
Comparison of two worst-case response time analysis methods for

real-time transactions

A. Rahni, K. Traore, E. Grolleau and M. Richard
LISI/ENSMA

Téléport 2, 1 Av. Clément Ader
BP 40109, 86961 Futuroscope Chasseneuil Cedex

{rahnia,traore,grolleau,richardm}@ensma.fr

Abstract

This paper presents a comparison of two worst
case response time analysis methods in the context of
transactions. In the general context of tasks with off-
sets (general transactions), only exponential methods
are known to calculate the exact worst-case response
time of a task. We focus more precisely on mono-
tonic transactions. In this context, we present the fast
and tight analysis, proposed in [7, 6], and the analy-
sis technique of monotonic transaction that we have
proposed in [14]. We compare them on a case study
and on several configurations generated randomly.

Keywords: Response Time, Transactions

1. Introduction

The Response-Time Analysis [1] is an essential
analysis technique that can be used to perform
schedulability tests. Tindell proposed in [11] a new
model of tasks with offset (transactions) extending
the model of Liu and Layland [5]. Since the transac-
tions are non-concrete(the transaction release times
are not fixed a priori), the main problems is to de-
termine the worst case configuration for a task under
analysis (its critical instant). Tindell showed that the
critical instant for a task under analysis (τua) occurs
when one task of higher priority in each transaction
is released at the same time as τua.

An exact calculation method has been proposed
in [10], but has an exponential complexity and is
intractable for realistic task systems; Tindell [11]
has proposed a pseudo-polynomial approximation
method providing an upper bound of the worst-case
response-time. Later, this approach has been im-
proved in [4, 6, 7, 8]

In the sequel, we present the model of tasks with
offsets (a.k.a. transaction), then we present the best
known approximation method proposed by Turja and
Nolin [8]. Section 4 presents the monotonic transac-

tions exact analysis [13] and these two methods are
used on the same tasks system. In the last section
their performance are compared on randomly gener-
ated transaction systems.

2. Model of transactions

A tasks system Γ is composed of a set of |Γ| trans-
actions Γi, with 1 ≤ i ≤ |Γi| (where |Γi| is the number
of elements in the set Γi).

Γ :
{

Γ1, Γ2, .., Γ|Γ|

}

Γi :
{

τi1, τi2, ..., τi|Γi|, Ti

}

τij : < Cij , Oij , Dij , Jij , Bij , Pij >

Each transaction Γi (see figure 1) consists of a set
of |Γi| tasks τij released at the same period Ti , with
0 < j ≤ |Γ|. Without loss of generality, we suppose
that the tasks are ordered in the set by increasing
offset. A task τij is defined by : a worst-case execu-
tion time (WCET) Cij , an offset Oij related to the
release date of the transaction Γi, a relative dead-
line Dij , a maximum jitter Jij (the activation time
of task τij may occur at any time between t0 + Oij

and t0 + Oij + Jij , where t0 is the release date of the
transaction Γi, a maximum blocking factor Bij due
to lower priority tasks (e.g. priority ceiling protocol
[9]), and Pij is its priority (we assume a fixed-priority
scheduling policy). The figure 1 presents an example
of transaction Γi composed of three tasks with period
Ti = 16.
Let us note hpi(τua) the set of indices of the tasks of
Γi with a priority higher than the priority of a task
under analysis τua, assuming that the priorities of the
tasks are unique.

3 Fast and Tight Analysis

This method provides an efficient implementation
to calculate an upper-bound of the worst-case re-
sponse times [7]. The main idea is to represent the
periodic interference function statically, and during

��������
O��	�� 	�

O��
	��
ττττ�ττττ� ��

f
r

f
g

ττττ� ττττ�ττττ� ττττ�Γ���������
O��	�� 	�

O��
	��
ττττ�ττττ� ��

f
r

f
g

ττττ� ττττ�ττττ� ττττ�Γ�
Figure 1. Example of transaction.

the response-time calculation, to use a simple lookup
function in order to compute its value. The interfer-
ence imposed by the transaction Γi on a task under
analysis τua during a busy period of length t starting
at the release of τua and corresponding to the release
of τic is noted Wic(τua, t) (τic is then called the criti-
cal instant candidate in Γi). In order to simplify, we
suppose no Jitter in the transaction (i.e Jij = 0).

Wic(τua, t) =
∑

j∈hpi(τua)

((⌊

t∗

Ti

⌋

+ 1

)

∗ Cij − xijc(t)

)

t∗ = t − Φijc

Φijc = (Ti + (Oij − Oic)) % Ti

xijc(t) =

{

0 for t∗ < 0
max(0, Cij − (t∗ % Ti)) otherwise

Φijc is the phase between τic and τij . xijc(t) cor-
responds to the part of the task τij that cannot be
executed in the time interval of length t (note that
this part is the main difference between the methods
presented in [4] and [7]).
In order to find the critical instant, one would have to
compare every combination of critical instant candi-
dates, making the exact test intractable. The fast and
tight analysis method consists of creating a global in-
terference function Wi(τua, t) for each transaction Γi,
in choosing the maximum value of each interference
function.

