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Joël Goossens
Computer Science Department
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Abstract

We consider static-priority tasks with constrained-
deadlines that are subjected to release jitter. We define an
approximate worst-case response-time analysis and pro-
pose a polynomial-time algorithm. For that purpose, we
extend the Fully Polynomial-Time Approximation Scheme
(FPTAS) presented in [6] to take into account release jit-
ter constraints; this feasibility test is then used to define
a polynomial time algorithm that approximate worst-case
response times of tasks. Nevertheless, the approximate
worst-case response time values have not been proved
to have any bounded error in comparison with worst-
case response times computed by an exact algorithm (with
pseudo-polynomial time complexity).

1 Introduction

Guaranteeing that tasks will always meet their dead-
lines is a major issue in the design of hard-real time sys-
tems. We consider the problem of ensuring that periodic
tasks scheduled by a preemptive static-priority scheduler
upon a uniprocessor platform meet all deadlines. Every
execution of a given task is called a job. We consider
tasks that have constrained-deadlines (i.e., deadlines are
less than or equal to task periods) and are subjected to re-
lease jitter. A release jitter models an interval of time in
which a task waits the next tick of the RTOS in order to
start or is pending due to input communications.

Tasks are scheduled at run-time using a static-priority
scheduling policy. Every task has a static priority and at
any time the executed job has the highest priority among
tasks awaiting execution. The feasibility problem con-
sists of proving that tasks will always meet their dead-
lines at run-time. For the considered real-time systems,
the feasibility problem is not known to be NP-hard, but
only pseudo-polynomial time tests are known. How-
ever, pseudo-polynomial time complexity is too computa-

tionally expensive for performing on-line task admission
or for analysing large distributed systems using classical
methods such as the holistic analysis [19].

For a static-priority system, a task set is feasible on a
given processing platform, if every task will always meet
all deadlines when scheduled according to its given static-
priority on the given platform. A feasibility test is an al-
gorithm used to check if a task set is feasible or not. One
can distinguish several approaches to designing a feasibil-
ity test for real-time task sets: (i) an exact feasibility test,
(ii) a sufficient feasibility test (also known as pessimistic
feasibility test) and (iii) an approximate feasibility test.
We briefly describe their main characteristics.

An exact feasibility test can always correctly catego-
rize task sets as either feasible or infeasible upon a spe-
cific hardware platform [10, 13, 15]. An exact test will
label a periodic task set as “infeasible” if and only if
the task set will miss a deadline at run-time. Neither a
polynomial-time test nor NP-hardness result are known
for static-priority tasks having constrained-deadlines.

A sufficient feasibility test always leads to an exact
positive decision: if the test concludes that a task set is
feasible then no deadline will be missed at run-time. But,
when it concludes that a task is infeasible, then it may be
a rather pessimistic decision (i.e., tasks may meet their
deadlines at run-time). Sufficient feasibility tests have a
lower computation complexity than corresponding exact
feasibility tests. Numerous sufficient feasibility tests are
known in the literature (e.g. [16, 11, 3, 9, 1, 4]).

An approximate feasibility test is based on the approx-
imability theory of NP-hard optimization problems [7].
It reduces the gap between the two previous approaches
to control the “unused processor capacity” for tests based
on the processor-demand analysis. It runs in polynomial-
time according to an accuracy parameter ε. An approxi-
mate feasibility test allows to conclude that a task set is
[6, 5]:

• feasible (upon a unit-speed processor).



• infeasible upon a (1 − ε)-speed processor. That is,
“we must effectively ignore ε of the processor ca-
pacity for the test to become exact” [6]. So, the
pessimism introduced by the feasibility test is kept
bounded by a constant multiplicative factor.

In [17], some numerical experiments are presented that
show the practical interest of several approximate feasi-
bility analysis in comparison with exact feasibility tests.

Most of feasibility tests produce a boolean decision:
feasibility or infeasibility. However, an important quali-
tative measure for a task is its worst-case response time
(i.e., the maximum size interval of time between a release
of a task and its completion). Response-Time Analysis is
often used to quantify the maximum earliness or tardiness
of tasks and to bound release jitter of dependent tasks or
messages in a distributed system. For synchronous static-
priority systems, worst-case response times of tasks can
be computed in pseudo-polynomial time.

