
Bringing Together Partitioning, Materialized Views
and Indexes to Optimize Performance of Relational

Data Warehouses
Ladjel Bellatreche1, Michel Schneider2, Hervé Lorinquer2, Mukesh Mohania3

1 LISI/ENSMA – Futuroscope – France bellatreche@ensma.fr
2 LIMOS – Blaise Pascal University – France michel.schneider@isima.fr

3I.B.M. India Research Lab – INDIA mkmukesh@in.ibm.com

Abstract. There has been a lot of work to optimize the performance of rela-
tional data warehouses. Three major techniques can be used for this objective :
enhanced index schemes (join indexes, bitmap indexes), materialized views,
and data partitioning. The existing research prototypes or products use materi-
alized views alone or indexes alone or combination of them, but none of the
prototypes use all three techniques together for optimizing the performance of
the relational data warehouses. In this paper we show by a systematic experi-
ment evaluation that the combination of these three techniques reduces the
query processing cost and the maintenance overhead significantly. We conduct
several experiments and analyse the situations where the data partitioning gives
better performance than the materialized views and indexes. Based on rigorous
experiments, we recommend the tuning parameters for better utilization of data
partitioning, join indexes and materialized views to optimize the total cost.

1 Introduction
Data warehousing technology uses the relational data schema for modeling the un-

derlying data in a warehouse. The warehouse data can be modeled either using the star
schema or the snowflake schema. In this context, OLAP queries require extensive join
operations between the fact table and dimension tables [11,15]. To improve the query
performance, several optimization techniques were proposed; we can cite materialized
views [1,2,3,10,16], advanced indexing techniques including bitmapped indexes, join
indexes (for supporting star queries), bit-sliced indexes, projection indexes [7, 8, 9,
14, 16] and data partitioning [4, 5, 12]. The data table can be fragmented into three
ways: vertically, horizontally or mixed. In the context of relational warehouses, the
previous studies show that horizontal partitioning is more suitable. Commercial
RDBMSs like Oracle9i offer various options to use horizontal partitioning: Range,
Hash, and Hybrid. This type of horizontal partitioning is called primary horizontal
partitioning and it can be applied to dimension tables. Another type of horizontal
partitioning is called derived horizontal partitioning [4]. It consists in decomposing a
table based on the fragmentation schema of another table. For example, let us consider
a star schema with three dimension tables (Customer, Time and Product) and a fact
table Sales. The former table can be decomposed into two fact fragments Sales1 and
Sales2 that represent all sales activities for only the male customers and all sales ac-

tivities for only the female customers, respectively. This means that the dimension
table Customer is virtually partitioned using range partitioning on Gender column.

In this paper, we conduct experiments to show the effect of the combination of the
three major optimization techniques by using the APB1 benchmark [13] under Oracle
9i. Along this study, the effect of updates (append and delete operations) is consid-
ered. Since the derived horizontal partitioning is not directly supported by commercial
RDBMSs like Oracle9i, we present an implementation to make it operational (in this
paper, we use fragmentation and partitioning interchangeably).

The paper is organized as follows: in Section 2, we introduce the necessary back-
ground and we present our explicit solution to implement the derived horizontal parti-
tioning in commercial systems; in Section 3, we present experiments for comparing
joins indexes and partitioning and we summarize the main tuning recommendations
when using the three techniques; in Section 4 we present experiments for exploring the
combination of the three techniques; Section 5 concludes and points some perspective.

2. Background
2.1 Benchmark
For our study, we use the dataset from the APB1 benchmark [13]. The star schema of
this benchmark has one fact table Actvars and four dimension tables :

Actvars(Product_level, Customer_level, Time_level, Channel_level, UnitsSold, DollarSales,
DollarCost) (24 786 000 tuples)

Prodlevel(Code_level, Class_level, Group_level, Family_level, Line_level, Division_level)
(9 000 tuples)

Custlevel(Store_level, Retailer_level) (900 tuples)
Timelevel(Tid, Year_level, Quarter_level, Month_level, Week_level, Day_level) (24 tuples)
Chanlevel (Base_level, All_level) (9 tuples)

Two new attributes, week_level and day_level have been added to Timelevel table to
facilitate an adequate management of updates (see section 2.3). This warehouse has
been populated using the generation module of APB1. This warehouse has been in-
stalled under ORACLE 9i on a Pentium IV 1,5 Ghz microcomputer (with a memory of
256 Mo and two 7200 rps 60 Go disks) running under Windows 2000 Pro.