Wi(τua, t) = max
∀c∈hpi(τua)

Wic(τua, t)

The figure 2 shows the graphical representation of
the interference of a transaction : each curve repre-
sents the interference function for each critical instant
candidate. Since the transaction is in normal form,
the derivative of each curve is either 0 or 1. Wi(τua, t)
that has to be computed is the maximum of all the
curves. The efficient implementation proposed in [7]
stores the set of points Pic, where each point Pic[k]
has an x (representing time) and a y (representing
interference) coordinate. These points correspond to
the convex corners of the curve Wic(τua, t).
The calculation of the upper bound on the worst-case
response time Rua of τua is obtained by an iterative

�������������ττττ���������������ττττ���������������ττττ��� !"# � #$
W�%(ττττ&',t)

Figure 2. Interference of transaction.

fix-point lookup.

R0
ua = Cua

R(n+1)
ua = Cua +

∑

Γi∈Γ

(Wi(τua, Rn
ua)) (1)

where Wi(τua, t) is deduced from the static represen-
tation of the transactions interferences.

3.1 Normal form of a transaction

Without loss of generality, we consider that all the
tasks of Γi have a higher priority than the task under
analysis τua. Since some tasks of a transaction may
have to overlap, issuing in an interference function
which derivative would be greater than 1, a normal
form of the transaction is first obtained using three
operations: order, merge, and split [7]. For each crit-
ical instant candidate τic, the transaction Γi is put in
normal-form. We start with all the tasks numbered
in increasing Φijc (phase between τij and τic). Thus
the task τic in the original transaction is named τi1

at the beginning of the normal-form processing.
The underlying idea behind the merge operation is
that if two tasks τij and τij+1 overlap, then the
longest busy period initiated by τij is always includ-
ing the longest busy period initiated by τij+1. The
split operation is used when a part of a task has to be
executed during the next period of the transaction :
in this case the spilling task is splitted into two tasks.
The spilling part is taken into account as a task with
an offset equal to 0 in the second period of the trans-
action. Thus, since the tasks are numbered according
to the increasing value of Φijc, the tasks can be re-
numbered (ordering operation) in the second period
of the transaction. These operations are used until
no task in the transaction is forced to overlap on the
next one, and until no task is forced to spill in the
second period of the transaction.
Note that the first period of a transaction may differ
in the number of tasks from the second period due to
the spilling tasks.
Note that if a jitter has to be taken into account, this
operation has to be done for every critical instant

2

candidate.

3.2 Example

We apply this method on the transaction Γi that
contains twelve tasks with no jitter (Jij = 0). and the
task τua with a WCET Cua = 9 and a lower priority
than all the tasks of Γi.

Γi := {< τi1τi2, ..., τi12 >, 60}

τi1 :< 3, 1, Di1, 0, 0, 1 > τi7 :< 2, 36, Di7, 0, 0, 7 >

τi2 :< 4, 9, Di2, 0, 0, 2 > τi8 :< 5, 43, Di8, 0, 0, 8 >

τi3 :< 2, 11, Di3, 0, 0, 3 > τi9 :< 3, 46, Di9, 0, 0, 9 >

τi4 :< 3, 20, Di4, 0, 0, 4 > τi10 :< 1, 49, Di10, 0, 0, 10 >

τi5 :< 4, 29, Di5, 0, 0, 5 > τi11 :< 4, 56, Di11, 0, 0, 11 >

τi6 :< 5, 31, Di6, 0, 0, 6 > τi12 :< 2, 57, Di12, 0, 0, 12 >

Obtaining the normal-form for Γi for the critical
instant candidate τi1: the three operations (order,
merge and spill), merge τi3 in τi2, τi6 and τi7 in τi5,
τi9 and τi10 are merged in τi8, and τi11 is merged in
τi12. The last task spills in the next period, thus the
second period of the transaction (and the following)
will have a additional task The resulting transaction
in normal-form, for the first period is:

τi1 :< 3, 0, Di1, 0, 0, 1 > τi2 :< 6, 8, Di2, 0, 0, 2 >

τi3 :< 3, 19, Di3, 0, 0, 3 > τi4 :< 11, 28, Di4, 0, 0, 4 >

τi5 :< 9, 42, Di5, 0, 0, 5 > τi6 :< 5, 55, Di6, 0, 0, 6 >

For the second period, the spilling time of the original
τi12 is taken into account in the first task τi1 of the
second period of the transaction, obtaining a WCET
of 4.

