
OntoDB2 : Support of Multiple Ontology Models within
Ontology Based Database

Chimene Fankam
LISI/ENSMA - Poitiers University

86961 Futuroscope Chasseneuil Cedex France
fankamc@ensma.fr

ABSTRACT
The notion of ontology has became more widespread, its
usage in different domains has first led to proposition of dif-
ferent ontology models, and secondly, to implementations
of different architectures able to manage both ontologies
and associated data. We called such database architectures
Ontology-Based DataBases (OBDBs). It appears that each
OBDB is mainly based on a single ontology-model. Dur-
ing our investigation of the most existing architectures and
ontology models, we figure out that most of these models
share a common kernel and each one has additional con-
structs which are orthogonal. In this paper, we propose a
new methodology to design an OBDB supporting different
ontology-models. This architecture offers specific constructs
of existing ontology models.
Advisors : Guy Pierra, Ladjel Bellatreche

Keywords
Ontology, Ontology model, Ontology-based Databases, Ar-
chitecture

1. MOTIVATIONS
Ontologies are used in a large spectrum of domains by differ-
ent communities. For example, in database area, to facilitate
data exchange and integration [6, 15], in the Semantic Web
field, to describe terms, retrieve information and intercon-
nect Web services. With the increasing use of ontologies,
a number of ontology models and languages with different
formalisms have been proposed: RDF [18], RDFS [9], OWL
[5], PLIB [25], KIF [14]. Each model (and language) has its
favorite application domain. For instance, PLIB ontology
model has been largely used for sharing and integrating het-
erogeneous data sources [6] in particular in the engineering
domain [19], RDF and OWL for annotating documents [17,
1]. Recently, several works proposed to represent both on-
tologies and associated data in databases. A database offer-
ing this functionality is called an Ontology-based Database
(OBDB).

Several OBDBs have been proposed such as: RDFSuite [4],
SESAME [10], OntoMS [23], OntoDB [12]. The main char-
acteristic of these OBDBs is that they are built around only
one single ontology model. Several debates have argued that
constructs proposed by each ontology model are complemen-
tary [20, 11, 24, 13, 26]. Many studies [16, 21, 8] have also
being conducted showing (a) the feasibility to combine the
semantics underlying Web Semantic ontology models and
database semantics, and (b) the added value that would re-
sult for data intensive applications.

My Ph.D work concentrates on the development of an OBDB
supporting constructs of multiple ontology models. To well
conduct my research work, a road map has been defined.
(1) To perform a precise study of existing ontology mod-
els and of different architectures of OBDB. (2) To define
how specific constructs of different ontology models could
be implemented in the same architecture. In my work, two
standard ontology models are to be used: OWL and PLIB.
(3) To design, implement and validate the proposed OBDB
architecture, called OntoDB2. This task also includes an
ontology editor designed for transparently managing ontolo-
gies with different models.

This paper is organized into five sections. Section 2 presents
an overview and a classification in three main categories
of existing OBDBs, followed by a study of the limitations
of theses OBBDs and the need of a new OBDB. Section 3
presents our findings on which is based our strategy for defin-
ing an architecture that supports multiple ontology models.
Section 4 presents specifications and implementation issues
of OntoDB2. Section 5 presents our current progress and
our ongoing work.

2. A PROPOSED TAXONOMY OF OBDB
An important number of OBDBs were proposed in the lit-
erature. We suggest classifying them into three main cate-
gories.

2.1 Type I architecture
In this architecture, ontology and associated data are stored
in an unique schema (Figure 1). Jena1 [7] is an example
of this architecture, where the used storage schema con-
sists of a unique table having the RDF triples structure:
(subject, predicate, object). In this representation, there is
no separation between ontologies and data. The database
structure is frozen. This representation is very simple, since
insertion/deletion operations of properties and instances are



Content

System catalog� � �� � �� � ���������	
� �� �
� �� ��������� � �
Figure 1: Schema of an OBDB of type I

done easily. But, it suffers from weak data typing and poor
performance caused by several auto-join operations over the
unique table [12, 23]. To optimize this architecture, cluster-
ing techniques need to be used [3]. This may dramatically
cause maintenance overhead. Moreover, the ontology model
being implicit, it needs to be hard encoded in the query
language interpreter.