2.2 Workloads
The workloads used for our experiments focus on star queries. Each one has local
restrictions defined in the involved dimension tables. We consider restrictions defined
with predicates having only equality operator : A = value, where A is an attribute
name of a dimension table and value ∈ domain(A). When a query Qi of a workload
involves such a restriction, the workload that we consider will have ni potential que-
ries, where ni represents the cardinality of domain(A). In other words, there is a po-
tential query for each different value of domain(A). Qi is called a parameterized
query, and Qi(ni) denotes its set of potential queries. For example, if we consider the
parameterized query involving the predicate gender = "M", the workload will have 2
potential queries: one with the previous predicate and another with gender = "F”.

2.3 Update Operations
Since the materialized views and indexes are redundant data structures, they should be
maintained periodically to reflect the interactive nature of the data warehouse. The
cost of maintaining materialized views, indexes and even fragments should be taken
into account when combining these three techniques in order to reduce the mainte-
nance overhead. In this study, we incorporate updates into the workload. We suppose
that they occur at regular intervals and a certain number of queries are executed be-
tween two updates. Based on the periodicity of updates, we consider two scenarios
(that keep the size of the data warehouse constant):
1. UD (that means that Updates occur each Day). It consists in deleting the N oldest

tuples of the fact table and inserting N new tuples (N is equal to the average ac-
tivity of a day). Since our warehouse memorizes 24 786 000 tuples in the fact ta-
ble for a period of 517 days, the activity of one day corresponds to an average of
47 942 tuples. So, with this scenario, 47 942 old tuples (of the fact table) are de-
leted and 47 942 new tuples are inserted.

2. UW (that means that Updates occur each Week). This scenario is similar to the
previous one, except that the periodicity of the update operations is a week.
Therefore 335 594 old tuples are deleted and 335 594 new ones are inserted in
the fact table.

For these scenarios, we measure the time that Oracle uses to execute all operations
(updating the raw data, the materialized views, the indexes and the fragments).

2.4 Cost Models for Calculating the Total Execution Time
Let S be a set of parameterized queries {Q1, Q2, …, Qm}, where each Qi has a set of
potential queries (Qi(ni)). To calculate the total time to execute S and one update, we
use two simple cost models called Independent_Total_Time(TI) and Propor-
tional_Total_Time(TP). In TI, we suppose that the frequencies of the queries are
equal and independent of the number of potential queries Qi(ni). In the second one, the
frequency of each Qi is proportional to its ni. Each model (TI and TP) will be used
under the scenarios UD (where we consider TID and TPD) and UW (by considering
TIW and TPW). Let t(O) be the execution time of an operation O (that can be a query,
an UD or an UW). We define four cost models according to each models: TID, TIW,
TPD, and TPW and defined as follows :
TID(α) = α*(Σi=1 .. m t(Qi)) + t(UD) (1)
TIW(α) = α*(Σi=1 .. m t(Qi)) + t(UW), where α is a positive integer, (2)
TPD(β%) = 0.01*β*(Σi=1 .. m ni*t(Qi)) + t(UD) (3)
TPW(β%) = 0.01*β*(Σi=1 .. m ni* t(Qi)) + t(UW) (4)
where β is an integer taken in the interval [0, 100]. In other words, TID(α) and
TIW(α) give the total time needed to execute α times each query plus an update.
TPD(β%) and TPW(β%) give the total time required to execute β% of the potential
queries plus an update.

2.3 An Implementation of the Derived Horizontal Partitioning
To partition dimension tables, Oracle provides several techniques: range, hash and
hybrid partitioning. The attributes used for partitioning are called fragmentation at-
tributes. Oracle and the existing commercial systems do not allow partitioning of the

fact table using a fragmentation attributes belonging to a dimension table, as we will
illustrate in the following example.

