due Date, and [Jack55] 

proves its optimality regarding the lateness 

minimization, in the rule called Jackson’s rule: any 

algorithm executing tasks in a non decreasing order of 

deadlines is optimal for minimizing the maximum 

lateness. The proof is really nice, and based on the 

lateness of a task I, noted Li=RTi-di where di is the 

deadline of i, and TRi its response time. Note that this 

proof assumes i to be a job released at the beginning of 

the application, but [Horn74] generalized it to non 

synchronous jobs, so it can be taken for periodic tasks. 

Let A be an algorithm minimising the maximal 

lateness, and a and b with dadb such that b ends right 

before a. Let  be the schedule produced by A. Note that 

A doesn’t fit Jackson’s rule. In , Lmax(a, b)=La (see 

Figure 10). Let ’ be the same schedule except that the 

execution of a and b are reverted. In ’, 

L’max(a,b)=max(L’a, L’b), and L’aLa and L’bLa. 

Therefore, the maximal lateness of the schedule can’t be 

increased. This technique can be repeated until all the 

tasks fit Jackson’s rule. 

b a


ba
’

da db

da db

L’a L’b

La
Lb

 

Figure 10: illustration of Jackson’s rule 

[Der74] and [Lab74] showed the optimality of EDF in 

meeting the deadlines, and [LL73] showed that a 

necessary and sufficient condition for a system of 

periodic independent tasks with Ti=Di was U1. Off 

course, few real-life system meet these conditions, 

therefore, studies have been led to take practical factors 

into account. 

Even if we will focus on EDF in this presentation, 

other algorithms have been studied (like Minimal Laxity, 

a.k.a. Least Laxity, a.k.a. Least-Slack-Time First 

[Mok83] or Earliest Deadline Last, that both have the 

same optimality properties for independent task 

systems). 

3.2. Processor demand concept 

As soon as DiTi, feasibility tests can use the concept 

of processor demand. This concept is applied for 

concrete and synchronous tasks systems. For non 

concrete and concrete asynchronous systems, it is hard to 

determine what the worst-case scenario for a task is. 

[Spu96] showed that for non-concrete task systems, a 

worst-case scenario for a task occurs when all the other 

tasks are released simultaneously, but one has to check 

different release dates for the task under analysis. 

For concrete synchronous task systems, [JS93] 

proposed a feasibility test based on the processor 

demand: let Bp be the length of the first busy period (that 

would correspond to the level-“lowest priority” busy 

period in a FPP), obtained as the smallest fixed point of 

the equation W(L)=task iL/TiCi. A concrete 



synchronous independent task system with Di=Ti is 

feasible with EDF if and only if: 

i

n

i i

pi C
T

L
LBTLCML 













1

),),(min(

 
This test doesn’t look very efficient, since feasibility 

in this context can be tested just by computing the 

processor utilization. Nevertheless, it’s helping to 

understand what’s underlying EDF behaviour: L/Ti 

represents the number of jobs of i that must be 

completed at time L. Therefore, L/TiCi is the amount 

of time that the schedule must have given to i in the 

time interval [0,L]. If at any time, it has not been the 

case, then a deadline has been missed. 

An efficient version of this test is given in [BRH90], 

it takes relative deadlines into account: 

 

i

n

i i

i

pikiiikiki

C
T

DL
LDL

BTLCMdDkTddD

























 




1

,,,

1,

)),(min(,

 
D is the set of deadlines in the busy period, thus all 

the deadlines have to be checked. (L-Di)/Ti+1 is the 

number of completed deadlines during [0,L]. 

3.3. Practical factors 

Several protocols have been proposed to handle 

resource sharing with EDF: [CL90] proposed a dynamic 

version of the priority ceiling protocol but this implies a 

high overhead due to the updates of the priority ceilings 

of the resources. A better version, using the concept of 

preemption ceiling level (rather than priority ceiling) can 

be found in [Bak91]. It has the same properties as the 

PCP in FPP. 

3.4. Fixed priority vs. dynamic priority scheduling 

Dynamic priority scheduling is optimal for 

independent task systems, so its scheduling power is 

strictly higher than the fixed priority scheduling. 