2.2 Type II architecture
In type II architecture, ontology and associated data are
stored into two different schemas (Figure 2), one for storing
the local ontology and another for instance data. This ar-
chitecture outperforms the above one, but it still has some
drawbacks: (1) the ontology schema is based on the underly-
ing ontology model and thus is static, and, (2) introduction
of concepts originated from other ontology models is not al-
lowed. In Sesame, for example, structure of the ontology

Content

System catalog� � �� � �� � �
Ontology ���������

Figure 2: Schema of an OBDB of type II

part is based on RDFS (tables include: class, property, do-
main, range, etc.), whereas different representations can be
used for the data part: (1) An unique table of triples (like
in type I architecture), which contains extensions of all con-
cepts (classes and properties) of the local ontology. (2) A
unary distinct table for each class of the ontology and a
binary table for each property of the ontology. In this ap-
proach, the management of ontology part and data part is
different. This architecture is more efficient [4]. The sec-
ond data representation scales quite well, especially, when
queries refer to a small number of properties [2]. Contrari-
wise, when each instance is described by a large number of
properties, it does not scale [12].

2.3 Type III architecture
This architecture is proposed in OntoDB [6, 25], with PLIB
as the underlying ontology model. An additional part, called,
the meta schema part is introduced (Figure 3). Thus the

database structure is defined by three schemas. The pres-
ence of the meta schema part offers flexibility of the ontol-
ogy part, since it is represented as an instance of the meta
schema. This approach offers a generic access to both on-
tology and data. Whereas different representations could be
used for the data part, in OntoDB an horizontal approach
was used where a single table is associated to each class of
the ontology with one column per each used property. This
architecture scales well compared to type I architecture. It is
also more efficient than type II architecture, when numerous
properties per instances are used [12].

Content

� �� �� �
Ontology ���������

System catalogMeta schema� �� �� �
Figure 3: Schema of an OBDB of type III

2.4 Limits of existing solutions
A number of studies have pointed out the need for ontology-
based applications (in various domains) to integrate features
from several ontology models or from others modeling for-
malisms [21, 13]. It is the case, for example of e-business
related applications, where there is a need for a large ex-
pressivity for describing domain information (like in OWL)
and a capability for defining integrity constraints to ensure
data quality (like in PLIB). Note that these applications are
strongly related to Web Semantic domain, but they cannot
totally be modeled and interpreted using only RDFS/OWL-
oriented OBDBs (which do not support constraint defini-
tion), or a PLIB-oriented OBDB (which does not offer sup-
port for inverse property or class expression). Thus, if we
consider the case of a PLIB-oriented OBDB, constraint ca-
pability will be satisfied while loosing description expressiv-
ity that description logics-based ontology models offer.

This example shows that those applications need to deal
with several kinds of features which are unfortunately not
available in a single ontology model. Consequently, there is
a real need to integrate a set of ontology models.

As previously observed, existing OBDBs only deal with a
single ontology model (RDFS, OWL, PLIB,...), or, with pos-
sible semantics-compatible ontology models (RDFS/OWL).
Therefore, none of them is a good candidate for fields, where
applications require constructs from ontology-models with
different semantics. Our proposition is to design an OBDB
architecture aiming at providing a more adequate environ-
ment, i.e, based on an ontology model integrating constructs
from several ontology models like RDFS, OWL and PLIB.
The architecture must also manage very large size ontology-
based data and provides an efficient environment to the com-
mon operations or queries on these ontologies and associated
data.