Suppose that we want to partition the fact table Actvars based on the virtual frag-
mentation schema of the dimension table ProdLevel (we assume that this former is
partitioned into 4 disjoint segments using the attribute class_level). This will acceler-
ate OLAP queries having restriction predicates on Class_Level. Based on this frag-
mentation, each tuple of a segment of the fact table will be connected to only one
fragment of dimension ProdLevel. To achieve this goal (fragmenting the fact table
based on the fragmentation schema of ProdLevel), we partition the fact table using
one of the different partitioning modes (Range, Hash, Hybrid) available in the com-
mercial systems based on the foreign key (Product_level)1. This fragmentation will
generate 900 fact segments instead of 4 segments2. This example motivates the need
of a mechanism that implements the derived fragmentation of the fact table. To do so,
we propose the following procedure:

1- Let A = {A1, ..., Ap} be the set of fragmentation attributes.
2- For each Ai (1 ≤ i ≤ p) do

2.1- Add a new column (attribute) called connecti (whose domain is an integer)
in the fact table. %This column gives the corresponding segment of each tuple of the fact
table. For example, if the value of connecti of a given column is 1; this means that this tuple is
connected (joined) to the segment 1 of the dimension table used to partition the fact table%

2.2- For each tuple of the fact table, instanciate the value of connecti.
3- Specify the fragmentation of the fact table by using the attribute connecti with one
of the partitioning modes (range, hash, hybrid, etc.).

To take into account the effect of data partitioning, the queries must be rewritten
using the attribute connecti. This implementation needs extra space (for storing the
attribute(s) connecti). It requires also an extra time for the update operations.

3 Comparing Derived Partitioning and Join Indexes
3.1 Queries
For this comparison, we consider separately eight queries Q1 to Q8. The queries Q1 to
Q5 have one join operation and one restriction predicate. The queries Q6 to Q8 have
two joins operations and two restriction predicates. Each restriction predicate has a
selectivity factor. The workload and the star schema used in our experiments are given
in [6] (due to the space constraint).

3.2 Experimental Results
To identify the situations where the use of derived partitioning is interesting, we have
conducted three series of experiments : (1) without optimization techniques; (2) only
data partitioning is used (and depends on each query), and (3) only join indexes are
used. When the data partitioning is used, we have considered for each query, a number

1 The foreign key is the single attribute that connects the fact table and the dimension table.
2 The number of fragments of the fact table is equal the number of fragment of the dimension

table.

of partitions equal the number of different values of its restriction attribute. Based on
this number, we use the range mode (R) when it is small, otherwise, the hash mode
(H) is used. The hybrid mode is used when queries have two join operations and two
restriction predicates.

Table 1. The results for the first serie (without optimization techniques)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Query time (s) 106 61 63 53 54 61 59 56

UD (s) 68 68 68 68 68 68 68 68
UW (s) 75 75 75 75 75 75 75 75
TID(1) 174 129 131 121 122 129 127 124

TID(10) 1128 678 698 598 608 678 658 628
TPD(5%) (s) 89 105 118 269 878 214 493 2588

TPD(25%) (s) 174 251 320 1075 4118 800 2192 12668
TIW(1) 181 136 138 128 129 136 134 131

TIW(10) 1135 685 705 605 615 685 665 635
TPW(5%) (s) 96 112 125 276 885 221 500 2595

TPW(25%) (s) 181 258 327 1082 4125 807 2199 12675

When the join indexes are used, we select one index for the queries with one join
and two indexes for those with two joins. For each query, we report the extra space
used either by the partitioning or by the indexes, the query time, the update time for
UD and UW, TID(α) and TIW(α) for two values of α (1 and 10), the values of
TPD(β%) and TPW(β%)) for two values of β (5 and 25). The results are reported in
the three tables Table 1, Table 2, Table 3 (one for each series).

3.3 Comments
Based on these results, the following comments are issued:
Query Time: We observe that partitioning gives a profit even for a low selectivity.
The profit is very important with a high selectivity (when the number of different
values for a restriction attribute is greater than 50). Join indexes give also a profit as
soon as the selectivity is sufficiently high (more than 10 different values for the selec-
tion attribute). But partitioning gives better results compared to join indexes.
Update time: Join indexes are in general much more efficient than partitioning. Par-
titioning performs as well as indexes only for low selectivity and for daily updates.
With partitioning, it is important to limit the number of partitions (less than 100 for
our benchmark), otherwise the update time becomes very high. Therefore, we need to
partition the fact table into a reasonable number of segments.
TI and TP model: It appears that partitioning is in general much more interesting
than join indexes. Join indexes give better results only for high selectivity and small
values of α and β (this means that the query frequency is almost the same as the up-
date frequency).