This research. As far as we know, no approxima-
tion algorithm is known for approximating worst-case re-
sponse times of tasks with a constant performance guar-
antee (i.e., upper bounds of worst-case response times).
The aim of this paper is to introduce such an analysis and
to try to show its relationship with approximate feasibility
analysis. We present an FPTAS for analysing the feasibil-
ity of static priority tasks with release jitter constraints.
We then show feasibility tests can be used to define up-
per bounds of worst-case response times based on a poly-
nomial time algorithm. Lastly, we show that there ex-
ists some task systems such that ratio between the exact
worst-case response time and the approximate worst-case
response time is not bounded.

Organization. The remainder of this paper is orga-
nized as follows. We first define a preliminary result for
computing worst-case response times while performing
a processor demand analysis (e.g., [13]), then we extend
the FPTAS presented in [6] with release jitter constraints.
These results are then combined to define for computing
approximate worst-case response times. Nevertheless, we
show via a counter-example that the computed approxi-
mate worst-case response times values are not guaranteed
to be close to actual worst-case response times (i.e., with
a bounded error).

2 Task Model and Exact Analysis

2.1 Task Model

In this paper, we assume that all tasks share a proces-
sor upon which all jobs must execute. Every job can be
preempted and resumed later at no cost or penalty. With-
out loss of generality, we also assume the the rate of the
processor is exactly one, since if it is not the case all pro-
cessing requirements can be normalized to the processor
speed.

A task τi, 1 ≤ i ≤ n, is defined by a worst-case execu-
tion requirement Ci, a relative deadline Di and a period

Ti between two successive releases. Every task occur-
rence is called a job. We assume that deadlines are con-
strained: Di ≤ Ti. Such an assumption is realistic in
many real-world applications and also leads to simpler al-
gorithms for checking feasibility of task sets [12]. More-
over, we define the utilization factor of the periodic tasks

as follows: U
def=

∑n
i=1 Ci/Ti. We consider a discrete

scheduling model and thus we assume that all parameters
are integers.

In order to model delay due to input data communi-
cations of tasks, we also consider that jobs are subjected
to release jitter. A release jitter Ji of a task τi is a in-
terval of time after the release of a job in which it waits
before starting its execution. In the following, we assume
that 0 ≤ Ji ≤ Di (otherwise the system is obviously
not schedulable). Release jitter constraints model delays
introduced by the RTOS in presence of system ticks or
input communications. For this latter case, dependencies
among distributed tasks are modeled using the parameters
Ji, 1 ≤ i ≤ n. Using such a model, a distributed system
can be analysed processor by processor, separately using
for instance an holistic based schedulability analysis [19].

For a given processor, we assume that all tasks are in-
dependent and synchronously released. All tasks have
static priorities that are set before starting the application
and are never changed at run-time. At any time, the high-
est priority task is selected for execution among ready
tasks. Without loss of generality, we assume next that
tasks are indexed according to priorities: τ1 is the highest
priority task and τn is the lowest priority one.

2.2 Known Results

2.2.1 Request-Bound and Workload Functions

In presence of release jitter constraints, the request-bound
function of a task τi at time t (denoted RBF(τi, t)) and the
cumulative processor demand (denoted W i(t)) of tasks at
time t of tasks having priorities greater than or equal to i
are respectively (see [19] for details):

RBF(τi, t)
def=

⌈
t + Ji

Ti

⌉
Ci (1)

Wi(t)
def= Ci +

i−1∑
j=1

RBF(τj , t) (2)

Informally, the request-bound function for a task τ i and
positive t is the maximum execution requirement of jobs
of τi released in any continuous interval of length t.

Using these functions, two distinct (but linked) exact
feasibility tests can be defined. We restate both results
that will be reused in the remainder.

2.2.2 Time-Demand Analysis

The time-demand approach checks that the processor ca-
pacity is always less than or equal to the processor capac-
ity required by task executions. [13] presents a processor-



demand schedulability test for constrained-deadline sys-
tems (but the test was extended for arbitrary deadline sys-
tems in [12]). It can be also easily extended to tasks sub-
jected to release jitter as stated in the following result (a
proof can be found in [8]):

Theorem 1 [13, 15] A static-priority system
with release jitter contraints is feasible iff

maxi=1...n

{
mint∈Si

Wi(t)
t

}
≤ 1, where Si is

the set of scheduling points defined as follows:

Si
def= {aTj − Jj | j = 1 . . . i, a = 1 . . .