τi1 :=< 4, 0, Di1, 0, 0, 1 > τi2 :=< 6, 8, Di2, 0, 0, 2 >

τi3 :=< 3, 19, Di3, 0, 0, 3 > τi4 :=< 11, 28, Di4, 0, 0, 4 >

τi5 :=< 9, 42, Di5, 0, 0, 5 > τi6 :=< 5, 55, Di6, 0, 0, 6 >

The same operation is done for all the task
candidates τic for c = 2..12. The upper bound of
the worst-case response time is then obtained using
formula 1:

Iteration 0 : R
0
ua = 9

Iteration 1 : t = 9 : R
1
ua = 9 + 11 = 20

Iteration 2 : t = 20 : R
2
ua = 9 + 20 = 29

Iteration 3 : t = 29 : R
3
ua = 9 + 29 = 38

Iteration 4 : t = 38 : R
4
ua = 9 + 29 = 38

4 Monotonic Transactions

In this section we present the different steps of
monotonic transaction analysis [13, 14, 12]. Mono-
tonic transaction analysis relies on transactions for

which one interference curve (for one candidate) is
always greater or equal than the other curves. In
this way, it’s close to the concept of accumulatively
monotonic generalized multiframe task sets [2]. In
this case, if a transaction Γi is monotonic then the
critical instant occurs when the task under analysis
is released at the same time as the first task of the
pattern of the normal form of Γi. Therefore, for the
case where all the transactions of the task system are
monotonic for a task under analysis, the computed
worst-case response time is exact.

Since there is only one possible candidate in a
monotonic transaction, there is only one normal-form
to compute.

4.1 Finding the monotonic pattern

Let Γ∗
i be the normal form of the transaction Γi

where Γ∗
i :<

{

τ∗
i1, τ

∗
i2, ..., τ

∗
i|Γ∗

i
|, Ti

}

, Ti > and Γi :<
{

τi1, τi2, ..., τi|Γi|, Ti

}

, Ti >. Let us note:

αij = O∗
i(j+1) − (O∗

ij + C∗
ij) for 1 ≤ j < |Γ∗

i |

αi|Γ∗
i
| = (Ti + O∗

i1) − (O∗
i|Γ∗

i
| + C∗

i|Γ∗
i
|)

where αij > 1 since Γ∗
i is in normal form.

Note that since it’s not necessary to statically store
the interference function, there is no need to make a
difference between the first and the second period of
the transaction.

Γi is a monotonic transaction for the task τua (we
consider that all the tasks of Γi have a higher priority
than the one of τua) if the WCET of the tasks of Γ∗

i

have decreasing values while the idle slots αij have
increasing values i.e: C∗

i(p+1) ≤ C∗
ip for all 1 ≤ p <

|Γ∗
i | and αip ≤ αi(p+1) for all 1 ≤ p < |Γ∗

i |.
Γi is monotonic if we can find a monotonic pattern
in Γ∗

i by rotating the tasks of Γ∗
i . We know that for

a monotonic pattern the first task has the highest
WCET. In order to look for a monotonic pattern, we
start by inventorying all the tasks with the maximum
WCET. Then, we consider alternatively each of these
tasks τ∗

ik as the first task of the transaction Γ∗
i by ro-

tating the tasks of Γ∗
i ; and we verify if the conditions

of monotony (on C∗
ij and αij) are respected; if so, Γi

is monotonic and τ∗
ik become the first task of Γ∗

i .

4.2 Example

We apply this method on the same example as the
one we used for the fast and tight analysis.
We find Γ∗

i the normal form of the transaction Γi by
applying the operations of normalization process:

Γ
∗

i : {< τ
∗

i1, τ
∗

i2, ..., τ
∗

i5 >, 60}

τ
∗

i1 :< 6, 9, Di1, 0, 0, 1 > τ
∗

i2 :< 3, 20, Di2, 0, 0, 2 >

τ
∗

i3 :< 11, 29, Di3, 0, 0, 3 > τ
∗

i4 :< 9, 43, Di4, 0, 0, 4 >

τ
∗

i5 :< 9, 56, Di5, 0, 0, 5 >

3

We have: α∗
i1 = 5, α∗

i2 = 6, α∗
i3 = 3, α∗

i4 = 4, α∗
i5 = 4

There is a monotonic pattern starting from task τ∗
i3

where:

