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Abstract. On the basis of a concrete real-time application, we present in this 
article a new task model called "serial transaction". This model is a particular 
instance of the task model with offsets defined by Tindell and Palencia and al.. 
A serial transaction is typically a task reading serial information (RS232, 
CAN,…): several instances are identical and read a unitary part of a serial 
packet, these tasks have the same WCET, offset shifting, priority and relative 
deadline. In addition, the last task of a transaction has to deal with the packet, 
and is typically longer, but has a longer relative deadline, and a lower priority. 
The need for this task model appeared in a real application, that couldn’t be 
validated easily using known methods on transactions, so we present a less 
pessimistic and simpler (to implement) real-time evaluation method dedicated 
on to this new model. 

1 Introduction 

 Several laboratories of Poitiers (ENSMA and University) are developing together a 
mini UAV (Unmanned Air Vehicle) (see Figure 1). The LISI is in charge of 
developing and validating the system (embedded and ground station). The embedded 
processing unit is a microcontroller (Freescale/Motorola MPC555) connected via 
serial port to a GPS receiver and a modem used in order to communicate with the 
ground station. The measurement of the attitude of the UAV is done by an IMU 
(Inertial Measurement Unit) connected to the microcontroller via a CAN network. 

In the development of a real-time application like this one, two techniques of 
scheduling can be used : the on-line scheduling, with a fixed  [LL73, LW82, Aud91] 
or variable allocation of priorities of the tasks in the tasks set [Der74, Lab74, DM89] 
and off-line techniques which use a sequence whose correctness was proved [XP92, 
Gro99]. The real-time RTOS (Real-Time Operational System) OSEKTurbo 
OS/MPC5xx [OSM1, OSM2], in conformity with standard OSEK/VDX [Osek1, 
Osek2], selected for this application, allows only fixed priorities. We thus used an on-
line approach with fixed priority technique. 
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Fig.1. the AMADO 
 
After the definition of software architecture and temporal parameters of the various 

tasks, one of the most important phases is the temporal validation which consists in 
proving that whatever happens, all the tasks will meet their temporal constraints.  
RTA (Response Time analysis) methods are used to bound the worst case response 
time of the tasks of an application. Tindell [Tin94] proposed a method for calculating 
an upper limit of the worst-case response time less pessimistic than classic RTA 
(considering a critical instant consisting of a simultaneous release of all the tasks). 

Palencia and Harbour [PG98] extended Tindell’s work with dynamic offsets, and 
formalized his work as transactions. Lastly, [TN04b][MS03] introduced the concept 
of “imposed” interference differing from “released for execution” interference used 
by Tindell. However, for now the exact calculation methods used to determinate the 
exact worst case response time relies on calculating every combination of the tasks of 
the transactions; it thus remains exponential in time. 

In order to validate the control system of the UAV, we had to deal with 
tasks with offset witch are particular instances of transactions: these tasks are 
activated by peripherals connected on serial and CAN ports. Section 2 
presents the case study. Section 3 reminds some general results about 
transactions. Section 4 present some new results obtained, allowing us to 
analyse the interference of a serial transaction in a pseudo polynomial time for 
a subset of the tasks of the task system. Section 5 applies these new results in 
order to validate our case study. 

2 Presentation of serial transaction 

The project, named AMADO, is a UAV with a wingspread of 55 cm, using a delta 
shaped wing with two symmetrical drifts for a total weight (including the control 
system) of 930 grams. The main objective is to create an autonomous plane 
embedding a camera, and to be able to follow dynamically defined waypoints. The 
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UAV is connected to a ground station thanks to a wireless modem, allowing it to 
receive high level orders during a mission. The critical parts of the flight control are 
embedded.  

 
2.1 Description of the application 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. main architecture of the AMADO 
 

The Figure 2 shows two parts: the ground station, and the embedded station. The 
ground station can communicate thanks to a half duplex modem with the embedded 
system, and the traditional radio emitter is kept as an emergency control in case of 
general failure of the embedded system. The main role of the ground station is video 
displaying recording, flight instruments, and high level commands (either waypoints 
flight, or assisted flight). 

The embedded system heart is a Freescale/Motorola MPC555 connected to the 
actuators (3 servo-commands and the speed-variator, refreshed every 20 ms), an IMU 
[IMU1] (Inertial Measurement Unit), a GPS receiver [GPS1], a traditional radio 
receiver and a modem.. The MPC555 is a 32 bits PowerPC with a frequency of 
40MHZ, 448KB of flash memory and 26KB of RAM; moreover, it has important 
units such as the MIOS (Modular Input Output System) for the capture and the 
generation of signals PPM (Pulse Position Modulation) necessary for activating the 
servomotors and to read the commands for the traditional radio, 2 SCI (Serial 
Communication Interfaces) for the serial asynchronous interfaces, 2 CAN interfaces 
network, 2TPU (Time Processors Units) that can be used to control 16 Inputs/outputs 
and 2 analog-to-digital converters per TPU. It contains also a floating point unit. 