Moreover, Jackson’s rule shows that integrating sporadic 

traffic in a deadline driven system is optimal to minimise 

maximal lateness. Nevertheless, when a task misses its 

deadline, and is carried on anyway, other tasks may miss 

their deadlines (it’s called the domino effect). Moreover, 

dynamic priority scheduling is less predictable than FPP 

(keep in mind that the task parameters may vary, and 

that a lot of real-world applications are event-driven). On 

the other hand, FPP are easy to understand, and there is a 

notion of importance that comes naturally with the 

priority. When a job is late at a priority level k, it does 

not affect the higher priority jobs. A side effect of FPP is 

that the regularity of higher priority jobs is higher than 

with a dynamic priority scheduling. Moreover, all the 

commercial off-the-shelf executives offer FPP 

scheduling. 

4. Non periodic traffic 

According to [Liu00] there are two main categories of 

non periodic tasks: aperiodic and sporadic ones. Since 

they are handled job by job, we will talk about jobs. We 

will say non periodic jobs for sporadic or aperiodic jobs. 

Sporadic jobs are hard deadline tasks, which can be 

accepted by the scheduler if it is possible to meet their 

deadline without missing any deadline of periodic tasks 

or previously accepted sporadic tasks. The problem with 

sporadic tasks is to create really efficient acceptance 

tests that are run on-line. Sporadic tasks, in J.W.S. Liu’s 

point of view, don’t have any inter-arrival time 

constraint. Note that in a non concrete model, a sporadic 

task which has a minimal inter-arrival time i, a WCET 

Ci and a relative deadline Di (we can talk about a 

sporadically-periodic task) can be modelled by a 

periodic task i with the same relative deadline and 

WCET, such that Ti=i (the parameter Ti can be greater 

on-line than in the model, thus Ti represents the minimal 

time between two consecutive activations of sporadically 

periodic tasks). In a concrete model, a sporadically 

periodic task can be modelled by a polling server: a 

polling server S is a periodic task having whose 

parameters are such that CS=Ci, Ti+Dimin(Di,i). 

Therefore, we will consider that a sporadic (non 

sporadically-periodic) job is characterized by <ri,Ci,Di> 

where the release date ri is known only at run-time, when 

the sporadic request arrives.  

Aperiodic jobs don’t have a deadline and are handled 

in a best-effort way, and the scheduler tries to complete 

them as soon as possible, without causing the periodic 

tasks or the accepted sporadic jobs to miss their deadline. 

An aperiodic job is characterized by <ri,Ci>. Like for 

sporadic jobs, ri is known only at run-time. Note that non 

periodic traffic is composed of independent tasks only. 

We can think about two basic ways to handle non 

periodic traffic: the background treatment, and an 

interrupt-driven treatment. 

Background treatment consists in using the idle slots 

left by the periodic/accepted sporadic traffic in order to 

compute non periodic traffic. However, the execution of 

the non periodic may be delayed unnecessarily, and the 

acceptance conditions of sporadic jobs would be drastic. 

Of course, one could use a periodic task as a sporadic 

server, whose WCET would be a bandwidth used to 

execute the non periodic jobs. Nevertheless, if it does not 

preserve its bandwidth when it’s not used by a non 

periodic job, a job would have to wait for the next 

release of the server in order to be executed. On the other 

hand, an interrupt-driven treatment would consist in 

executing the non periodic jobs as soon as they arrive, 

which, of course, would cause the periodic/accepted 

sporadic tasks to miss their deadline. 

We can distinguish 2 effective ways to handle non 

periodic traffic, the slack stealing, and the polling server 

preserving unused bandwidth. Most of the techniques 



can be used to handle aperiodic jobs, or sporadic jobs 

using an online acceptance test (feasibility test). For 

FPP, this test can be based on the time demand function 

or a polynomial-time estimation of the time demand, or 

on the processor utilization ratio. For deadline-driven 

scheduling, the acceptance test can use the processor 

demand, or the density (Ci/Di). 

Slack stealing consists in using the slack of 

periodic/accepted sporadic tasks to compute the 

sporadic/aperiodic jobs. The slack (or laxity) of a 

job is the difference between the remaining time 

until the next deadline and the time needed to 

complete the job. It is characterizing how long a 

job can be delayed without missing its deadline, in 

other words, its non-urgency. The idea behind slack 

stealing is to use this non-urgency in order to treat 

non periodic jobs. [LR92] proposed a slack-stealing 

algorithm for FPP scheduling. Even if it’s optimal, 

this method uses the time demand analysis method 

on-line, which would imply an important overhead 

(pseudo-polynomial algorithm) in order to compute 

the slack time. Note that it is possible to use 

polynomial time approximation tests in order to 

implement this server. [CC89] presents a slack 

stealing mechanism using a characterization of 

EDL algorithm in order to compute efficiently the 

slack time in a deadline-driven system. For more 

online efficiency, some servers use a pre-computed 

slack-time table. 

