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Abstract

We consider static-priority tasks with constrained-
deadlines that are subjected to release jitters. We define
an approximate worst-case response time analysisand we
propose a polynomial time algorithm. For that purpose, we
extend the Fully Polynomial Time Approximation Scheme
(FPTAS) presented in [2] to take into account release jit-
ters; this feasibility test is then used to define a polyno-
mial time algorithm that computes approximate worst-case
response times of tasks. Nevertheless, the approximate
worst-case response time values have not be proved to have
any bounded error in comparison with worst-case response
times.

1 Introduction

Guaranteeing that tasks will always meet their deadlines
is a major issue in the design of hard-real time systems. A
real-time system is saidfeasibleif no deadline miss can oc-
cur at run-time. We next consider periodic tasks scheduled
by a preemptive static-priority scheduler upon a unipro-
cessor platform. We consider tasks having constrained-
deadlines (i.e., deadlines are less than or equal to task pe-
riods) and subjected to release jitters. Such a task model
allows to analyze hard real-time distributed systems [11].

The feasibility problem consists on proving that tasks
will always meet their deadlines at run-time. For the con-
sidered real-time systems, the feasibility problem is not
known to be NP-hard, but only pseudo-polynomial time
tests are known [4, 6, 8]. Sufficient feasiblity conditions
are known and can be checked in polynomial time. But,
when such a test returns ”not feasible”, this can be a rather
pessimistic decision. Recently, approximate feasibility al-
gorithms have been designed to reduce the gap between
both approaches. According to an accuracy parameterε,
they check, in polynomial time, if a task set is:

• feasible (upon a unit speed processor).

• infeasible upon a(1−ε)-speed processor. That is, “we
must effectively ignoreε of the processor capacity for
the test to become exact” [2]. So, the pessimism in-

troduced by the feasibility test is kept bounded by a
constant.

As far as we know, no approximation algorithm is
known for approximating worst-case response times of
tasks with a constant performance guarantee (i.e., upper
bounds of worst-case response times). The aim of this
paper is to introduce such an analysis and to try to show
its relationship with approximate feasibiltiy analysis. Ac-
cording to a accuracy parameterε, we define approximate
worst-case response times as follow:

Definition 1 Let ε be a constant andR∗
i be the worst-case

response time of a taskτi, then the approximate worst-case
responses timêR∗

i satisfies:R∗
i ≤ R̂∗

i ≤ (1 + ε)R∗
i .

We first define a preliminary result for computing worst-
case response time while performing a processor demand
analysis (e.g., [6]), then we extend theFPTASpresented in
[2] with release jitters. These results are then combined
to define for computing approximate worst-case response
times. Nevertheless, the computed approximate worst-case
response time values are not guaranteed to be closed to
worst-case response times (i.e., with a bounded error).

2 Task model and exact analysis

2.1 Task model

A task τi, 1 ≤ i ≤ n, is defined by a worst-case exe-
cution requirementCi, a relative deadlineDi and a period
between two successive releasesTi. Every task occurrence
is called a job. We assume that deadlines are constrained:
Di ≤ Ti. Such an assumption is realistic in many real-
world applications and also leads to simpler algorithms for
checking feasibility of task sets [5].

In order to model delay due to input data communica-
tions of tasks, we also consider that jobs are subjected to
release jitters. A release jitterJi of a taskτi is a interval of
time after the release of a job in which it waits for its input
data. When release jitters are considered in the task model,
then dependencies among distributed tasks are modeled us-
ing the parametersJi, 1 ≤ i ≤ n. Using such a model, a
distributed system can be analyzed processor by processor,



separately using for instance an holistic based schedulabil-
ity analysis [11].

For a given processor, we assume that all tasks are inde-
pendent and synchronously released. All tasks have static
priorities that are set before starting the application and are
never changed at run-time. At any time, the highest priority
task is selected for execution among ready tasks. Without
loss of generality, we assume next that tasks are indexed
according to priorities:τ1 is the highest priority task and
τn is the lowest priority one.

2.2 Known results

2.2.1 Request Bound and Workload Functions

The request bound function of a taskτi at timet (denoted
RBF(τi, t)) and the cumulative processor demand (denoted
Wi(t)) of tasks at timet of tasks having priorities greater
than or equal toi are respectively (see [11] for details):

RBF(τi, t)
def=

⌈
t + Ji

Ti

⌉
Ci (1)

Wi(t)
def= Ci +

i−1∑
j=1

RBF(τj , t) (2)

Notice that deadline failures ofτi (if any) occur neces-
sarily in an interval of time where only tasks with a priority
higher of equal toi are running. Such an interval of time
is defined as a level-i busy period [6]. Using these func-
tions, two distinct (but linked) exact feasibility tests can be
defined. We recall both results that will be reused in the
remainder.