2.5 Summary
In order to provide an effective OBDB for fields, where ap-
plications need to integrate constructs from different ontol-
ogy models, we propose to design an OBDB based on an
ontology model flexible enough to allow expression and pro-
cessing of complementary constructs from several ontology
models. Based on the above classification of OBDBs, it ap-
pears that type III architecture is more flexible. Indeed, in
type I and type II architectures, the ontology part is fixed,
whereas in type III, the ontology part is defined accord-
ing a meta schema. This flexibility criteria is a key success
factor in our goal to support multiple ontologies. Also, in
type III, the management of the ontology part and the data
part is done in a homogeneous manner and can be expressed
through their upper level. This allows a better processing
of operations/queries and more efficiency in handling large
amount of data. Based on this analysis, type III architecture
seems a good candidate for our proposed approach. Table
1 summarizes advantages and disadvantages of the studied
architectures.

Type I Type II Type III

Strong typing no no/yes yes
Separation ontol-
ogy/data

no yes yes

Model evolution no no yes
Scalability - ++ ++

Table 1: A comparison of OBDB architectures

3. FINDINGS AND STRATEGIES
In [13], we studied and analyzed different ontology mod-
els including the standard for the Semantic Web (OWL),
the standard for engineering (PLIB) and other models and
languages (KIF, F-logic) used in various applications. This
study allowed us to identify three fundamental characteris-
tics shared by these models.

1. In all ontology models, domain ontologies are in partic-
ular described in terms of primitive (canonical) classes
and properties associated with datatypes.

2. Most of the specificities of each ontology model con-
sist in defining conceptual equivalences (non-canonical
concepts) over primitive concepts. Moreover concep-
tual equivalences operators (e.g. class expression for
OWL and property rules in F-logic) are orthogonal
and can co-exist without any conflict in the same ar-
chitecture.

3. Instances of non-canonical concepts (defined concepts)
may also be represented as instances of canonical con-
cepts (primitives concepts).

Based on our findings, we defined a five step strategy to de-
sign an architecture able to support multiple ontology mod-
els :

1. Determine a common kernel (representing the inter-
section of ontology models) and its enrichment to suit-
ably integrate the specification of the various ontology
models.

2. Define how to integrate conceptual equivalences around
the common kernel.

3. Propose a policy for representing and managing in-
stances of data in the database. This policy shall
take into account the fact that non-canonical concepts
can be computed (derived) from their representation
as canonical concepts and their materialization in the
database is not necessary.

4. Support the extension of the ontology model.

5. Ensure the completeness of reasoning operations.

In our work, we currently deal with the following ontology
models PLIB, RDFS OWL Lite and OWL DL. OWL Full is
not decidable and is not concern by the scope of our study.
In the remaining paper, we will refer to OWL DL and / or
OWL Lite using the term OWL.

3.1 Specification of the common kernel
The common kernel is composed of concepts which are shared
by all the studied ontology models. In particular, RDFS,
OWL and PLIB ontology models describe domains in terms
of classes and properties which characterize classes whose
range is defined by a data type (that may be a class). Prop-
erties may have a collection has values. A number of meta
data are used to describe concepts (class and property) of
the common kernel (e.g., definition, comment, etc.).

To ensure an efficient implementation of ontology model and
instance data, it was decided to introduce some constraints
like in OntoDB [12] and RDFSuite [4]. (1) A property must
have a unique domain and a unique range. This enables
strong typing of property values. (2) Multi instantiation is
not supported in general. The set of classes to which an
instance belongs has a minimum for the subsumption rela-
tionship (least subsumer). This class is called the instance
base class. (3) Only properties that are applicable to an
ontology class (i.e., whose domain includes the class) may
be used for describing its instances. It is worth to notice
that if only properties applicable to a class may be used for
describing its instances, there is no constraint that all appli-
cable properties should be used. Thus, the logical schema
of instances of a class may be a subset of all the properties
applicable to this class.

3.2 Expression of conceptual equivalences
Most ontology models add specific constructs to the common
kernel that allow defining conceptual equivalences between
concepts. These extensions allow defining new constructors
on the basis of pre-existing canonical concepts using various
operators (set operators, logical rules, algebraic expressions,
and algebraic characteristics). We call theses concepts ”non-
canonical” concepts. Since these concepts are defined from
canonical concepts, their instances may be represented as
instances of canonical concepts.