Polled execution with bandwidth-preserving consists 

in using a polling server (periodic task) that 

preserves its bandwidth when it’s not needed, in 

order to be able to handle future non periodic 

requests until the next replenishment (next release) 

of the server. The basic bandwidth-preserving 

server is the deferrable server [LSS87][Str88]. For 

FPP scheduling, the server is validated like a task 

with a release jitter (the jitter represents the fact 

that the server can be delayed in order to keep its 

bandwidth when there is no non periodic task to 

compute). [GB95] uses a deferrable server in a 

deadline driven system. Task systems containing 

tasks with jitter are tougher to validate than without 

jitter, since the time demand is higher at the critical 

instant. Therefore, in order to avoid this problem, 

[SSL89][GB95] propose the sporadic server, where 

in any time interval of the period of the server, only 

its capacity can be used. Under this condition, the 

server can be considered as a periodic task with no 

jitter. Other authors proposed different bandwidth-

preserving servers, especially for deadline-driven 

systems: the total bandwidth server [SB96], the 

constant utilization server [DLS97]. 

5. Conclusion 

This paper tried to give a little survey of uniprocessor 

real-time scheduling problems and some solutions. In 

fixed priority scheduling, there are basically two 

categories of periodic task systems: the non 

concrete/concrete simultaneous systems that have the 

same worst-case behaviour in fixed priority scheduling. 

This worst-case is obtained at the critical instant. The 

second category is the concrete asynchronous systems 

for which finding the worst-case scenario is NP-hard. 

There are two kinds of feasibility tests for the FPP: time 

demand based tests, exact for independent tasks, 

working for any FPP, but requiring a pseudo-polynomial 

time; and processor utilization ratio based, polynomial-

time tests, which are sufficient and not necessary (thus 

pessimistic) feasibility condition for any non trivial 

cases. 

For dynamic priority scheduling (mainly EDF), it is 

usually assumed that the tasks are concrete, since the 

non-concrete case is hard to characterize. The acceptance 

tests are based on the processor demand, or on density. 

Adding any practical factor leads to scheduling 

anomalies, and to NP-hard feasibility problems, which 

can be handled using worst-case blocking times, or more 

ad-hoc techniques. 

While in the late 80’s and 90’s, different ways were 

explored in order to handle the non periodic jobs, some 

new models, closer to the reality than the classic 

<Ci,Di,Ti> model arose in the last decade. 

A lot of areas are still opened: unexplored practical 

factors (that will open new research paths), more specific 

models (mix between time-driven and event-driven 

models), handling non periodic traffic into new tasks 

models (multiframe, transactions), etc. 

6. References 

[ABTR93] N.C. Audsley, A. Burns, K. Tindell, M. Richardson, 

A. Wellings, “Applying a new scheduling theory to static 

priority preemptive scheduling”, Software Engineering 

Journal, vol. 5(5), pp. 284-292, 1993. 

[ABDTW95] N.C. Audsley, A. Burns, R.I. Davis, K.W. 

Tindell, A.J. Wellings, “Fixed priority pre-emptive 

scheduling: an historical perspective”, Real-Time 

Systems, Vol. 8, pp. 173-198; 1995. 

[Aud91] N.C. Audsley, “Optimal priority assignment and 

feasibility of static priority tasks with arbitrary start 

times”, University of York, YCS 164, 1991. 

[Bak91] T.P. Baker, “Stack-based scheduling of real-time 

processes”, Real-Time Systems, Vol. 3(1), pp. 67-99, 

1991. 

[Bar98] S. Baruah, “A general model for recurring real-time 

tasks”, Proc. IEEE Real-Time Systems Symposium, pp. 

114-122, Madrid, Spain. Dec. 1998. 



[BB04] E. Bini, G.C. Buttazzo, “Schedulability analysis of 

periodic fixed priority systems”, IEEE Transactions on 

Computers, Vol. 53(11), pp. 1462-1473, November 

2004. 