2.2.2 Processor Demand Analysis

The processor demand approach checks that the processor
capacity is always less than or equal to the processor capac-
ity required by task executions. In [6] is presented a pro-
cessor demand schedulability test for constrained-deadline
systems (but the test was extended for arbitrary deadline
systems in [5]). It can be also easily extended to tasks sub-
jected to release jitters as stated in the following result:

Theorem 1 [6] A static-priority system with release jitters

is feasible iffmaxi=1..n

{
mint∈Si

Wi(t)
t

}
≤ 1, whereSi

is the set of scheduling points defined as follows:Si
def=

{aTj − Jj | j = 1..i, a = 1..
⌊

Di+Ji

Tj

⌋
} ∪ {Di}.

Note that schedulability points correspond to a set of
time instants in the schedule where a task can start its exe-
cution, after the delay introduced by its release jitter.

2.2.3 Response Time Analysis

An alternative approach to check the feasibility of a static-
priority task set is to compute the worst-case response time

R∗
i . The worst-case response time ofτi is formally defined

as:

Definition 2 The worst-case response time of a taskτi is:

R∗
i

def= (min{t ∈ (0, Di] | Wi(t) = t}) + Ji.

An exact algorithm is known [4] (e.g., for a recur-
sive definition of the following method). Using succes-
sive approximations starting from a lower bound ofR∗

i ,
we can compute to the smallest fixed-point ofWi(t) = t

with the following iterative process:W (0)
i =

∑i
j=1 Cj ,

W
(k+1)
i = Ci +

∑i−1
j=1 RBF(τj ,W

(k)
i ). Computations stop

for the smallest integerk such that:W (k+1)
i = W

(k)
i .

These approaches are all based on the analysis of the cu-
mulative processor demand [9]. But, as far as we know, no
direct link has been presented between these approaches.
The initial value (e.g.,W (0)

i ) plays an important role to
limit the number of required iterations to reach the small-
est fixed point of equationWi(t) = t. Different approaches
have been proposed in [10, 1] and are quite useful in prac-
tice to reduce computation time. Nevertheless, such im-
provements are not necessary to present our results and for
that reason are not developed in the remainder.

2.3 A preliminary result

We show that worst-case response times of tasks can be
easily computed using a Time Demand Analysis (i.e., The-
orem 1), for every feasible task set (and only for them).
For a feasible taskτi, it is sufficient to check the follow-
ing testing set [6]:Si = {aTj − Jj | j = 1 . . . i, a =

1 . . .
⌊

Di+Ji

Tj

⌋
} ∪ {Di}.

We first define the critical scheduling point that allows
to compute the worst-case response time ofτi (under the
assumption that the taskτi will meet its deadline at execu-
tion time).

Definition 3 The critical scheduling point for a feasible

taskτi is: t∗
def= min{t ∈ Si | Wi(t) ≤ t}.

We now prove ift∗ exists, thenWi(t∗) + Ji defines the
worst-case response time ofτi.

Theorem 2 The worst-case response time of a taskτi, such
thatWi(t∗) ≤ t∗ is exactlyR∗

i = Wi(t∗) + Ji.

Proof: Since we assume thatWi(t∗) ≤ t∗, thenτi is fea-
sible. LetSi = {ti1, ti2, . . . , ti`} with ti1 < ti2 < · · · <
t∗i < · · · < ti` = Di. By Definition 3, there existst∗ = tij ,
where1 ≤ j ≤ `, is the first scheduling point verifying
Wi(t∗) ≤ t∗: Wi(t) > t for all t ∈ {ti1, . . . , tij−1} and
Wi(tij) ≤ tij .

Since Wi(t) is non-decreasing between subsequent
scheduling points{tia, tia+1}, 1 ≤ a ≤ ` − 1, then there
exists a timet ∈ (tij−1, tij ] such thatWi(t) = t. Since
scheduling points inSi corresponds to task releases, then



no new task is released betweent andt∗ and as a conse-
quence we haveWi(t) = Wi(t∗). The worst-case response
time of τi is then defined asWi(t∗) + Ji.