3.3 Instances representation
As we have seen in section 2, the best representation of in-
stances data depends on the application domain (e.g., the
number of properties values associated with each instance).
To leave open the choice of instance implementation, we



choose to associate to each concept (class) of ontology a
view which will correspond to its set of instances. For a
canonical concept, this view will be in fact the table or set
of tables that contains its instances, and, for a non-canonical
concept, this view will be an expression corresponding to the
definition of the concept.

3.4 Extension of the ontology-model
The used common kernel must support extension. There-
fore, the architecture of our OBDB must support mech-
anisms for extending or specializing the common kernel.
The type III architecture satisfies this requirement. In-
deed, it is a Model-Driven Architecture similar to that of
the Meta-Object Facility (MOF). By the means of reflexive
meta schema, it offers a generic access to the ontology part
enabling to support its evolution.

3.5 Reasoning operations
In order to ensure the coherence and the completeness of
the database while maintaining good performances, much of
the reasoning operations will be done within the architecture
using SQL and processing offers by DataBase Management
System (DBMS). For the others, for which the inference can-
not be efficiently processed in the database, a pre-processing
must be done prior to the insertion of data whether at the
ontology or the data part, so that the result of the pre-
processing allows to easy the exploitation of the inserted
data. In OBDB, reasoning operations can be organized into
two groups: those concerning the ontology part and those
concerning the data part.

1. For the ontology part, OBDBs mostly deal with clas-
sification in order to compute the subsumption hierar-
chy and instantiation to determine the type of a given
individual.

• Subsumption. All OBDBs allow a hierarchical
visualization of classes of ontologies. As canoni-
cal classes, defined or non-canonical classes must
also be computed and positioned in the subsump-
tion hierarchy in order to provide a render of the
full ontology content. The classification opera-
tion is used to check the relation of generaliza-
tion/specialization between concepts, to organize
and to classify concepts in a hierarchy.

• Instantiation. This operation enables to find
to which class(es) an instance may belong, and
is necessary while migrating instances from an
OWL ontology to the OBDB, particularly for de-
rived classes which are essentially views; their in-
stances will be stored as instances of their least
primitive(s) subsumer(s).

Such mechanisms will be pre-processed using external
inference engines. The results are then stored in the
database which becomes ready for supporting queries.

2. For the data part, inferences are usually related with
non-canonical operators: defined classes and logical
characteristics of properties (symmetric, inverse, tran-
sitive). The next section discusses how reasoning on
the data part can be achieved using SQL and DBMS
processing.

4. OUR CURRENT SPECIFICATION
4.1 The common kernel
All common characteristics of PLIB, RDFS and OWL rep-
resent the kernel of our ontology model. In addition to these
concepts, we add characteristics which are usually important
for applications like algebraic characteristics of properties
(inverse, symmetric, transitive). We also introduce features
for the architecture optimization (class labelling) and to eas-
ier the integration of future extension.
Under the assumptions of section 3.1, the common kernel
can then be defined as follows: an ontology is made of a
set of classes organized in a subsumption hierarchy. Classes
are characterized by a set of properties associated with data
types. A property may have a simple range or be a collection.
Classes and properties are associated with logical character-
istics which are expressed in term of constraints, axioms or
rules. They are associated with meta data. Individuals or
ontology-based data are defined in terms of concepts (classes
or properties) defined in ontologies. Lastly, the common ker-
nel must contain only canonical concepts.

4.2 Extensions and mapping operators
Observation : Specific constructs offer by the different on-
tology models over the common kernel are made using con-
ceptual equivalence operators on canonical and/or non-canonical
concepts. These operators include: (1) Boolean expres-
sions, (2) algebraic characteristics, (3) restrictions on prop-
erty range, etc. Therefore, their instances can be derived
from those of canonical concepts, since DBMS offers similar
mechanisms and operators.
So, as canonical concepts, non-canonical concepts will be
represented in the database, the major difference resides on
the representation and the manipulation of associated data.