C
∗

i3 ≥ C
∗

i4 ≥ C
∗

i5 ≥ C
∗

i1 ≥ C
∗

i2

α
∗

i3 ≤ α
∗

i4 ≤ α
∗

i5 ≤ α
∗

i1 ≤ α
∗

i2

Hence the transaction is monotonic, and the critical
instant of τua corresponds to the release of the task
τ∗
i3, we apply the iterative fix-point lookup in order

to calculate the worst-case response time of τua.
In the case of monotonic transactions, the two meth-
ods presented provide the same exact worst-case re-
sponse time with the same number of iterations in
the process of calculation, because in every iteration,
the task that initiates the critical instant is the same.
The only difference between these two methods comes
from the stage of static representation in the fast and
tight analysis (stage A) and the research of the mono-
tonic pattern for the method of monotonic transac-
tion (stage B). Stage A for n tasks requires at least
n normal-form processing, plus computing the static
tables. Stage B requires only one normal-form pro-
cessing operation and a linear complexity test in order
to check the conditions related to C∗

i and α∗
i .

5. Performance comparison and future

works

We have implemented the two methods in order to
compare their respective performance. The figure 3
shows that the time used by the method proposed in
[8]increases linearly with the number of transactions,
while the method proposed in [14] is less sensitive to
the size of the system when only monotonic transac-
tions are involved. The tests have been led on a Pen-
tium IV processor, for sets of 20 configurations per
number of transactions. The transactions are mono-
tonic, and contain 15 tasks, while the workload is
fixed around 0.8. The random generation system is
based on the UUniFast algorithm presented in [3].
The bound on the worst-case response time is the
same for both methods, since at this stage, montonic-
ity is more a characterization allowing an optimiza-
tion than a method by itself (it has still to be coupled
with the method of [8] because in a system of trans-
actions, the transactions don’t have to be all mono-
tonic).
In future works, we will use the monotonicity prop-
erty as a basement to introduce a new evaluation
method in order to decrease the pessimism of [8] for
the upper bound on the worst-case response times.

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and
A. Wellings. Fixed priority pre-emptive schedul-
ing: An historical perspective. Real-Time Systems
8, pages 129–154, 1995.

0

20

40

60

80

100

120

140

1 4 7 10 13 16 19 22 25 28 31 34 37

Number of transactions of 15 tasks

E
xe

cu
ti

o
n

 t
im

es

Fast-Tight

Monotonic

Figure 3. Execution time

[2] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Gen-
eralized multiframe tasks. The International Jour-
nal of Time-Critical Computing Systems, (17):5–22,
1999.

[3] E. Bini and G. Buttazzo. Biasing effects in
schedulablity measures. IEEE Proceedings of the
16th Euromicro Conference on Real-Time Systems
(ECRTS04), Catania, Italy, (16), July 2004.

[4] J. P. Gutierrez and M. G. Harbour. Schedulability
analysis for tasks with static and dynamic offsets.
Proc IEEE Real-time System Symposium (RTSS),
(19), December 1998.

[5] C. Liu and J. Layland. Scheduling algorithms
for multiprogramming in real-time environnement.
Journal of ACM, 1(20):46–61, October 1973.

[6] J. Maki-Turja and M. Nolin. Faster response time
analysis of tasks with offsets. Proc 10th IEEE
Real-Time Technology and Applications Symposium
(RTAS), May 2004.

[7] J. Maki-Turja and M. Nolin. Tighter response time
analysis of tasks with offsets. Proc 10th International
Conference on Real-Time Computing and Applica-
tions (RTCSA04, August 2004.

[8] J. Maki-Turja and M. Nolin. Fast and tight response-
times for tasks with offsets. 17th EUROMICRO Con-
ference on Real-Time Systems IEEE Palma de Mal-
lorca Spain, July 2005.

[9] L. Sha, R. Rajkumar, and J. Lehoczky. Priority
inheritance protocols : an approach to real-time
synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[10] K. Tindell. Using offset information to analyse static
priority pre-emptively scheduled task sets. Techni-
cal Report YCD-182,Dept of Computer Science, Un-
oversity of York, England, 1992.

[11] K. Tindell. Adding time-offsets to schedulability
analysis. Technical Report YCS 221, Dept of Com-
puter Science, University of York, England, January
1994.

[12] K. Traore. Analyse et Validation des Applications
Temps Réel en Présence de Transactions : Appli-
cation au Pilotage d’un Drone Miniature. Thèse,
ENSMA-Université Poitiers, 2007.

[13] K. Traore, E. Grolleau, and F. Cottet. Characteri-
zation and analysis of tasks with offsets: Monotonic
transactions. Proc 12th International Conference on
Embedded and Real-Time Computing Systems and

4

Applications. RTCSA’06, (12), August 16-18th Syd-
ney, Australia 2006.

[14] K. Traore, E. Grolleau, A. Rahni, and M. Richard.
Response-time analysis of tasks with offsets. 12th
IEEE International Conference on Emerging Tech-
nologies and Factory Automation ETFA’06, Septem-
ber 2006.

5