[BBB03] E. Bini, G.C. Buttazzo, G.M. Buttazzo, “Rate 

Monotonic analysis: the hyperbolic bound”, IEEE 

Transactions on Computers, Vol. 52(7), pp. 933-942, 

July 2003. 

[BCGM99] S.K. Baruah, D. Chen, S. Gorinsky, A.K. Mok, 

“Generalized Multiframe Tasks”, The International 

Journal of Time-Critical Computing Systems,Vol. 17, pp. 

5-22, 1999. 

[BCM99] S. K. Baruah, D. Chen, A.K. Mok, “Static-priority 

scheduling of multiframe tasks”, Proc. 11th Euromicro 

Conference on Real-Time Systems, pp. 38–45, June 1999. 

[BLOS96] A. Burchard, J. Liebeherr, Y. Oh, S.H. Son, “New 

strategies for assigning real-time tasks to multiprocessor 

systems”, IEEE Transactions on Computers, vol. 44(12) 

pp. 1429-1442, 1996. 

[BHR93] S.K. Baruah, R.R. Howell, L.E. Rosier, “Feasibility 

problems for recurring tasks on one processor”, 

Theoretical Computer Science, Vol. 1(118), 1993. 

[BCGM99] S.K. Baruah, D. Chen, S. Gorinsky, A.K. Mok, 

“Generalized Multiframe Tasks”, Real-Time Systems, 

Vol. 17(1) pp. 5-22, 1999. 

[BRH90] S.K. Baruah, L.E. Rosier, R.R. Howell, “Algorithms 

and complexity concerning the preemptive scheduling of 

periodic, real-time tasks on one processor”, Real-Time 

Systems, vol. 2, pp. 301-324, 1990. 

[But04] G. Buttazzo, “Hard real-time computing systems: 

predictable scheduling algorithms and applications”, Ed. 

Springer, 425p., 2004. 

[CC89] H. Chetto, M. Silly-Chetto, “Some results of the 

earliest deadline scheduling algorithm”, IEEE 

Transactions on Software Engineering, vol. 15(10), pp. 

1261-1269, 1989. 

[CL90] M. Chen and K. Lin, “Dynamic priority ceilings: a 

concurrency control protocol for real-time systems”, 

Real-Time Systems, vol. 2(4), pp. 325-346, 1990. 

[Der74] M.L. Dertouzos, “Control robotics: the procedural 

control of physical processes”, proc. IFIP Congress, pp. 

807-813, 1974. 

[DG00] R. Devillers, J. Goossens, “Liu and Layland’s 

Schedulability Test Revisited,” Information Processing 

Letters, vol. 73(5), pp. 157-161, Mar. 2000. 

[DLS97] Z. Deng, J.W.S. Liu, J. Sun, “A scheme for 

scheduling hard real-time applications in open systems 

environment”, Proc. 9th Euromicro Workshop on Real-

Time systems, pp. 191-199, June 1997. 

[GB95] T.M. Ghazalie, T.P. Baker, “Aperiodic servers in a 

deadline scheduling environment”, Real-Time Systems, 

Vol. 9(1), 1995. 

[GG04] A. Geniet, E. Grolleau, “Minimal schedulability 

interval for real-time systems of periodic tasks with 

offset”, Theoretical Computer Science, vol. 310, pp. 117-

134, 2004. 

[Goo03] J. Goossens, “Scheduling of offset-free systems”, 

Real-Time Systems, Vol. 24(2), pp. 239-258, 2003. 

[Horn74] W. Horn, “Some simple scheduling algorithms”, 

Naval Research Logistic Quarterly, 21, 1974. 

[HT97] C.C. Han, H.Y. Tyan, “A better polynomial-time 

schedulability test for real-time fixed-priority scheduling 

algorithms”, Proc. IEEE Real-Time Systems Symp., pp. 

36-45, Dec. 1997. 

[HKL91] M.G. Harbour, M.H. Klein, J.P. Lehoczky, “Fixed 

priority scheduling of periodic tasks with varying 

execution priority”, Proc. IEEE Real-Time Systems 

Symposium, San Antonio, Texas, pp. 116-128, Dec 4-6 

1991. 