Thus, for all feasible tasks, it is quite easy to compute
their worst-case response times. But, for an infeasible task
τi (e.g.,R∗

i > Di), there is not scheduling pointt ∈ Si

such thatWi(t) ≤ t. For this latter case, the presented
method cannot be use to compute a worst-case response
time (i.e., some scheduling points after the deadline must
be considered).

Since the size ofSi depends on
∑i−1

j=1b
Di+Ji

Tj
c, then the

algorithm runs in pseudo-polynomial time. Note that com-
puting the smallest fixed-pointWi(t) = t using successive
approximation is also performed in pseudo-polynomial
time.

3 A FPTAS for feasibility analysis of task

3.1 Approximating Request Bound Func-
tion

For synchronous task systems without release jitters, the
worst-case activation scenario for the tasks occurs when
they are simultaneously released [7]. When tasks are sub-
jected to release jitters, then the worst-case processor work-
load occurs when tasks are simultaneously available after
Ji units of time (i.e., when their input data are available). If
we assume that tasks become simultaneously available by
time 0, then the worst-case workload in a processor busy
period is defined by the release at time−Ji. According to
such a scenario, the total execution time requested at time

t by a taskτi is defined by [11]:RBF(τi, t)
def=

⌈
t+Ji

Ti

⌉
Ci.

The RBF function is a discontinuous function with a
“step” of heightCi everyTi units of time. In order to ap-
proximate the request bound function according to an error
boundε (accuracy parameter,0 < ε < 1), we use the same
principle as in [2, 3]: we consider the first(k − 1) steps of
RBF(τi, t), wherek is defined ask = d1/εe−1 and a linear
approximation, thereafter. The approximate request bound
function is defined as follow:

δ(τi, t) =

{
RBF(τi, t) for t ≤ (k − 1)Ti − Ji,

Ci + (t + Ji)Ci

Ti
otherwise.

(3)
Thus, up to(k− 1)Ti no approximation is performed to

evaluate the total execution requirement ofτi, and after that
it is approximated by a linear function with a slope equal
to the utilization factor ofτi.

3.2 Approximation scheme

In [11] is shown that a static-priority task system with
release jitters is feasible, iff, worst-case response times of
tasks are not greater than their relative deadlines. This

problem is known as therelease jitter problem. An alter-
native way is to define a time demand approach using the
principles of the well-known exact feasibility test presented
for the rate monotonic scheduling algorithm in [6].

The cumulative request bound function at timet is de-

fined by:Wi(t)
def= Ci +

∑i−1
j=1 RBF(τj , t). A taskτi is fea-

sible (with a constrained relative deadline) iff, there exists
a timet, 0 ≤ t ≤ Di, such thatWi(t) ≤ t. Since request
bound functions are step functions, thenWi(t) is also a step
function that increases its value ofCi for every schedul-
ing point in the following setSi = {t = bTa − Ja; a =
1 . . . i, b = 1 . . .

⌊
Ji+Di

Ta

⌋
}∪ {Di}. The feasibility test can

then be formulated as follows: if there exists a scheduling
point t ∈ Si, such thatWi(t)/t ≤ 1 then the task is feasi-
ble.

To define an approximate feasibility test, we define
an approximate cumulative request bound function as:

Ŵi(t)
def= Ci+

∑i−1
j=1 δ(τj , t). According to the error bound

ε leading tok = d1/εe − 1, we define the following test-

ing setŜi ⊆ Si: Ŝi
def= {t = bTa − Ja; a = 1 . . . i, b =

1 . . . k} ∪ {Di}.
A simple implementation of this approximate feasibility

test leads to aO(n2/ε) algorithm. This is aFPTAS since
the algorithm is polynomial according the input size and
the input parameter1/ε. We now prove the correctness of
this approximate feasibility test.

3.3 Correctness of Approximation

The key point to ensure the correctness is:
δ(τi, t)/RBF(τi, t) ≤ (1 + ε). This result will then
be used to prove that if a task set is stated infeasible by the
FPTAS, then it is infeasible under a(1− ε) speed processor.

Theorem 3 ∀t ≥ 0, we verify that: RBF(τi, t) ≤
δ(τi, t) ≤ (1 + 1

k )RBF(τi, t) wherek =
⌈

1
ε

⌉
− 1.

Proof: We first prove the first inequality: for allt ∈
[0, (k − 1)Ti − Ji], δ(τi, t) = RBF(τi, t). For t > (k −
1)Ti − Ji, δ(τi, t) = Ci + (t + Ji)Ci

Ti
= Ci

(
1 + t+Ji

Ti

)
.