4.2.1 Non-Canonical Classes
1. Non-canonical classes defined using Boolean expres-

sions
Example :

Airdale Terrier ≡ Old-English-Terrier ∩ Otterhoung
This example defines a non-canonical class ”Airdale
Terrier” whose individuals must both belongs to ”Old-
English-Terrier” and ”Otterhoung”. From this defini-
tion, the following database view exactly computes the
extension of this non-canonic class.
SELECT * FROM Old-English-Terrier

INTERSECT

SELECT * FROM Otterhoung

This example shows that the extension of non-canonical
classes are not stored, but computed starting from the
evaluation of their definition by creating views over
extensions of canonical classes from which they are
built. Thus, non-canonical classes can be compared
to external schema on canonical classes, offering then
reasoning capabilities and local mapping enriching the
expressiveness of the ontology model.

2. Non-canonical classes defined using restrictions
Example :

French dogs ≡ ∃ comes-from. ’France’
This example defines a non canonical class ”French
dogs”as the class of individuals whose the value for the
property ”comes-from” has the value ’France’. Based
on this definition and according to our assumptions on



the uniqueness and the presence of the domain of each
property, the extension of the latter class is computed
by the following view:
SELECT * FROM dogs WHERE comes-from = ’France’

Thus, the representation of classes defined using re-
striction is also carried out by preserving the non-
redundancy of the data in the OBDB.

In OWL, three types of restriction are available: value
restrictions, range restrictions and cardinality restric-
tions. These restrictions are respectively related to:
the value of a property, the type of the values allowed
for a property and, the maximum and/or the minimal
cardinality of the values of a property for an occur-
rence of a given class. As for the value restriction of
the previous example, a range restriction can be com-
pared with a selection in other to filter individuals for
whose the value(s) of the property involved in the re-
striction is of the type of the specified type, while, a
cardinality restriction can be compared with a selec-
tion in other to filter individuals for whose the value(s)
of the property involved in the restriction respects the
specified cardinality.

4.2.2 Non-Canonical Properties
1. Inverse properties

Due to the importance of inverse characteristic, we
have integrated it in the common kernel. It is usually
used for bi-directional associations between classes. The
value of a property defined as being the inverse of an-
other property can be calculated using a view. The
expression of this view must take into account the car-
dinalities of the property and that of its inverse. Some
systems, like Hibernate, currently implement this char-
acteristic on traditional databases.

2. Properties defined by an algebraic expression
Example : diameter = radius * 2
This example defines the value of the property diam-
eter of a given occurrence as the double of its radius.
From this definition, the following database view com-
putes the value of diameter for any instance in the
database :
SELECT (radius *2) AS diameter FROM ...

In most traditional DBMSs, data manipulation lan-
guage offers support for arithmetic operators as well
as operators on strings. Thus, properties defined by
expressions using, for example, arithmetic operators
and whose operands included other properties can cur-
rently be expressed using views.

3. Algebraic characteristics of properties
Some properties carry characteristics which make it
possible to completely derived their whole extent start-
ing from a subset of the latter. It is the case of OWL
symmetric and transitive properties.

• Symmetric.
Observation: given a property P, the symmetric
characteristic allows to deduce for an occurrence
A related to another occurrence B by the prop-
erty P, that the occurrence B is related to the
occurrence A by this same property.

It is thus possible for this characteristic to auto-
matically fill the database by exploiting triggers
offers by DBMS. This mechanism is simple to im-
plement.