Two sensors are used in order to calculate the position and attitude of the UAV: the 
GPS receiver and the IMU. The Inertial Measurement Unit sends information about 
angular speed and accelerations, which, once treated, give the roll and the pitch of the 
UAV. This IMU is connected on a CAN port and delivers information at a frequency 
of 50Hz and a throughput of 1Mbps. A frame of the IMU is compound of 3 blocks of 
6 bytes. In order for the system to get a complete frame, each block must be read and 
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stored before the next arrives. Once the system has 3 blocks, it can constitute the 
frame, and handle it to calculate the roll and the pitch.  

The GPS receiver is used to get the speed (direction and module) and the absolute 
3Dimensional position of the UAV. The GPS Receiver sends data to the controller at 
a frequency of 4Hz and delivers information with a throughput of 57600bps. As a 
RS232 communication, the information is sent byte after byte; the number of bytes 
sent during one period (frame) of the GPS can reach 120 bytes. As in the case of the 
IMU, the system must recover each byte and arrange it before the arrival of the next 
byte, under penalty of losing the complete frame. 

Finally the modem [Modem1] connected to the microcontroller on the serial port is 
bi-directional and communicates with the microcontroller at a throughput of 115kbps. 
The length of the frame transmitted to the microcontroller by the modem can reach 10 
bytes. The requirements are the same as in the case of the GPS receiver. In the 
presentation of this architecture, we omitted voluntarily the video circuit that does not 
have any impact on the real-time aspects of this application. 

 
2.2 Software architecture of the application 

We have chosen the real-time executive OSEKTurbo OS/MPC5xx of Metrowerks 
for our application. This RTOS is conforming to the standard OSEK/VDX 
[Osek1][Osek2]; standard defined for applications with limited resources [OSM3]. 
The OSEK/VDX executives are light because they are based on a static description of 
all the system using the OIL (OSEK Implementation Language). The system is 
described as OSEK objects: 

- Tasks: each task has a static priority; a value of 0 is the lowest possible 
priority for a task. Two different kinds of tasks are provided by OSEK; the 
basic tasks (BT) and the extended tasks (ET). The extended tasks have 4 
possible states ("running", "ready", "suspended", "waiting"); while the basic 
tasks have only 3 possible states ("running", "ready", "suspended").  

-  Resources: the resources correspond to mutex. The priority ceiling protocol 
[Sha90] is used to avoid the priority inversion, and deadlocks. 

- Events: events are synchronization tools. It enables to initiate the transitions 
from or to the "waiting" state. The events are assigned to extended tasks. Each 
extended task has a definite number of events; this task is called "owner of the 
event". Events can be used to communicate information to the task to which 
they are assigned.  

- Messages: the messages enable communication of type N transmitters and m 
receivers. 

Apart the initialisation task, there are 12 tasks in the control system (see Table 1). 
The priorities of the tasks have been assigned following a Deadline Monotonic policy 
[LL73]. Note that the value L=120 (resp. L=3, L=10) corresponds to the number of 
times the task has to be activated in order to acquire a frame.  
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Tasks Period WCET deadline Priority 

  (in microsecond)   

Monitoring (1) 200000 60   200000 1 

Acq PWM (2) 20000 24   10000 7 

Transmit Grd 
(3) 50000 3360   30000 5 

Deliver Cmd (4) 20000 40   10000 6 

Navigation (5) 250000 560   140000 2 

ReguleAttitude 
(6) 

60000 32400   60000 4 

            
Acq GPS (7) 250000 100 L=120 160 11 

Acq IMU (8) 20000 96 L=3 720 10 

Acq 
Instruction(9) 

100000 12 L=10 80 12 

TreatGPS (10) 250000  3000   5000 9 

TreatIMU (11) 20000  900   7500 8 

TreatInstruction 
(12) 100000  900   70000 3 

 
Table1: task system of the UAV 
 

This kind of application can’t be validated if the offsets are not taken into account. 
Indeed, it appears clearly that task TreatGPS is released when the whole GPS frame 
has been received; it cannot thus be released at the same time as the task Acq GPS; it 
is the same case for task TreatIMU and the task Acq IMU; the same situation occurs 
for the task TreatInstruction and the task Acq Instruction.  

The Figure 3 presents a model of a serial transaction, Li instances of the acquisition 
of a part of a frame are separated by a duration corresponding to the arrival rate of the 
packets (Acq GPS, Acq IMU, Acq Instruction), and a longer task is used to handle the 
whole frame (TreatGPS, TreatIMU, TreatInstruction). In a serial transaction, the 
acquisition tasks are usually short, because they only have to bufferize the packets 
until the whole frame is built, while the treatment tasks are longer since they have to 
deal with the full frame. 

 

 

Fig. 3. pattern of serial transaction 
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In order to define a serial transaction as a particular case of a transaction, let us 
first give a survey of definitions and results found in [Tin94][TN04a][PG98]. 