[Jac55] J.R. Jackson, “Scheduling a production line to 

minimize maximum tardiness”, Management Science 

Research Project 43, University of California, Los 

Angeles, 1955 

[JP86] M. Joseph and P. Pandya, “Finding response times in 

real-time system”, The Computer Journal, vol. 29(5), pp. 

390-395, 1986. 

[JS93] K. Jeffay and D.L. Stone, “Accounting for interrupt 

handling costs in dynamic priority task systems", proc. 

IEEE Real-Time Systems Symposium, Raleigh-Durham, 

NC, USA, 1993 

[JSM91] K. Jeffay, D.F. Stanat, C.U. Martel, “On non-

preemptive scheduling of periodic and sporadic tasks”, 

Proc. IEEE Real-Time Systems Symposium, San 

Antonio, Texas, pp. 129-139, Dec 4-6 1991. 

[Kai82] C. Kaiser, « Exclusion mutuelle et ordonnancement 

par priorité », Technique et Science Informatiques, Vol. 

1, pp. 59-68, 1982. 

[KCLL03] T. Kuo, L. Chang, Y. Liu, K. Lin, “Efficient on-line 

schedulability tests for real-time systems”, IEEE Trans. 

On Software Engineering, Vol. 29(8), 2003. 

[KCPKH95] I.G. Kim, K.H. Choi, S.K. Park, D.Y. Kim, MP. 

Hong, “Real-time scheduling of tasks that contain the 

external blocking intervals”. Real-Time and 

EmbeddedComputing Systems and 

Applications(RTCSA’95), 1995. 

[KM91] T.W. Kuo, A.K. Mok, “Load adjustment in adaptive 

real-time systems”, Proc. IEEE Real-Time systems 

Symposium, 1991. 

[Lab 74] J. Labetoulle, « Un algorithme optimal pour la 

gestion des processus en temps réel », Revue Française 

d'Automatique, Informatique et Recherche 

Opérationnelle, pp. 11-17, Fevr 1974. 

[Leh90] J.P. Lehoczky, “Fixed priority scheduling of periodic 

task sets with arbitrary deadlines”, IEEE Real-Time 

Systems Symposium, Lake Buena Vista, Florida, USA, 

1990. 

[Liu00] J.W.S. Liu, “Real-time systems”, Ed. Prentice Hall, 

610 p., 2000. 

[LL73] C.L. Liu and J.W. Layland, “Scheduling algorithms for 

multiprogramming in real-time environment”, Journal of 

the ACM, vol. 20(1), pp. 46-61, 1973. 

[LLWS07] W.C. Lu, K.J. Lin, H.W. Wei, W.K. Shih, “New 

schedulability conditions for real-time multiframe tasks”, 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Baruah:Sanjoy_K=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Deji.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gorinsky:Sergey.html
http://www.informatik.uni-trier.de/~ley/db/journals/rts/rts17.html#BaruahCGM99
http://www.informatik.uni-trier.de/~ley/db/journals/rts/rts17.html#BaruahCGM99


19th Euromicro Conference on Real Time Systems, 

(ECRTS07), Pisa, Italy, July 4-6 2007. 

[LM80] J. Leung and M. Merrill, “A note on preemptive 

scheduling of periodic real-time tasks”, Information 

Processing Letters, vol. 11(3), pp. 115-118, 1980. 

[LR92] J.P. Lehoczky, S. Ramos-Thuel, “An optimal algorithm 

for scheduling soft-aperiodic tasks infixed-priority 

preemptive systems”, Proc. Real-Time Systems 

Symposium, pp. 110-123, Phoenix, AZ, 2-4 Dec. 1992. 

[LRKB77] J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker, 

“Complexity of machine scheduling problems”, Ann. 

Discrete Math., 1, pp. 343-362, 1977. 

[LSD89] J.P. Lehoczky, L. Sha, Y. Ding, “The rate monotonic 

scheduling algorithm: exact characterization and average 

case behaviour”, Proc. 10th Real-Time Systems 

Symposium, pp. 166-171, 1989. 

[LSS87] J.P. Lehoczky, L. Sha, J.K. Strosnider, “Enhanced 

aperiodic responsiveness in hard real-time 

environments”, Proc. IEEE Real-Time systems 

Symposium, pp. 261-270, 1987. 

[LSST91] J.P. Lehoczky, L. Sha, J.K. Strosnider, H. Tokuda, 

“Fixed priority scheduling theory for hard real-time 

systems”, Foundations of Real-Time Computing: 

Scheduling and resource management, Kluwer Academic 

Publishers, pp. 1-30, 1991. 