• Transitive.
Observation : Given a property P, the transi-
tive characteristic allows to deduce given an oc-
currence A related to another occurrence B by the
property P, that at the establishment of a new as-
sociation between the occurrence B and another
occurrence C by the property P, a new relation
between A and C by property P must be add to
the database. Moreover, the same applies to any
occurrence related to B by P.
The value of a transitive property will also be
filled using a trigger. However, this mechanism is
more complex to implement: (1) the computation
of the transitive closure has an elevated cost since
it is recursive, (2) if one considers the example of
the observation above, if the relation between B
and C is removed, it would also be necessary to
remove the relation between A and C. But with-
out any information on the origin of the A to C,
it is not possible to know whether this relation
should be removed.
In order to efficiently manage transitive relation-
ship, we considered that the database content is
saturated for the property P before the insertion
of a new relation between B and C, the transitive
closure of P is then calculated after insertion in a
non recursive way. Indeed, we just have to relate
any individual related to B, with C. The corre-
sponding trigger is expressed as follow:
FOR EACH A IN

SELECT oid FROM ... WHERE P = NEW.oid

LOOP

INSERT INTO ...(oid, P)VALUES (A.oid, NEW.P);

END LOOP;

4.3 Discussion
This clause presents a discussion about how our suggested
solution is different, new and better compared to existing
approaches. The discussion surrounds three major charac-
teristics of our approach.

• Supporting multiple ontology models. All the
existing OBDBs [4, 10, 23, 22, 12] support only one
particular ontology model. The finding that all on-
tology models: (a) share a common kernel, and (b)
include extensions that may be compatible with each
other, allowed us to propose an architecture that may
both support various ontology models and integrate
the capabilities of several models. This is done by (1)
representing, in the architecture, the meta model level,
(2) representing directly a kernel ontology model, that
represents the common semantics of the various ontol-
ogy models, and (3) defining mechanisms allowing to
map specific ontology constructs on database mecha-
nisms such that triggers and views.

• Managing canonical data. In database, informa-
tion shall be represented in a single (canonic) way.



Contrariwise, ontologies allow to describe the same
piece of information by different data [13, 8, 21]. For
instance, a woman may be represented either as a
woman instance, or as a person instance whose gender
is female. Such data do not fulfil the closed world as-
sumption and thus, any query may require inferencing
capabilities. By proposing to represent any instance
of non canonical class (defined concept) as an instance
of the canonical class (primitive concept) to which it
belongs, the represented data fulfil the closed world as-
sumption, and any canonical class may be queried by
usual query language without any inferencing capabil-
ities.

• Using database mechanisms for reasoning over

ontological data. An important inference capabil-
ity of description logic-based ontology, called the in-
stantiation test, is to compute whether some instance
belongs to some class. Representing all information
as canonical information, and representing all non-
canonical classes as views over canonical classes allows
to compute both the instances of canonical class and
the instances of non canonical class by means of the
database query language.

5. ONGOING IMPLEMENTATION
5.1 Work to date
A prototype of OntoDB2 is under implementation. The
framework of our approach is depicted as Figure 4. The
overall design objectives of our system include :

1. Scalability and flexibility. Our implementation is based
on the OntoDB operational prototype of OBDB [27],
OntoDB2 thus benefits from its scalability [12]. Also,
the ontological part allows the specialization of the
used kernel ontology model and thus is appropriate
for the implementation of all the specifics extensions
of the various existing ontology models.

2. Portability. In order to ensure the portability of our
system with respect to the underlying DBMS, the var-
ious accesses to database are made using Hibernate,
through mappings files we have defined between the
object representation of our ontology model and its
database schema representation. Actually, we are us-
ing PostgreSQL relational-object database system for
our implementation. The migration of our implemen-
tation from PostgreSQL to another DBMS requires at
most to replace mapping files and, at best no change.

3. Accessibility. All OBDBs offer Application Program-
ming Interface (API) for accessing and manipulating
ontologies and associated data contained in the database.
This allows the extraction of the underlying data schema
for applications accessing to data. In our case, the ar-
chitecture provides API to access data in a transparent
way. The manipulation of ontologies and associated
data may be done in their source model, regardless
their representations in the ”common kernel” ontology
model of the OBDB. Importation/Exportation mech-
anisms from and to their source model are to be pro-
vided. Our APIs are encoded in the JAVA language.
Model specific packages for OWL and PLIB are under

development, these packages encode the mapping rules
between PLIB and OWL ontologies [13] and their rep-
resentation in the common kernel. We also provide a
Web editor called OntoWeb which allows visualisation
and manipulation of ontologies and associated data.
At this stage, this interface is only available for the
common kernel and for PLib specific extensions.