3 Transactions 

The model of tasks with offsets was proposed by Tindell in order to reduce 
existing pessimism of the schedulability analysis when the critical instant for a task 
occurs when it is released at the same time as all the tasks of higher priority. Indeed, 
certain tasks can for example have the same period and be bound by relations of 
offsets i.e. they can never be released at the same time. A set of tasks of the same 
period bounded by offset is called a transaction. A task system is compound of a set 
of transactions [PG98][TN04a]: 

Γ := {Γ1, Γ2,… Γk} 
 A transaction (see Figure 4) iΓ  contains |Γi| tasks having the same period iT  : 

Γi := <{τi1,…, τi|Γi|},Ti>. 
A task is defined by τij := <Cij, Oij, Dij, Jij, Bij, Pij> where ijC  is the worst-case 

execution time (WCET),  Oij is the offset (minimal time between the release  of the 
transaction and the release of the task), but it is equivalent to consider ijΦ = Oij%Ti, 

Dij is the relative deadline, Jij the maximum jitter (giving t0 the release date of an 
instance of the transaction iΓ , then the task ijτ  is released between t0+Oij and 

t0+Oij+Jij), Bij maximum blocking due to lower priority tasks, and Pij the priority. 
Without loss of generality, we consider that the tasks ordered by non decreasing 
offsets ijΦ ; in our case, we define the response time as being the time between the 

release of the task and the completion of the task.  
Let us note also )( uaihp τ  the set of indices of the tasks of iΓ  with a priority 

higher than the priority of a task uaτ  i.e. j∈hpi(τua) if and only if Pij>Pua. 
 

 
Fig. 4. model of tasks with offsets 
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The RTA method is to be applied on each task of the transactions. The task under 
analysis is usually noted uaτ . Tindell showed that the critical instant of uaτ  is a 
particular instant when it is released at the same time as one task of higher priority in 
each transaction (its own transaction being handled separately). The main difficulty is 
to determine what is the critical instant candidate icτ  of a transaction iΓ  that initiates 
the critical instant of uaτ . An exact calculation method would require (until someone 
would proposes a better way) to evaluate the response time obtained by carrying out 
all the possible combinations of the tasks of priority higher than uaτ  in each 
transaction and to choose the task icτ in each transaction that leads to the worst-case 
response time. This exhaustive method has an exponential complexity and is 
intractable for realistic task systems; several approximation methods giving an upper 
bound of the worst-case response time have been proposed.  

 
3.1 Upper bound method based on the interference “released for 
execution” 

[Tin94][PG98] Let us note icτ  the task of iΓ  that coincides with the critical 
instant of uaτ . Let us note  t),  , ( icττ uaI  the interference of iΓ  on the response 
time of uaτ  during a time interval of length t when icτ  is released at the same instant 

as uaτ . ∑
∈

∗= 






















)(ij iT

't
 t), ic , (

uaihp ijCuaI
ττ

ττ   

iT % )icO - ij(O  ),ij( 

),ij( '
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−=

icphase
icphasett
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't represents the time during which τij can interfere with τua. 
 t), ic , (

ic
max   t), i , ua(A   note  usLet ττ

τ
τ uaI

iΓ∈
=Γ  

 The upper bound of the response time is  
).R, , A(   C  R uai

  i
kuaua Γ+= ∑

Γ∈

τ  

The value of  uaR  is thus obtained by a classic iteration lookup. 
The interference that a transaction imposes on a lower priority task can be 

represented by a periodic and static pattern. [TN04a] proposed an optimisation of the 
computation of the interference. This technique consists in storing in a table the 
parameters of the function of interference of a transaction on a task of lower priority. 
The logic of this approach is that the computation of the interference during a time 
interval of length t is related to two terms: the number of periods iT  of the transaction 

iΓ  during the time interval of length t and the remainder of the division of t per the 
period iT  (noted t%Ti in the sequel). This approach reduces the computation time but 
this method does not reduce the difference between the real worst-case response time 
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and the upper bound obtained. Therefore, we couldn’t validate our system with the 
general method because the tasks (2), (4) and (11) have a worst-case response time 
greater than their relative deadline; while the real worst-case response time of all the 
tasks of the set could in fact be lower than their deadline. (see Table2). 

 

Task
s Period 

deadlin
e 

Priori
ty 

“release for 
execution” 

method 
1 200000 200000 1 56056 

2 20000 10000 7 11332 

3 50000 30000 5 23784 

4 20000 10000 6 11672 

5 250000 140000 2 56096 

6 60000 60000 4 54636 

7 250000 160 11 124 

8 20000 720 10 468 

9 100000 80 12 12 

          
10 250000 5000 9 3408 

11 20000 7500 8 10720 

12 100000 70000 3 55416 

 
Table2: upper bound on response times with  

“released for execution” interference 
 
We thus present a method given in [TN04b] giving a tighter upper bound.  
 

3.2 Upper bound method based on the “imposed” interference 
[TN04b] This method removes the unnecessary overestimation taken into account 

in the computation of the interference created by a task on a lower priority one. This 
overestimation does not have any impact in the case of tasks without offset but has a 
considerable effect in the approximation of the worst-case response time when we are 
in the presence of tasks with offsets. This method consists in calculating the 
interference effectively imposed by a task jτ  on a task uaτ  with a lower priority 
during a time interval of length t; the idea is that the interference cannot exceed the 
interval of time t. 

dt
dt

dt

tjncedInterfére
≤

)(
 

In order to calculate this “imposed” interference, [TN04b] substracts a parameter x 
(see Figure 5) from the original interference formula; let us note ),( tW uaic τ  the 
interference that iΓ  imposes on the response time of uaτ  during a time interval of 
length t when icτ  is released at the same instant as uaτ . 
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ijcx  corresponds to the part of the task ijτ that cannot be executed in the time 
interval of length t; since this interference is not effectively imposed in this interval, it 
is not taken into account. 