⌊
Di−Ji+Jj

Tj

⌋
}

∪{Di − Ji}.

Note that schedulability points correspond to a set of
time instants in the schedule where a task can start its
execution, after the delay introduced by its release jit-
ter. From a computational complexity point of view, for
any integer k, there is a task system with two tasks such
that the time complexity of the time-demand analysis is at
least O(k) (Lemma 1, [15]).

2.2.3 Response-Time Analysis

An alternative approach for checking the feasibility of a
static-priority task set is to compute the worst-case re-
sponse time Ri. The worst-case response time of τi is
formally defined as:

Definition 1 The worst-case response time
of a task τi subjected to a release jitter is:

Ri
def= (min{t > 0 | Wi(t) = t}) + Ji.

Note that for infeasible tasks Ri does not necessarily
correspond to the worst case response time, but instead
only corresponds to the worst-case response time of the
first job of τi.

Exact algorithms for calculating the worst-case re-
sponse time of periodic tasks are known (e.g., see [10]
for a recursive definition of the following method). Using
successive approximations starting from a lower bound of
Ri, we can compute the smallest fixed point of Wi(t) = t
with the following sequence. By Definition 1, this small-
est fixed point is the worst-case response time for feasible
task τi.

W
(0)
i =

i∑
j=1

Cj

W
(k+1)
i = Ci +

i−1∑
j=1

RBF(τj , W
(k)
i )

The recursion terminates (assuming that U ≤ 1) for
the smallest integer k such that: W

(k+1)
i = W

(k)
i (i.e.,

the smallest fixed point of the equation Wi(t) = t has
been reached).

The processor-demand analysis and the response-time
analysis are both based on the cumulative request-bound
function (i.e., Equation 2).

Nevertheless, to the best of our knowledge, no direct
link is known between these methods for validating static-
priority task sets. In this section, we propose combining
the aforementioned analysis techniques in an algorithm
that calculates the response time of a periodic task in the
presence of release jitter constraints. The initial value
(e.g., W

(0)
i ) plays an important role to limit the number

of required iterations to reach the smallest fixed point of
equation Wi(t) = t. Different approaches have been pro-
posed in [18, 2] and are quite useful in practice to reduce
computation time. Nevertheless, such improvements are
not necessary to present our results and for that reason are
not developed in the remainder.

As in the processor-demand approach, the worst-
case response-time computation can be done in pseudo-
polynomial time. Furthermore, for any integer k, there is
a task system with two tasks such that the time complexity
of the response-time analysis is at least O(k) (Lemma 2,
[15]).

2.3 A Preliminary Result

We show that worst-case response times of tasks can
be computed using a Time-Demand Analysis (i.e., using
Theorem 1), for every feasible task set. For a feasible task
τi, it is sufficient to check the following testing set [13]:

Si
def= {aTj − Jj | j = 1 . . . i, a = 1 . . .

⌊
Di−Ji+Jj

Tj

⌋
}

∪{Di − Ji}

We first define the critical scheduling point that facil-
itates the computation of the worst-case response time of
τi (under the assumption that the task τi will meet its
deadline at execution time).

Definition 2 The critical scheduling point for a feasible

task τi is: t∗ def= min{t ∈ Si | Wi(t) ≤ t}.

We now prove if t∗ exists, then Wi(t∗)+Ji defines the
worst-case response time of τi.

Theorem 2 The worst-case response time of a feasible
task τi is exactly Ri = Wi(t∗) + Ji.

Proof:
Since task τi is feasible then we verify that Wi(t∗) ≤

t∗. Let Si = {ti1, ti2, . . . , ti�} with ti1 < ti2 < · · · <
t∗i < · · · < ti� = Di − Ji. By Definition 2, there ex-
ists t∗ = tij , where 1 ≤ j ≤ �, is the first schedul-
ing point verifying Wi(t∗) ≤ t∗: Wi(t) > t for all t ∈
{ti1, . . . , tij−1} and Wi(tij) ≤ tij .

Since Wi(t) is non-decreasing between subsequent
scheduling points {tia, tia+1}, 1 ≤ a ≤ � − 1, then there
exists a time t ∈ (tij−1, tij ] such that Wi(t) = t. Since
scheduling points in Si corresponds to task releases, then
no new task is released between t and t∗ and as a con-
sequence we have Wi(t) = Wi(t∗). The worst-case re-
sponse time of τi is then defined as Wi(t∗) + Ji.