These series of experiments summarize the following tuning recommendations
when optimizing a parameterized query:

Rule 1: Data partitioning is recommended when (1) the selectivity factor of restriction
predicate used in the query is low or (2) when the frequency of the update operation is
low compare to the query frequency.
Rule 2: Join indexes are recommended when (1) the selectivity is high or (2) when the
frequency of the update is similar to the query frequency.
In addition it is important to note that partitioning requires an additional space more
significant than those required by indexes. But it remains acceptable (10% of the total
space occupied by the warehouse if the number of partitions is limited to 100). This
additional space is justified by the fact of adding a new column (connect) in the fact
table (see Section 2.3).

Table 2.: Results for the second serie (data partitioning) (the best score for the three situations
is represented in bold)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Number of
partitions

4
(4R)

12
(12R)

15
(15R)

75
(75H)

300
(300H)

48
(4R*12H)

144
(12R*12H)

900
(12R*75H)

Extra space (Mo) 74 90 123 170 194 156 174 431
Query time (s) 53 9 13 4 1 11 2 1
UD (s) 69 70 70 88 112 86 105 135
UW (s) 105 92 121 154 199 144 164 220
TID(1) 122 79 83 92 113 97 107 136
TID(10) 599 160 200 128 122 196 125 145
TPD(5%) (s) 80 75 80 103 127 112 119 180
TPD(25%) (s) 122 97 122 164 187 218 177 360
TIW(1) 158 101 134 158 200 155 166 221
TIW(10) 635 182 251 194 209 254 184 230
TPW(5%) (s) 116 97 131 169 214 170 178 265
TPW(25%) (s) 158 119 173 230 274 276 236 445

Table 3. Results for the third serie (join indexes) (the best score for the three situations is
represented in bold)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Join indexes JI1 JI2 JI3 JI4 JI5 JI1+JI2 JI2+JI3 JI2+JI4
Extra space (Mo) 11 8 20 35 59 19 28 43
Query time (s) 152 24 57 26 8 19 9 3
UD (s) 69 69 71 69 68 68 71 69
UW (s) 98 99 101 101 104 109 110 110
TID(1) 221 93 128 95 76 87 80 72
TID(10) 1589 309 641 329 148 258 161 99
TPD(5%) (s) 99 83 117 168 188 114 136 204
TPD(25%) (s) 221 141 299 563 668 296 395 744
TIW(1) 250 123 158 127 112 128 119 113
TIW(10) 1618 339 671 361 184 299 200 140
TPW(5%) (s) 128 113 147 200 224 155 175 245
TPW(25%) (s) 250 171 329 595 704 337 434 785

4 Combining the Three Techniques
4.1 The queries and the cases
To evaluate the result of combining the three techniques, we conduct experiments
using six SJA (Select, Join, Aggregation) queries noted Q9 to Q14. All queries are
parameterized, except the query Q14. To capture the effect of the data partitioning, the
number of restriction predicates in each query (except the query Q14) is equal the
number of join operations.
Since a fragment is a table, the three techniques can be combined in various ways :
selecting indexes and/or views on a partitioning, installing indexes and/or partitions on
views, selecting views and indexes separately. We consider the following cases:

Fig. 1. The materialized views V1 to V4 used in case 2 and in case 3

Case 0 (for comparison purpose) : None optimization technique is considered;
Case 1 (to test separately the ability of a set of joins indexes) : The four join indexes
JI1 on actvars (timelevel.month_level), JI2 on actvars(prodlevel family_level), JI3 on
actvars(prodlevel.grouplevel), JI4 on actvars(chanlevel.all_level);
Case 2 (to situate separately the performances of a set nested materialized views) :
The three nested views of figure 1a;
Case 3 (idem as the previous one with one view more) : The views of figure 1a and
figure 1b;
Case 4 (to show the interest of associating a star transformation with join indexes) :
The star transformation3 with the four join indexes of case 1, plus the bitmap index
incorporating the join with Timelevel, plus the view V4 of figure 1b;

3 The star transformation is a powerful optimization technique that relies upon implicitly re-

writing (or transforming) the SQL of the original star query. The end user never needs to
know any of the details about the star transformation. Oracle's cost-based optimizer auto-
matically chooses the star transformation where appropriate.