 
Example: transaction de 4 tâches avec période de 50 
 

 
 
 
 

Fig.5. “imposed” interference 
 

 
3)00()00()34()02()5( ,1 =−+−+−+−=uaiW τ  

 
For determining the upper bound of the response-time, we use this function : 

 t),(max ),(
)(

uaichpcuai WtW
uai

ττ
τ∈

=  

With the value of each ),( tW uai τ , the response time uaR of uaτ  can be calculated. 

),( uaua
i

iuaua RWCR τ∑
Γ∈

+= . uaR  is obtained by fix-point iteration starting with 

0=uaR . Let us execute this method on the example (Figure 6 (a))  
 
 
 
 

Fig. 6.(a and b) Example for imposed interference (a)               reverse transaction (b) 

In the transaction iΓ , we have five tasks. Let us consider a lower priority task uaτ  
with 5=uaC . Let us calculate the value of response-time. 

 
Iteration 1: 

0)0,(1 =uaiW τ     0)0,(2 =uaiW τ    0)0,(3 =uaiW τ    
0)0,(4 =uaiW τ    0)0,( =uaiW τ    5=uaR  

 
t 

3)(21 =txi

  
   

{ } >=<Γ 50 , ,,, : 4321 iiiii ττττ

 >=< 4 , 0 , 0 , 4 , 0 , 2:1iτ  
>=< 2 , 0 , 0 , 8 , 4 , 4:2iτ  
>=< 3 , 0 , 0 , 5 , 12 , 2:3iτ  
>=< 1 , 0 , 0 , 15 , 17 , 3:4iτ  
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Iteration 2: 
3)00()00()00()12()02()5,(1 =−+−+−+−+−=uaiW τ  
3)00()00()12()02()00()5,(2 =−+−+−+−+−=uaiW τ  
3)00()12()02()00()00()5,(3 =−+−+−+−+−=uaiW τ  
3)34()02()00()00()00()5,(4 =−+−+−+−+−=uaiW τ  
4)04()00()00()00()00()5,(5 =−+−+−+−+−=uaiW τ  

4)0,( =uaiW τ   9=uaR  
 
We resume in the table below the values obtained in the next iterations: 
 
Iteration number  t 1iW  2iW  3iW  4iW  5iW  iW

 
uaR  

1 0 0 0 0 0 0 0 5 
2 5 3 3 3 3 4 4 9 
3 9 5 5 5 6 5 6 11 
4 11 6 6 7 6 6 7 12 
5 12 6 6 8 6 6 8 13 
6 13 7 7 8 7 7 8 13 

 
Consequently, the value of uaR  is equal to 13. 
It is not simple to evaluate the value of imposed interference. Indeed, with this 

method it is necessary in each iteration to evaluate the value of "n" interferences with 
"n" as the number of tasks in the transaction. Moreover, it is necessary to evaluate the 
value of " ijcx " "n" times in each iteration. In order to simplify the calculation of the 
value of imposed interference, we use the transaction presented in figure 6(b). We call 
this transaction the reverse transaction 1−Γi  of the transaction iΓ . With the reverse 
transaction, we show in the next section 4.3 that it is sufficient to calculate only the 
value of  ),(11 tW uai τ− at each iteration. 

We present in the table below the values obtained in the different iterations: 
 

Iteration number t 11−iW  uaR  
1 0 0 5 
2 5 4 9 
3 9 6 11 
4 11 7 12 
5 12 8 13 
6 13 8 13 
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4 Contribution to RTA of transactions 

4-1 Definitions  
Now let us introduce the definition of a serial transaction: 
Definition 1: A serial transaction is a transaction with the following 
constraints(Figure 3, figure 6(a), figure 8 and figure 9): 

Let ΓI be a serial transaction, 
• null jitter: ∀i/τij∈Γi, Jij=0 
• regular arrival pattern pi: ∀j∈[1..|Γi|], Φij=(j-1)pi. 
• there are two kinds of tasks : 

o the Li=|Γi|-1 acquisition tasks such that : τij,j∈[1..Li] := <Ci, (j-1)pi, pi, 0, 
Bij, Pi>; 

o the treatment task τi|Γi|:=<Cin,Lipi,Din, 0, Bij, Pin> 
• with Cin>Ci, Din>pi ,Pin<Pi and 

iniiniii
CpCpLT −>−⋅− )( . This means that the 

treatment task is longer than the acquisition tasks, but is provided a longer 
deadline and a lower priority. 

 
Definition 2 : a task uaτ  is an intermediate priority task for a serial transaction iΓ  if 
the priority of uaτ  is lower than acquisition tasks of iΓ  but higher than treatment task 
of  iΓ . 

 
Definition 3 : a task uaτ  is a lower priority task for a serial transaction iΓ  if the 
priority of uaτ  is lower than all the tasks of iΓ . 
 
Definition 4: Let iΓ  be a serial transaction, we call reverse transaction of the serial 

transaction iΓ  the transaction 1−Γi  obtained by putting in first position the task of last 
position of iΓ ; the other parameters remain identical (period, offsets between tasks, 

etc.) (see figure 6 (a and b)). The tasks of 1−Γi  are defined as: 
>−+=<

Γ
− Γ iii

PBCpCC iiiinini ,,0),(,0,11τ  

[ ] >⋅−+−=<
−

− −Γ∈ )1(
1 ,,0,,)1(, )1(..2, jii

PBppjCCC jiiiiinijjiτ  

 
4-2 schedulability of intermediate priority task  

In this section, we first simplify the way to compute the interference [PG 98] for 
general transactions with no jitter. Then we use this simplification in order to show 
that a task uaτ of intermediate priority has to suffer the biggest interference when it’s 
released at the same time as the first acquisition task, whatever the length of the busy 
period is. 
 