Tasks Ci Di Ti Ji

τ1 1 3 3 2
τ2 2 5 5 1
τ3 1 12 12 2

Table 1. Static-priority task set with release
jitter constraints

t ∈ Si 1 4 7 9
W1(t)/t 1
W2(t)/t 3 1
W3(t)/t 4 1.25 1.14 1

Table 2. Exact Time-Demand Analysis

Thus, for all feasible tasks, we can compute their
worst-case response times. But, t∗ is not defined for an in-
feasible task τi , thus there is no scheduling point t ∈ Si

such that Wi(t) ≤ t. For this latter case, the presented
method cannot be used to compute a worst-case response
time (i.e., some scheduling points after the deadline must
be considered).

Since the size of Si depends on
∑i−1

j=1�Di−Ji+Jj

Tj
�,

then the algorithm runs in pseudo-polynomial time. Note
that computing the smallest fixed-point Wi(t) = t using
successive approximation is also performed in pseudo-
polynomial time.

Let us take an example, consider the task set presented
in Table 1. The utilization factor is U = 0.81. The com-
putations associated with the exact tests are given in Ta-
ble 2. Figure 1 presents W3(t) and the processor capacity
(i.e., f(t) = t). Notice that for every task τi, 1 ≤ i ≤ n
the first value such that Wi(t)/t ≤ 1 leads to its exact
worst-case response time:

• for τ1, R1 = W1(1) + J1 = 1 + 2 = 3,

• for τ2, R2 = W2(4) + J2 = 4 + 1 = 5,

• for τ3, R3 = W3(9) + J3 = 9 + 2 = 11.

3 A FPTAS for Feasibility Analysis of a Task

3.1 Approximating the Request-Bound
Function

For synchronous task systems without release jitter, the
worst-case activation scenario for the tasks occurs when
they are simultaneously released [14]. When tasks are
subjected to release jitter, then the worst-case processor
workload occurs when all higher-priority tasks are simul-
taneously available after Ji units of time (e.g., when their
input data are available). Notice that deadline failures of
τi (if any) occur necessarily in an interval of time where
only tasks with a priority higher or equal to i are running.
Such an interval of time is defined as a level-i busy pe-
riod [13]. When analysing a task τi, if we assume that the

analysed processor busy period starts at time 0, then the
worst-case workload in that busy period is defined by the
release of task τj at time −Jj , j ≤ i. According to such a
scenario, the total execution time requested at time t by a

task τi is defined by [19]: RBF(τi, t)
def=

⌈
t+Ji

Ti

⌉
Ci.

The RBF function is a discontinuous function with a
“step” of height Ci every Ti units of time. In order to
approximate the request bound function according to an
error bound ε (accuracy parameter, 0 < ε < 1), we use
the same principle as in [6, 5]: we consider the first (k−1)
steps of RBF(τi, t), where k is defined as k = �1/ε� − 1
and a linear approximation, thereafter. The approximate
request bound function is defined as follow:

δ(τi, t) =

{
RBF(τi, t) for t ≤ (k − 1)Ti − Ji,

Ci + (t + Ji)Ci

Ti
otherwise.

(3)
Notice that up to (k − 1)Ti − Ji the approximate

request-bound function is equivalent to the exact request-
bound function of τi, and after that it is approximated
by a linear function with a slope equal to the utilization
factor of τi. The next subsection describes how we use
the approximation to the request-bound function to ob-
tain an approximation scheme for feasibility analysis of
static-priority tasks subjected to release jitter constraints.

3.2 Approximation Scheme

[19] shows that a static-priority task system with re-
lease jitter constraints is feasible, iff, worst-case response
times of tasks are not greater than their relative deadlines.
This problem is known as the release jitter problem. An
alternative way is to define a time-demand approach for
solving the release jitter problem using the principles of
the well-known exact feasibility test presented for the rate
monotonic scheduling algorithm in [13].

As presented in Theorem 1, the cumulative request

bound function at time t is defined by: Wi(t)
def= Ci +∑i−1

j=1 RBF(τj , t). A task τi is feasible (with a constrained
relative deadline) iff, there exists a time t, 0 ≤ t ≤
Di − Ji, such that Wi(t) ≤ t. Since request bound
functions are step functions, then Wi(t) is also a step
function that increases for every scheduling point in the
following set Si = {t = bTa − Ja; a = 1 . . . i, b =
1 . . .