Join operation

V1

V2

V3

Actvars Timelevel

Prodlevel

Chanlevel

SE

AG

V4

Actvars Timelevel

AG

AG

AG

Aggregation

Q9

Q13

Q14

Q10

a

b

Q11

Case 5 (to evaluate the partitioning) : The derived partitioning into 96 partitions using
month_level (12R) + all_level (8H) (R and H mean Range and Hash, respectively);
Case 6 (to test partitioning) : The derived partitioning into 72 partitions using
all_level (9R) + family_level (8H);
Case 7 (to test partitioning) : The derived partitioning into 144 partitions using
all_level (9R) + family_level (16H);
Case 8 (to test partitioning in association with indexes) : The derived partitioning into
72 partitions using all_level (9 R) + family_level (8H), plus the bitmap index on
actvars(derived attribute of month_level), plus the join index JI3;
Case 9 (to test partitioning) : The derived partitioning into 96 partitions using
month_level (12R) + H(family_level (8H);
Case 10 (to test partitioning in assocition with index): The derived partitioning into 96
partitions using month_level (12R) + H(family_level (8H) plus the join index JI3
Case 11 (to test partitioning in association with index): The derived partitioning into
96 partitions using month_level (12R) + H(family_level (8H), plus the join JI3, plus
the view V4 of figure 5b.

4.2 Experimental Results and Comments
The results obtained for these 12 cases are reported in table 4 (ES means extra space).
The execution times are given in seconds. In table 4 we found also the extra space
which is needed to install the different objects (indexes, views, partitions), the values
of TID(α) and TIW(α) for two values of α (1 and 10), the values of TPD(β%) and
TPW(β%)) for two values of β (1 and 10).

Table 4. The results of the experiments for studying the combination of the three
techniques (best score in bold, second score in grey)

When partitioning is used, the number of partitions should be limited to a reason-
able value (less than 100 for our benchmark). With a number of partitions greater than
100, the time used for the updates becomes very high. Moreover some partitioning can
disadvantage queries (for example case 6 for Q9 and Q13). Update times are highest
when materialized views are used. This limits seriously the interest of the views in this
kind of situations. However some configurations can give good global results despite
high update times and views can be profitable in association with others techniques.

Case
ES

Q9 Q10 Q11 Q12 Q13 Q14 UD UW TID
(1)

TID
(10)

TIW
(1)

TIW
(10)

TPD
(1%)

TPD
(10%)

TPW
(1%)

TPW
(10%)

0 61 59 65 63 58 102 65 74 473 4145 482 4154 8383 81216 8392 81225
1 158 28 5 3 29 1 102 76 138 244 1756 306 1818 600 5587 662 5649
2 301 12 1 1 77 10 103 131 292 335 2171 496 2332 - - - -
3 302 12 1 1 77 10 1 147 390 249 1167 492 1410 - - - -
4 167 29 5 2 20 1 1 113 236 171 693 294 816 494 4805 617 4928
5 279 15 10 4 31 36 97 90 145 283 2020 338 2075 2012 19445 2067 19500
6 268 78 12 1 1 71 97 98 185 358 2698 445 2785 2860 29879 2947 29966
7 297 97 6 1 1 91 126 161 217 483 3381 539 3437 3592 36628 3648 36684
8 303 46 12 1 2 1 97 122 258 281 1712 417 1848 367 4664 503 4800
9 279 16 2 1 12 35 97 90 164 253 1720 327 1794 1533 15936 1607 16010
10 305 15 2 1 12 1 97 96 176 224 1376 304 1456 315 3701 395 3781
11 305 16 2 2 12 1 1 169 485 203 509 519 825 468 4576 784 4892

Materialized views are profitable for parameterized queries if we select a view for
each value of the parameter. In general, this is not acceptable due to the huge storage
and update time that we should allocated to them (materialized views). We observe
also that the extra space needed to install the objects (indexes, views, partitions) re-
mains less than 300 Mo (i.e. about 15% of the total space occupied by the warehouse).