Theorem 1: with null jitters, it is possible to establish the task of a transaction Γi that 
leads to the worst “released for execution” interference during a time interval t in 
testing |hpi(τua)|² intervals.  
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Proof: according to [PG98] the interference of a transaction for a task τic candidate 

to coincide with the critical instant is given by: 
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By assumption, the jitter is null, so the interference is written : 
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 Let us note k1, k2,…, k|hpi(τua)| the indices ordered by offset of hpi(τua) (i.e. p<q => 
Φikp≤Φikq). Since the offsets are assumed to be lower than the period, (Ti+Φij-Φic)%Ti 
correspond to Φij-Φic if Φic≤Φij and (Ti+Φij-Φic) if Φij<Φic. Hence, separating the 
formula between tasks released before and after the critical instant candidate τikp, we 
have : 
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And so on. Therefore 
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Let us analyze now, how we can determine efficiently the differences between the 
interference function when comparing the first task as the critical instant candidate 
comparing to another task : 
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is always equal to 0 or Cik1 because 

Φij<Ti. 
The difference is Cik1 if and only if :  

0)(%0%
21

≤Φ−Φ+−> ikikiii TTtandTt ,equivalently 

]..0]%
21 ikikii TTt Φ−Φ+∈  

For the other tasks interference (i.e. other part of the sum) : 
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21 is always equal to 0 or -Cikj 

because Φij<Ti. 
The difference is equal to –Cikj if and only if : 

0)(%0)(%
21

>Φ−Φ−≤Φ−Φ− ikikiikiki jj
TtandTt  

equivalently  if : ]..]%
12 ikikikiki jj

Tt Φ−ΦΦ−Φ∈  

 
We can thus calculate ),(),(

21
tWtW uaikuaik ττ −  testing |hpi(τua)| intervals. 

We will now calculate the difference 
),(),(,),(

11 tWtWkkhpk uaikuaikpuaip p
τττ −≠∈∀ : 

∑

∑

≥
∈

<
∈

























 Φ−Φ−
−










 Φ−Φ−

+
























 Φ−Φ+−
−










 Φ−Φ−
=−

pj
uaij

j

pjj

pj
uaij

j

pjj

p

kk
hpk

ik
i

ikik

i

ikik

kk
hpk

ik
i

ikiki

i

ikik
uaikuaik

C
T

t

T

t

C
T

Tt

T

t
tWtW

)(

)(

)()(

)()(
),(),(

1

1

1

τ

τ
ττ

 

The first sum has a value ≥0 whereas the second has a value ≤ 0. We have : 
Difference of +Cikj for kj<kp if ]..]%

1 pjj ikikiikiki TTt Φ−Φ+Φ−Φ∈  (1) 

Difference of -Cikj for kj≥kp if ]..]%
1ikikikiki jpj

Tt Φ−ΦΦ−Φ∈  (2) 
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We can thus obtain the difference ),(),(
1

tWtW uaikuaik p
ττ −  in testing |hpi(τua)| 

intervals, therefore, testing |hpi(τua)|² intervals is enough to calculate the critical 
instant candidate. In fact, if the difference ),(),(

1
tWtW uaikuaik p

ττ −  is always ≥0, 

then the release of τik1 leads to the worst interference, otherwise, it is the release of the 
task τikp that leads to the worst interference.  

The next result relies on the intervals defined in theorem 1, let us define Eikj as the 
shift between too successive tasks of higher priority than the task under analysis: 

ijikijE Φ−Φ= for j∈hpi(τua) if j has a successor k in hpi(τua) and 

)(1)(iE 
uaiuai hpiiihp T ττ Φ−Φ+=     

(see figure 7) 
 
 
 
 
 
 

Fig.7. Illustration of ijE and theorem 2 
 

Theorem 2 shows that for specific patterns of transactions without offset where the 
WCET of tasks are non increasing and the shift between successive offsets is non 
decreasing, the critical instant of a task always coincides to the first instance of the 
transaction (Figure 7). The acquisition tasks of a serial transaction follow this kind of 
pattern, therefore the critical instant of a task of an intermediate priority (lower than 
acquisition tasks but higher than treatment task) always coincides with the first 
acquisition task.  

 
Theorem 2 : let iΓ  be a transaction, uaτ  a task under analysis. If the jitters are 

null and if the tasks of iΓ  are such that their WCET is non-increasing, i.e. Cij≥Cik 
∀(j≤k)∈hpi(τua), and offset shifting are non-decreasing i.e. Eij≤Eik ∀(j≤k)∈hpi(τua) 
then the critical instant of τua coincide with the release of the first task of hpi(τua) . 