⌊
Di−Ji+Ja

Ta

⌋
} ∪ {Di − Ji}. The feasibility test can

then be formulated as follows: if there exists a schedul-
ing point t ∈ Si, such that Wi(t)/t ≤ 1 then the task is
feasible.

To define an approximate feasibility test, we define an
approximate cumulative request bound function as:

Ŵi(t)
def= Ci +

i−1∑
j=1

δ(τj , t)

According to the error bound ε leading to k = �1/ε�−
1, we define the following testing set Ŝi ⊆ Si:
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Figure 1. Exact and approximate cumulative request bound functions W3(t) and Ŵ3(t) with ε = 0.3
leading to k = 3. Steps occurs at time aTi − Ji where 0 < a ≤ k − 1 and 0 ≤ i ≤ n before starting
linear approximations. The approximate test concludes that τ3 is not feasible upon a (1−ε)-speed
processor.

Ŝi
def= {t = bTa − Ja; a = 1 . . . i − 1, b = 1 . . . k − 1}

∪{Di − Ji}

We consider the task set presented in Table 1, the cu-
mulative request bound function Ŵ3(t) is presented in
Figure 1 using ε = 0.3. This means exactly three steps
will be considered for every task (i.e., k = 3) before
approximating the request bound function using a linear
function. We indicate without providing computation de-
tails that worst-case response times of τ1 and τ2 can be
exactly computed since they are achieved before approx-
imating request bound functions. But as shown in Fig-
ure 1, the approximate feasibility test concludes that τ3 is
not feasible because Ŵ3(t) > t for all scheduling points
(i.e., for all t ∈ Ŝ3).

This is a FPTAS since the algorithm is polynomial ac-
cording to the input size and the input parameter 1/ε. We
now prove the correctness of this approximate feasibility
test.

3.3 Correctness of Approximation

The key point to ensure the correctness is:
δ(τi, t)/RBF(τi, t) ≤ (1 + ε). This result will then
be used to prove that if a task set is stated infeasible by
the FPTAS, then it is infeasible under a (1 − ε) speed
processor.

Theorem 3 ∀t ≥ 0, we verify that: RBF(τi, t) ≤
δ(τi, t) ≤ (1 + 1

k )RBF(τi, t) where k =
⌈

1
ε

⌉ − 1.

Proof: We first prove the first inequality: for all t ∈
[0, (k − 1)Ti − Ji]

δ(τi, t) = RBF(τi, t)

For t > (k − 1)Ti − Ji:

δ(τi, t) = Ci + (t + Ji)
Ci

Ti
= Ci

(
1 +

t + Ji

Ti

)
As a consequence:

δ(τi, t) ≥
⌈

t + Ji

Ti

⌉
Ci = RBF(τi, t)

We now prove the second inequality of the statement:
If δ(τi, t) > RBF(τi, t) then since t > (k − 1)Ti − Ji

then k − 1 steps before approximating the request bound
function, we verify:

RBF(τi, t) ≥ kCi (4)

Furthermore,

δ(τi, t) − RBF(τi, t) ≤ Ci

This is obvious if t ∈ [0, (k − 1)Ti − Ji] since δ(τi, t) =
RBF(τi, t), and if t > (k − 1)Ti − Ji, then:

δ(τi, t) − RBF(τi, t) = Ci + (t + Ji)
Ci

Ti
−

⌈
t + Ji

Ti

⌉
Ci

≤ Ci



As a consequence: δ(τi, t) ≤ RBF(τi, t)+Ci and using
inequality (4), we obtain the result:

δ(τi, t) ≤ (1 +
1
k

)RBF(τi, t)

As a consequence, both inequalities are verified.
Using the same approach presented in [6, 5], we can

establish the correctness of approximation.

Theorem 4 If there exists a time instant t ∈ (0, Di − Ji],
such that Ŵi(t) ≤ t, then τi is feasible (i.e., Wi(t) ≤ t).

Proof: Directly follows from Theorem 3.

Theorem 5 If ∀t ∈ (0, Di − Ji], Ŵi(t) > t, then τi is
infeasible on a processor of (1 − ε) capacity.