Hibernate
Mapping

Files

Global API (Java)

APIs

Hibernate

PLib Package OWL Package

Applications (OntoWebEditor)

System catalog

Common
Kernel

Content

Common
Kernel

Meta
Schema

Rules:
1- …
2- ...

Meta schema

Figure 4: Global architecture of OntoDB2

5.2 Future work
We plan to further work on the following aspects:

• Automatic generation of non-canonical classes

views. OntoDB2 must be associated with an exter-
nal module in charge of generating views from non-
canonical classes descriptions.

• Preprocessing of ontology and ontology-based

data. To allow both view generation and canonic rep-
resentation of instances for non canonical classes, com-
plete subsumption hierarchies and complete instance
representations need to be computed by inference en-
gines. Thus, we have to define how information will be
shared and transferred between the OBDB and exter-
nal engines.

• Algebraic expression module. In order to enable
the definition of properties using algebraic expressions,
it is necessary to : (1) enrich the ontology editor with
an expression builder and compiler and (2) study the
possibility of invoking external functions (in charge of
the evaluation of these expressions) in views. This will
allow us to support a larger set of operators in addition
to the mathematical operations and functions offered
by SQL and existing commercial database systems.

• Constraint checking. We plan to support a onto-
logical constraint language in order to maintain the
consistency of the database by expressing and check-
ing ontological constraints against instance data.

6. ACKNOWLEDGMENTS
This work has been partially supported by the French ANR
under grant ANR05RNTL02706 (e-Wok-Hub).



7. REFERENCES
[1] RDFa Primer : Embedding Structured Data in Web

Pages. W3C,
http://www.w3.org/TR/xhtml-rdfa-primer/, 2007.

[2] D. J. Abadi, A. Marcus, S. Madden, and K. J.
Hollenbach. Scalable semantic web data management
using vertical partitioning. In VLDB, pages 411–422,
2007.

[3] R. Agrawal, A. Somani, and Y. Xu. Storage and
querying of e-commerce data. In VLDB, pages
149–158, 2001.

[4] S. Alexaki, V. Christophides, G. Karvounarakis,
D. Plexousakis, and K. Tolle. The ICS-FORTH
RDFSuite: Managing voluminous RDF description
bases. In Proceedings of the 2nd International
Workshop on the Semantic Web, 2001.

[5] S. Bechhofer, F. van Harmelen, J. Hendler,
I. Horrocks, D. McGuinness, P. Patel-Schneider, and
L. Stein. Owl web ontology language reference. W3C,
http://www.w3.org/TR/owl-ref/, 2004.

[6] L. Bellatreche, G. Pierra, D. Nguyen Xuan,
H. Dehainsala, and Y. Ait Ameur. An a priori
approach for automatic integration of heterogeneous
and autonomous databases. International Conference
on Database and Expert Systems Applications
(DEXA’04), (475-485), September 2004.

[7] B.McBride. Jena: Implementing the rdf model and
syntax specification. Proceedings of the 2nd
International Workshop on the Semantic Web, 2001.

[8] A. Borgida. Description logics in data management.
IEEE Transactions on Knowledge and Data
Engineering, 7(5):671–682, 1995.

[9] D. Brickley and R. Guha. Rdf vocabulary description
language 1.0: Rdf schema. W3C,
http://www.w3.org/TR/rdf-schema/, 2002.

[10] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A generic architecture for storing and
querying rdf and rdf schema. In I. Horrocks and
J. Hendler, editors, Proceedings of the 1st
International Semantic Web Conference (ISWC’02),
number 2342 in Lecture Notes in Computer Science,
pages 54–68. Springer Verlag, July 2002.

[11] J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. Owl
flight. WSML Delivrable D20.3 v0.1,
http://www.wsmo.org/TR/d20/d20.3/, 2004.