 
Proof : the proof is based on the interferences. According to the definition of ijE , 

iij TE =∑ .We have proved in Theorem1 that the difference of interference between 

a candidate kp and the candidate k1 was obtained for every  kj∈hpi(τua) by : 
Difference of +Cikj for kj<kp if ]..]%

1 pjj ikikiikiki TTt Φ−Φ+Φ−Φ∈  (1) 

Difference -Cikj for kj≥kp if ]..]%
1ikikikiki jpj

Tt Φ−ΦΦ−Φ∈  (2) 

 
Let us analyze these intervals in the context Cij non-increasing and Eij non-

decreasing ; let us compare the candidates  k1 and k2 : 

1iE 2iE 3iE 4iE
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kj=k1 Difference +Cik1 for ]..0]%
21 ikikii TTt Φ−Φ+∈   

i.e. for ]..0]%
1ikii ETTt −∈ , let us note Iik2k1 this interval 

kj=k2 Difference of –Cik2 for ]..0]%
12 ikikiTt Φ−Φ∈   

i.e. for ]..0]%
1iki ETt ∈ , let us note Iik2k2 this interval 

kj=k3 Difference of –Cik3 for ]..]%
1323 ikikikikiTt Φ−ΦΦ−Φ∈ ,  

]..]%
212 ikikiki EEETt +∈ , let us note Iik2k3 this interval 

kj=kn Difference of –Cikn for ]..]%
12 ikikikiki nn

Tt Φ−ΦΦ−Φ∈   

i.e. for ]........]%
1321132 −−

+++++++∈
nn ikikikikikikiki EEEEEEETt ,  

let us note Iik2kn this interval 

 
We will prove now that with our constraints, the intersection of the intervals giving 

a negative difference is empty, i.e. there is at most one negative value for any value of 
t%Ti; and then if t%Ti is in an interval giving a negative value, in such a case we are 
in an interval giving a positive value. Therefore, we will prove that either there is not 
any difference of interference (neither negative nor positive) or there is at most one 
negative value but in this case there is a positive difference that is greater or equal to 
the negative difference (since its value is Cik1). In the proof, an interval I is < (lower) 
than an interval J if any value of I is lower than any value of J. 

Iik2k2< Iik2k3 because Eik1≤Eik2 
Iik2k3<Iik2k4 because Eik1+Eik2≤Eik2+Eik3 because Eik1≤Eik3 
… 
Iik2kn-1<Iik2kn because  
Eik1+Eik2+…+Eikn-2≤ Eik2+Eik3+…+Eikn-1 because Eik1≤Eikn-1 
Consequently, the intersection of the negative intervals is empty. 
Finally, we will prove that if t is in one of the intervals Iik2kp, p∈2.kn, then it is in the 

interval Iik2k1 . 
 Let us suppose that t%Ti∉ Iik2k1, this means t%Ti∈]Ti-Eik1..Ti[∪{0}. 
If t%Ti=0, then t is not element of any interval 
In the case t%Ti∈]Ti-Eik1..Ti[, we will prove that Ti-Eik1 is greater than any other 

interval Iik2kj,j=2..kn. It is sufficient for this proof, since the intervals are increasing, to 
prove that Ti-Eik1≥Eik1+Eik2+…+Eikn-1. So, we have to prove that Ti ≥ 
2Eik1+Eik2+…+Eikn-1; since by definition Ti=Eik1+Eik2+…+Eikn, therefore we have to 
prove that  Eik1+Eik2+…+Eikn-1+Eikn≥ 2Eik1+Eik2+…+Eikn-1, this is true because 
Eikn≥Eik1. 

 
Let us generalize to a task kp of the serial transaction: 
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kj=k1 Difference +Cik1 for ]..0]%
1 pikikii TTt Φ−Φ+∈  

i.e. for )]...(..0]%
121 −

+++−∈
pikikikii EEETTt  

since Ti=ΣEij , )].....0]%
1 npp ikikiki EEETt +++∈

+
 

let us note Iikpk1 this interval 
kj=k2 Difference +Cik2 for ]..]%

212 pikikiikiki TTt Φ−Φ+Φ−Φ∈  

i.e. for )]...(..]%
121 −

++−∈
pikikiiki EETETt  

since Ti=ΣEij, )].....]%
111 npp ikikikikiki EEEEETt ++++∈

+
 

let us note Iikpk2 this interval 
kj=kp Difference of –Cikp for ]..0]%

1ikiki j
Tt Φ−Φ∈  

 i.e. for ].....0]%
11 −

++∈
pikiki EETt , let us note Iikpkp this interval 

kj=kp+
1 

Difference of –Cikp+1 for ]..]%
111 ikikikiki ppp

Tt Φ−ΦΦ−Φ∈ ++  

i.e. for ].....]%
1 pp ikikiki EEETt ++∈ , let us note Iikpkp+1 this interval 

kj=kn Difference of –Cikn for ]..]%
1ikikikiki npn

Tt Φ−ΦΦ−Φ∈   

i.e. for ]........]%
132111 −−+

+++++++∈
nnpp ikikikikikikiki EEEEEEETt , 

let us note  Iikpkn this interval 
 
 
The proof uses the same way as before, except that for the general case, what we 

show is that there are always at least as many positive interval than negative intervals. 
Since the WCET can’t decrease, and that the positive intervals correspond to the first 
tasks of the transaction, the positive difference is always greater or equal than the 
negative difference.  