Proof: Assume that ∀t ∈ (0, Di−Ji], Ŵi(t) > t, but τi is
still feasible on a (1− ε) speed processor. Since assuming
τi to be feasible upon a (1−ε) speed processor, then there
must exist a time t0 such that τi: Wi(t0) ≤ (1−ε)t0. But,
using Theorem 3 we verify that Ŵi(t) ≤ (1 + 1

k )Wi(t),
where k =

⌈
1
ε

⌉ − 1, then for all t ∈ (0, Di − Ji], the

condition Ŵi(t) > t implies that ∀t ∈ (0, Di − Ji]:

Wi(t) >
t

1 + 1
k

>
k

k + 1
t ≥ (1 − ε)t.

As a consequence, a time t0 such that Wi(t0) ≤ (1 −
ε)t0 cannot exist and τi is infeasible.

To conclude the correctness, we must prove that
scheduling points are sufficient.

Theorem 6 For all t ∈ Ŝi such that Ŵi(t) > t, then we
also verify that: ∀t ∈ (0, Di − Ji], Ŵi(t) > t.

Proof: Let t1 and t2 be two adjacent points in Ŝi (i.e.,
� t ∈ Ŝi such that t1 < t < t2). Since Ŵi(t1) >

t1, Ŵi(t2) > t2 and the fact that Ŵi(t) is an non-
decreasing step left-continuous function we conclude that
∀t ∈ (t1, t2) Ŵi(t) > t (see Figure 2 for details). The
property follows.

4 Approximate Response-Time Analysis
with Release Jitter

4.1 Approximate worst-case response
time upper bound

According to a accuracy parameter ε, we define ap-
proximate worst-case response times as in the classical
Combinatorial Optimization Problem theory [7]:

Definition 3 Let ε be a constant and Ri be the worst-case
response time of a task τi, then the approximate worst-
case responses time R̂i satisfies: Ri ≤ R̂i ≤ (1 + ε)Ri.

t1 t2

y = t

y = Ŵi(t)

t

y

Figure 2. The scheduling points Ŝi are suf-
ficient

We shall combine results presented in Sections 2 and 3,
in order to define approximate worst-case response times.
Using the FPTAS presented in Section 3, we can check that
a task is feasible or not. If it is feasible, then we are able to
compute an upper bound of the worst-case response time
of a task as presented in Section 2.

Definition 4 Consider a task τi such that there exists a
time t satisfying Ŵi(t) ≤ t, then an approximate worst-
case response time is defined by:

t∗ def= min
(
t ∈ Ŝi | Ŵi(t) ≤ t

)
and R̂i

def= Ŵi(t∗) + Ji.

We now prove that such a method defines an upper
bound of the worst-case response time of task τ i.

Theorem 7 For every task τi such that there exists a time
t satisfying Ŵi(t) ≤ t, then: Ri ≤ R̂i

Proof: Let t be a scheduling point such that Ŵi(t) ≤ t.
From the approximate feasibility test, we verify that τ i is
feasible: there exists a time t∗ such that Wi(t∗) ≤ t∗ and
t∗ ≤ t. Since Ri = Wi(t∗) + Ji and R̂i = Ŵi(t) + Ji

then, it follows from properties of the approximate feasi-
bility test that Ri ≤ R̂i.

4.2 The Algorithm

The complete algorithm for computing approximate
worst-case response time of a task τi is presented in Algo-
rithm 1. The algorithm contains three nested loops. The
first loop and the last one are bounded by n (i.e., the num-
ber of tasks). The second one is related to k, thus on the
value 1/ε. Thus, this implementation of the approximate



feasibility test for a given task leads to a O(n2/ε) algo-
rithm. This algorithm is eligible to be a FPTAS since it
is polynomial in the size of the task set and the accu-
racy parameter 1/ε. But, as we will prove in the next
section, it does not lead to bounded performance guaran-
tee on computed response times in comparison with an
exact response time analysis (performed with a pseudo-
polynomial time algorithm).

4.3 Worst-case analysis of the algorithm
performance guarantee

We now show that this method does not lead to an ap-
proximation algorithm (i.e., with the expected bounded
error presented in Definition 3) even if the approximate
feasibility analysis returns a positive answer.

Theorem 8 There exist some task systems for which
cRi ≤ R̂i for any integer c.