[LW82] J. Leung and J. Whitehead, “On the complexity of 

fixed-priority scheduling of periodic real-time tasks”, 

Performance Evaluation, vol. 2, pp. 237-250, 1982. 

[MA98]  Y. Manabe, S. Aoyagi, “A feasibility decision 

algorithm for rate monotonic and deadline monotonic 

scheduling”, Real-Time Systems, 14(2), pp. 171-181, 

1998. 

[MC96] A.K. Mok, D. Chen. “A multiframe model for real 

time tasks”, proc. IEEE International Real Time System 

Symposium, pp. 22–29, 1996. 

[MC97] A.K. Mok, D. Chen. “A multiframe model for real-

time tasks”, IEE Trans. on Software Engineering, Vol. 

23(10), pp. 635-645, 1997. 

[Mok83] A.K. Mok, “Fundamental design problems for the 

hard real-time environments”, Ph.D. MIT, May 1983. 

[PH98] J. Palencia Gutierrez, M.Gonzalez Harbour, 

“Schedulability analysis for tasks with static and 

dynamic offsets”, Proc. 19th IEEE Real-Time System 

Symposium, December 1998. 

[RMA] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M.G. 

Harbour, “A practitioner’s handbook for real-time 

analysis: guide to rate monotonic analysis for real-time 

systems”, 712 p., Kluwer Academic Publishers, 1994. 

[RR06] F. Ridouard, P. Richard, “Worst-case analysis of 

feasibility tests for self-suspending tasks”, Proc. Real-

Time and Network Systems, RTNS’06, pp. 15-24, 

Poitiers, France, May 30-31st, 2006.  

[RRC04] F. Ridouard, P. Richard, F. Cottet, “Negative results 

for scheduling independent hard real-time tasks with 

self-suspensions”, Proc. 25th IEEE International Real-

Time Systems Symposium, pp. 47-56, December 2004. 

[RRGC02] M. Richard, P. Richard, E. Grolleau, F. Cottet., 

“Contraintes de précédences et ordonnancement mono-

processeur”, Real Time and Embedded Systems, ed. 

Teknea, pp. 121-138, 2002. 

[Ser72] O. Serlin, “Scheduling of time critical processes”, proc. 

Spring Joint Computers Conference, pp. 925-932, 1972. 

[SB96] M. Spuri, G. Buttazzo, “Scheduling aperiodic tasks in 

dynamic priority systems”, Real-Time Systems, Vol. 

10(2), pp.179-210, 1996. 

[Spu96] M. Spuri, “Analysis of deadline scheduled real-time 

systems”, Research Report INRIA, 2772, Jan, 1996. 

[SRL90] L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority 

inheritance protocols : an approach to real-time 

synchronization”, IEEE Transactions on Computers, Vol. 

39(9), pp. 1175-1185, 1990. 

[Str88] J.K. Strosnider, “Highly Responsive Real-Time Token 

Rings”, PhD thesis, Carnegie Mellon Univ., 1988. 

[SSL89] B. Sprunt, L. Sha, J.P. Lehoczky, “Aperiodic task 

scheduling for hard real-time systems”, Real-Time 

Systems, Vol. 1(1), pp. 27-60, 1989. 

[Tin94] K. Tindell, “Addind Time-Offsets to Schedulability 

Analysis”, Technical Report YCS 221, Dept of 

Computer Science, University of York, England, January 

1994. 

[TGC06] K. Traoré, E. Grolleau, F. Cottet, Characterization 

and analysis of tasks with offsets : monotonic 

transactions, Real-Time Computing Systems and 

Applications, RTCSA'06, Sydney, Australia, Augt 16-18, 

2006. 

[TN04] J. Mäki-Turja, M. Nolin, “Faster response time 

analysis of tasks with offsets”, Proc. 10th IEEE Real-

Time Technology and Applications Symposium (RTAS), 

May 2004. 

[TN05] J. Mäki-Turja, M. Nolin, “Fast and tight response-

times for tasks with offsets”, 17th EUROMICRO 

Conference on Real-Time Systems, Palma de Mallorca 

Spain, July 2005. 

 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sprunt:Brinkley.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sha:Lui.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lehoczky:John_P=.html