 
• t%Ti∈]0..Eik1] : t%Ti∈Iikpk1 and t%Ti∈Iikpkp, and ∀kq>kp, t%Ti∉Iikpkq because 

the lower limit of these intervals is greater than Eikp≥Eik1. So, there is at least one 
positive interval (giving a difference of Ci1) and at most one negative interval 
(giving a difference of Cikp) and since  Ci1≥Cikp, we obtain Wi1 (τua, 
t%Ti∈]0..Eik1])- Wip (τua, t%Ti∈]0..Eik1])≥0 

• t%Ti∈]Eik1.. Eik1+Eik2] : t%Ti∈Iikpk2 (positive intervals), t%Ti∈Iikpkp (negative 
interval). It is possible that t%Ti∈ Iikpkp+1 (negative interval), but in this case, 
t%Ti∈Iikpk1 (positive interval). On the contrary, ∀kq>kp+1, t%Ti∉Iikpkq because 
Eikp+Eikp+1≥ Eik1+Eik2. Since the execution times are nonincreasing, we have 
Wi1(τua, t%Ti∈]Eik1.. Eik1+Eik2])- Wip(τua, t%Ti∈]Eik1.. Eik1+Eik2])≥0 

• the same reasonning can be lead on the other possible intervals for t%Ti for 
every interval of length Eikj. 
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Theroem 2 implies that in order to analyse a task of intermediate priority compared 
to a serial transaction, it is sufficient to test its response time when it’s released at the 
same time as the first task of the serial transaction to obtain its tight worst response-
time with a classic response time analysis. Note that it can’t be applied to a task of 
lower priority than all the transaction, because the condition “non increasing WCET” 
is not satisfied in this case.  

Let us note )( uait τ  the set of indices of the transactions to whom uaτ  is an 
intermediate priority task. By applying Theorem 2, the interference applied by the 
serial transactions belonging to )( uait τ  does not need any specific study related to 
transactions. It is given (tight upper bound) by: 
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4-3 schedulability of lower priority task  

We present formally the concept of reverse transaction used in the example of 
section 3.2 (Figure 6 (a) and (b)). 
 
Theorem 3: Let iΓ  be a serial transaction, let 1−Γi  be its reverse transaction  and uaτ  
a task under analysis. If all the tasks of the serial transaction iΓ  have a priority higher 
than the priority of uaτ , then the interference imposed by the serial transaction iΓ  on 
the task uaτ  when it is released at the same time as the task initiating the critical 

instant in iΓ  has exactly the same value as the interference imposed by 1−Γi  on uaτ  

when uaτ  is released at the same time as the first task in transaction 1−Γi  i.e 
),(),(11 tWtW uaiuai ττ =− for any t. 

 
Proof: :  Let us note 

iii
pLTfi ⋅−= ; and  ),(11 tW uai τ−  the imposed interference on 

the task uaτ  by the transaction 1−Γi  in a time interval of length t.  
We thus will calculate ),(),(11 tWtW uaicuai ττ −− .  
For any time interval of length t, we know that there is an integer k such that 

ii TtTkt  % +⋅= . 
According to [TN04a], )%,(),(),( 111 111 iuaiiuaiuai TtWTkWtW τττ −− +⋅=−  

)%,(),(),( iuaiciuaicuaic TtWTkWtW τττ +⋅=  
Since the value of interference imposed in any time interval of length iT  (Period) 

is the same whatever the beginning of this interval is, then 
)(),(),(11 iniiiuaiciuai CCLkTkWTkW +⋅⋅=⋅=⋅− ττ  consequently, 
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)%,()%,(),(),(
1111 iuaiciuaiuaicua TtWTtWtWtWi ττττ −=− −− so we can suppose 

iTt <≤0  ; with this consideration, we have : 
 

Interval ),(
11 tW uai

τ−   ),( tW uai τ  

  C t in≤     ),( 
11 ttW uai

=− τ  ttW uain =),(τ  

   Ct in ii pL ⋅+≥    C   ),( in11 iiuai CLtW ⋅+=− τ  iiuai CLtW ⋅+= in1 C   ),(τ  

iiin

in

pLCt
tC

⋅+<
< and  

 

)())((

),(

1

1

1

1

txC
p

CpCt

CtW

ii
i

iiin

inuai

−−⋅






 −+−

+=− τ

 
[ ]
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=

11..L c  
 ),(W

 max),(
i

ic t
tW ua

uai
τ
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For  Ct in≤ and  t Cin iii TpL <≤⋅+ , we have already ),(),(

11 tWtW uaiuai
ττ =−   

We have now to prove the equality ),(),(
11 tWtW uaiuai

ττ =−  for iiinin pLCtC ⋅+<< . 
 

For ] ])(C ; Ct inin ii Cp −+∈ , ),(),( )1(11 tWtW uaLiuai i
ττ +=−  ; c is equal to 1+iL ; 

and for ] [ [ ] ..1 c   ,  C ; )(Ct inin iiiii LpLCp ∈∃⋅+−+∈ such as 
] ]  )1()(C ; )()(Ct inin iiiiiiii pcLCppcLCp ⋅+−+−+⋅−+−+∈ (Figure 8) . 