Proof: Let us consider a task system with two tasks with
the following parameters: τ1 with C1 = 1−λ and T1 = 1
and τ2 with C2 = kλ and T2 = k+1/λ, where 0 < λ < 1
and k is an arbitrary integer. (Both tasks have their jitter
parameter equal to zero). With these parameters and the
Rate-Monotonic scheduling policy, the task τ2 can only
be executed λ unit of time within any interval of length
one in the schedule. The τ2 completes at time k. The ap-
proximate feasibility analysis leads to the following com-
putations:

Ŵ2(t) = kλ + δ(τ1, t)
= kλ + (1 − λ) + t(1 − λ)

The corresponding approximate worst-case response time
will be achieved for Ŵ2(t) = t. The approximation
switches to a linear approximation at time (k − 1)T1 =
k − 1. The corresponding fixed-point t is:

t = kλ + (1 − λ) + t(1 − λ)

t = k − 1 +
1
λ

As a consequence the approximate worst-case response
time is: R̂2 = k − 1 + 1/λ. The approximate feasibility
analysis always predicts that the task system is feasible for
any integer k since the approximate worst-case response
time is strictly less than the deadline of task τ2. Therefore,
the approximate response time is strictly larger than the
exact, and can be made arbitrarily large: the ratio between
the exact worst-case response time and the approximate
one is exactly:

R̂2

R2
= 1 − 1

k
+

1
λk

This ratio increases without any bound as λ approaches
zero. So, for any arbitrary integer c, we can find a lambda
sufficiently small such that R̂2/R2 ≥ c.

The Figure 3 presents an example of this counterex-
ample with k = 10, λ = 0.1, ε = 0.33. The exact worst-
case response time of τ2 is 10 and the approximate worst-
case response time is 19 (thus τ2 completes by its dead-
line equal to 20). Note that the slope of the approximated
cumulative request bound function tends to one when λ
tends to zero. and thus becomes nearly parallel to the line
representing the processor capacity. That is why a perfor-
mance guarantee can not be achieved using our method.

Counterexample
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Figure 3. Counterexample with k = 3, λ =
0.1, ε = 0.3.The exact worst-case response
time is 10 and the approximate one is
achieved when lines intersect at time 19.
Thus, the approximate value is near 2 times
greater than the exact wors-case response
time. Reducing λ to an arbitrary small value
lead to an unbounded performance ratio.

5 Conclusion and Further Work

We presented a method for approximating worst-case
response times of static-priority tasks with release jitter
constraints. The method is based on a FPTAS performing
a feasibility test based on a Time-Demand Analysis. Ac-
cording to an accuracy parameter ε, if the approximate
feasibility test concludes that a task τi is feasible (i.e.,
meets its deadline) then we can compute an approximate
worst-case response time, but without any constant per-
formance guarantee. But, when the approximate feasi-
bility test cannot conclude that τi is feasible, we know
that τi will not be feasible under a processor with capac-
ity (1 − ε); however, the proposed approach cannot guar-
antee that the approximate worst-case response times are
within a constant multiplicative factor of the actual worst-
case response time. Even if our results are not complete,
they allow to define a sufficient feasibility analysis that
can be used for analysing a component in a QoS Opti-
mization method or encapsulated within a holistic analy-
sis for analysing distributed real-time systems.

The existence of an approximation scheme (or weakly



Algorithm 1. Approximate worst-case response time of τi

input :
ε : real /* The FPTAS accuracy parameter */;
i : integer /* Index of the analysed task */;
n : integer /* Size of the task set */;
C[n], T [n], D[n], J [n] : array of integers /* Task parameters */;

output: Approximate response time of τi or ’not feasible upon a (1 − ε)-speed processor’;

k = �1/ε� − 1 /* k is the number of steps considered in rbf(τi, t) */;
for j = 1 to i − 1 do

for � = 1 to k do /* for each scheduling pointt */
if (� = k and j = i − 1) then t = D[i] − J [i] ; /* t is the last scheduling point */
else t = � × T [j] − J [j] ; /* t is another scheduling points */
w = Ci /* w is δ(τi, t) */;
for m = 1 to i − 1 do /* for all higher priority tasks */

if (t ≤ (k − 1)T [m]− J [m]) then w+ = C[m]�t/T [m]� ; /* compute rbf(τm; t) */
else w+ = C[m] + (t + J [i])C[m]/T [m] ; /* compute linear approximation */

end
if (t ≥ w)) then return (w + J [i]); /* approximate response time of τi */

end
end
return (”not feasible upon a (1 − ε)-speed processor”);

an approximation algorithm) is still an interesting open
issue. If such a result exists for the worst-case response
time analysis, it will exactly quantify the pessimism of the
corresponding sufficient feasibility test.
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