[12] H. Dehainsala, G. Pierra, and L. Bellatreche. Ontodb:
An ontology-based database for data intensive
applications. In Proceedings of the 12th International
Conference on Database Systems for Advanced
Applications (DASFAA’07), Lecture Notes in
Computer Science, pages 497–508. Springer, 2007.

[13] C. Fankam, Y. Ait-Ameur, and G. Pierra.
Exploitation of ontology languages for both reasoning
and persistency purposes: mapping plib, owl and flight
ontology models. In J. Filipe, J. Cordeiro,
B. Encarnação, and V. Pedrosa, editors, Third
International Conference on Web Information Systems
and Technologies(WEBIST’07), pages 254–262.
INSTICC Press, March 2007.

[14] M. Genesereth. Knowledge Interchange Format. In
Proceedings of the SecondInternational Conference on
the Principles of Knowledge Representation and

Reasoning, pages 238–249. Morgan Kaufman
Publishers, 1991.

[15] C. Goh, S. Bressan, E. Madnick, and M. D. Siegel.
Context interchange: New features and formalisms for
the intelligent integration of information. ACM
Transactions on Information Systems, 17(3):270–293,
1999.

[16] S. Grimm and B. Motik. Closed-world reasoning in
the semantic web through epistemic operators. In In
CEUR Proceedings of the OWL Experiences and
Directions Workshop, 2005.

[17] J. Kahan and M. Koivunen. Annotea: an open rdf
infrastructure for shared web annotations. In In
proceedings of the 10th international conference on
World Wide Web, pages 623–632, 2001.

[18] G. Klyne and J. J. Carroll. Resource Description
Framework (RDF): Concepts and Abstract Syntax.
W3C, http://www.w3.org/TR/rdf-concepts/, February
2004.

[19] L.Bellatreche, D. N. Xuan, G. Pierra, and
H. Dehainsala. Contribution of ontology-based data
modeling to automatic integration of electronic
catalogues within engineering databases. Computers in
Industry, pages 711–724, 2006.

[20] B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can
OWL and logic programming live together happily
ever after? In in proceedings of the 2006 International
Semantic Web Conference (ISWC’06), volume 4273 of
Lecture Notes in Computer Science, pages 501–514.
Springer, 2006.

[21] B. Motik, I. Horrocks, and U. Sattler. Bridging the
gap between owl and relational databases. In WWW
’07: Proceedings of the 16th international conference
on World Wide Web, pages 807–816. ACM, 2007.

[22] Z. Pan and J. Heflin. Dldb: Extending relational
databases to support semantic web queries. In
Proceedings of the 1st International Workshop on
Practical and Scalable Semantic Systems (PSSS’03),
pages 109–113, 2003.

[23] M. J. Park, J. H. Lee, C. H. Lee, J. Lin, O. Serres,
and C. W. Chung. An efficient and scalable
management of ontology. In Proceedings of the 12th
International Conference on Database Systems for
Advanced Applications (DASFAA’07), volume 4443 of
Lecture Notes in Computer Science. Springer, 2007.

[24] P. F. Patel-Schneider and I. Horrocks. A comparison
of two modelling paradigms in the semantic web. In
Proceedings of the Fifteenth International World Wide
Web Conference (WWW’06), pages 3–12. ACM, 2006.

[25] G. Pierra. Context representation in domain ontologies
and its use for semantic integration of data. Journal
Of Data Semantics (JODS), pages 173–210, 2008.

[26] G. Pierra. Context representation in domain ontologies
and its use for semantic integration of data. Journal
Of Data Semantics (JODS), pages 173–210, pp. 2008.

[27] G. Pierra, H. Dehainsala, Y. Ait-Ameur,
L. Bellatreche, J. Chochon, and M. E.-H. Mimoune.
Bases de données a base ontologique. Principe et mise
en oeuvre. Ingénierie des Systèmes d’Information
(ISI’05), 10(2):91–115, 2005.