 
 
 
 
 
 

Fig.8. Illustration of determination of the value of c with t=18,  
4=ip , 2=iC , 5=inC ,  6=iL ; we find c=4 

 
For these two cases, we have  ),(),(

11 tWtW uaicuai
ττ =−                            (1)  

 
Moreover,  ))(()1(),( txCCcLtW icniniiuaic −+⋅+−=τ because iiini CpCf −>−  
(according to the definition of serial transaction). 

 
We will prove now that for all [ ]1..1 +∈ iLp , ),(),( tWtW uaicuaip ττ ≤ , i.e 

),(),( tWtW uaicuai ττ =  
We take the value of  ),( tW uaic τ  like reference (figure 9 (a)) 
 
1st  case : p > c with c<Li+1 
 
 It appears clearly on the figure 9 (A and B) that the shifting of the interval t from c 
to the position p decreases the value of the interference by  iCcp ⋅− )(  on the left side 

t=18c=4
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whereas the increasing on the value of interference obtained on the right side is lower 
or equal to iCcp ⋅− )(  because iiini CpCf −>− . Therefore ),(),( tWtW uaicuaip ττ ≤ . 
 
2nd  case : p < c with c>1  
 

On the figure 9 (A and C), we can see that every time the interval t is shifted the 
value ip  towards the left  (until we reach the position p such as ii ppLt ⋅−+< )1( ), 
we add iC  on the value of the interference on the left side; however, the decreasing 
on the value of the interference on the right side is in the interval [ ]ii pC ;  ; therefore 
the value of the interference after this shifting decreases. When t is lower than 

ii ppL ⋅−+ )1( , a shifting of the interval t towards the left doesn't change the value of 
the interference (Figure 9 (D)).  

 
Consequently, the value of  ),( tW uaip τ is always lower or equal than the value of  

),( tW uaic τ ; then    
),(),( tWtW uaicuai ττ =                   (2)    

 
(1)  and (2) imply ),(),(11 tWtW uaiuai ττ =−  
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig.9 : Illustration of the  comparison between ),( tW uaip τ  and ),( tW uaic τ  
 
 
Let us note )( uahp τ the set of indices of serial transactions such that uaτ  has a 

lower priority than every task of the transaction.  
By applying Theorem1, the interference applied by the serial transactions 

belonging to )( uahp τ in a time interval of length t is : 

Example of Calculation of ),( tW uaic τ with c=7 Illustration of ),( tW uaip τ  with p>c 

1st Illustration of ),( tW uaip τ  with p<c 2nd Illustration of ),( tW uaip τ  with p>c 

A

1 c2 

B 

1 2 c p 

C 

1 2  c p 

D 

1 2 cp
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This formula facilitates the calculation of the worst-case response-time. 

5 Validation of the case study 

Let S be a set of tasks that contains classical tasks and serial transactions. 
Let uaτ  be a task under analysis with execution time equal to uaC . 

Let us note )( uahp τ the set of indices of serial transactions such that uaτ  has a 
lower priority than every tasks of the transaction. Let us note )( uait τ  the set of 

indices of the transactions to whom uaτ  is an intermediate priority task, )( uaCh τ  the 

set of indices of classical tasks having a priority higher than the priority of uaτ  and 
)(tWua  the amount of interference that all the tasks in the set S with higher priority 

impose on the task uaτ  in a time interval of length t. 
By applying theorem 2 and theorem 3, we obtain this formula : 

uaua CW =)0(  
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This formula contains threee parts: the first part represent the interference of the 
classical tasks ( )( uaCh τ ) on the reponse-time of uaτ ; the second part is the 
application of theorem 2 ( )( uait τ ) and the last part is the application of theorem 3 
( )( uahp τ ).  

 
By applying this formula with the case study, we obtain the table below: 
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Tasks Period deadline Priority Worst-case response time 
1 200000 200000 1 56156 

2 20000 10000 7 6532 

3 50000 30000 5 15532 

4 20000 10000 6 6572 

5 250000 140000 2 56096 

6 60000 60000 4 54636 

7 250000 160 11 124 

8 20000 720 10 468 

9 100000 80 12 12 

          
10 250000 5000 9 3408 

11 20000 7500 8 5620 

12 100000 70000 3 55416 

 
Table3: Worst-case response time calculated with the formula 

6 Conclusion 

In this article, we have presented a new task model: the serial transaction. A serial 
transaction Γi is compound with Li short but urgent acquisition tasks activated each 
time a serial packet is received, and a less urgent but longer treatment task activated 
when a whole frame is received. 

The number of acquisition tasks can be important (more than 120 in a real case 
study) and makes the exact calculation of response time intractable. Moreover, 
overestimating the worst-case response time of the urgent acquisition tasks wouldn’t 
allow validating a task system. 

After simplifying the way to evaluate the interference of a transaction and to find 
the critical instant candidate (Theorem 1), we have shown that for tasks of 
intermediate priority, the critical instant always coincides with the release of the first 
task of the transaction (Theorem 2) . This new result allows us to calculate an exact 
worst-case response time for intermediate priority tasks (usually most tasks of a 
system). We have also presented the concept of  reverse transaction deduced from 
serial transaction. Using this reverse transaction we have presented a method less 
pessimistic and simpler to implement than the best known approximation method 
[TN04b]. Our future work will focus on the determination of the real worst-case 
response time (complexity of the problem). An extension of Theorem 1 taking jitters 
into account is investigated. 
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