As a consequence:δ(τi, t) ≥
⌈

r+Ji

Ti

⌉
Ci = RBF(τi, t).

We now prove the second inequality of the statement: If
δ(τi, t) > RBF(τi, t) then sincet > (k−1)Ti−Ji thenk−1
steps before approximating the request bound function, we
verify:

RBF(τi, t) ≥ kCi (4)

Furthermore,δ(τi, t) − RBF(τi, t) ≤ Ci: this is obvious if
t ∈ [0, (k − 1)Ti − Ji] sinceδ(τi, t) = RBF(τi, t), and if
t > (k − 1)t − Ji, then:δ(τi, t)− RBF(τi, t) = Ci + (t +
Ji)Ci

Ti
−

⌈
t+Ji

Ti

⌉
≤ Ci.

As a consequence:δ(τi, t) ≤ RBF(τi, t) + Ci and us-
ing inequality (4), we obtain the result:δ(τi, t) ≤ (1 +
1
k )RBF(τi, t). As a consequence, both inequalities are ver-
ified.



Using the same approach presented in [2, 3], we can
establish the correctness of approximation.

Theorem 4 If there exists a time instantt ∈ (0, Di], such
thatŴi(t) ≤ t, thenτi is feasible (i.e.,Wi(t) ≤ t).

Proof: Directly follows from Theorem 3

Theorem 5 If ∀t ∈ (0, Di], Ŵi(t) > t, thenτi is infeasi-
ble on a processor of(1 − ε) capacity.

Proof: Assume that∀t ∈ (0, Di], Ŵi(t) > t, butτi is still
feasible on a(1 − ε) speed processor. Since assumingτi

to be feasible upon a(1 − ε) speed processor, then there
must exist a timet0 such thatτi: Wi(t0) ≤ (1− ε)t0. But,
using Theorem 3 we verify that̂Wi(t) ≤ (1 + 1

k )Wi(t),
wherek =

⌈
1
ε

⌉
− 1, then for allt ∈ (0, Di], the condition

Ŵi(t) > t implies that:Wi(t) > t
1+ 1

k

> k
k+1 t ≥ (1 −

ε)t ∀t ∈ (0, Di].
As a consequence, a timet0 such thatWi(t0) ≤ (1 −

ε)t0 cannot exist andτi is infeasible.
To conclude the correctness, we must prove that

scheduling points are sufficient.

Theorem 6 For all t ∈ Ŝi such thatŴi(t) > t, then we
also verify that:∀t ∈ (0, Di], Ŵi(t) > t

Proof: Let t1 and t2 be twoadjacentpoints in Ŝi (i.e.,
@ t ∈ Ŝi such thatt1 < t < t2). SinceŴi(t1) >

t1, Ŵi(t2) > t2 and the fact that̂Wi(t) is an non-
decreasing step left-continuous function we conclude that
∀t ∈ (t1, t2) Ŵi(t) > t. The property follows.

4 Approximate Response Time Analysis
with release jitters

We shall combine results presented in Sections 2 and 3,
in order to define approximate worst-case response times.
Using theFPTASpresented in Section 3, we can check that
a task is feasible or not. If it is feasible, then we are able to
compute an upper bound of the worst-case response time
of a task as presented in Section 2.

Definition 4 Consider a taskτi such that there exists a
time t satisfyingŴi(t) ≤ t, then an approximate worst-
case response time is defined by:

t∗
def= min

(
t ∈ Ŝi | Ŵi(t) ≤ t

)
andR̂∗

i
def= Ŵi(t∗) + Ji.

We now prove that such a method defines an upper
bound of the worst-case response time of taskτi.

Theorem 7 For every taskτi such that there exists a time
t satisfyingŴi(t) ≤ t, then:R∗

i ≤ R̂∗
i

Proof: Let t be a scheduling point such that̂Wi(t) ≤ t.
From the approximate feasibility test, we verify thatτi is
feasible: there exists a timet∗ such thatWi(t∗) ≤ t∗ and
t∗ ≤ t. SinceR∗

i = Wi(t∗)+Ji andRi = Ŵi(t)+Ji then,
it follows from properties of the approximate feasibility test
thatR∗

i ≤ R̂∗
i .

It can be shown that this method does not lead to an
approximation algorithm (i.e., with the expected bounded
error presented in Definition 1).

5 Conclusion

The existence of an approximation scheme (or weakly
an approximation algorithm) to solve that problem is still
an interesting open issue.
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