The important observation is that join indexes alone, or materialized views alone,
or partitioning alone do not provide the best results for TI or for TP. Best results are
obtained when two or three techniques are combined : case 4 which combines through
a star transformation the join indexes, a bitmap index and a view; case 10 which com-
bines partitioning and a join index; case 11 which at more associates a view. Case 4 is
well suited for TI but not for TP. Case 10 and 11 give good results both for TI and for
TP. Combinations involving partitioning are recommended when the database admin-
istrator wants to optimize parameterized queries first.

We observe also that some configurations are good for several situations. It would
be very interesting to determine such robust configurations since they remain valid
after some changes in the use of the data warehouse (changes in the frequencies of
queries, changes of queries, …).

5 Conclusion
The objective of this paper was to explore the possibilities of combining materialized
views, indexes and partitioning in order to optimize the performances of relational
data warehouses. Firstly, we have proposed an implementation of derived horizontal
partitioning that allows the use of different modes of partitioning available (like range,
hash and hybrid). We have compared join indexes and horizontal derived partitioning.
Our results show that partitioning offers better performance (for query processing
time), especially when the selectivity of the restriction predicates is low. With regard
to the updates, it is less interesting, primarily when the number of partitions is high.
When updates and queries interleave, a partitioning on an attribute A with n different
values is advantageous as soon as a parameterized query on A is executed more than
0.05*n times between two updates. This work shows that the two techniques are rather
complementary. There is thus interest to use them jointly as it had been already un-
derlined through a theoretical study [5].

We have further compared different configurations mixing the three techniques to
optimize a given set of queries. It appears that each technique used alone is not able to
give the best result. Materialized views contribute in optimizing parameterized que-
ries, but they require huge amount of storage (but they remain a good candidate for
optimizing non parameterized queries). Along these experiments, two performance
scenarios are distinguished: the first one is based on a star transformation with join
indexes with complementary structures such as bitmap indexes or views; another one
based on partitioning with complementary structures such as join indexes or views.
We have noticed that the second scenario is robust since it gives good results for dif-
ferent situations.

Our experiments do not cover all the various uses of a warehouse. Different points
should be explored in the future such as: the consideration of other types of queries
(those having restrictions with OR operations, nested queries, etc.); the influence of

other kinds of updates. Nevertheless, these results allow us to list some recommenda-
tions for better tuning the warehouse: (1) the horizontal derived partitioning can play
an important role in optimizing queries and the maintenance overhead, (2) incorpora-
tion of updates into the workloads may influence the selection of materialized views,
indexes and data partitioning, (3) partition the fact table into a reasonable number of
fragments rather having a huge segments. We think that these recommendations open
the way for new algorithms for selecting simultaneously fragments, indexes and views
in order to accelerate queries and optimize the maintenance overhead.

References
1. S. Agrawal, S. Chaudhuri, V.R. Narasayya, "Automated selection of materialized views and

indexes in SQL databases", in Proc. 26th Int. Conf. on Very Large Data Bases (VLDB), pp.
496-505, 2000.

2. E. Baralis, S. Paraboschi, and E. Teniente, "Materialized view selection in a multidimen-
sional database," in Proc. 23rd Int. Conf. on Very Large Data Base (VLDB), pp. 156-165,
1997.

3. L. Bellatreche, K. Karlapalem, and Q. Li, "Evaluation of indexing materialized views in data
warehousing environments", in Proc. Int. Conf. on Data Warehousing and Knowledge Dis-
covery (DAWAK), pp. 57-66, 2000.

4. L. Bellatreche, K. Karlapalem, M. Schneider and M. Mohania, "What can partitioning do for
your data warehouses and data marts", in Proc. Int. Database Engineering and Application
Symposium (IDEAS), pp. 437-445, 2000.

5. L. Bellatreche, M. Schneider, M. Mohania, and B. Bhargava, "Partjoin : an efficient storage
and query execution design strategy for data warehousing", Proc. Int. Conf. on Data Ware-
housing and Knowledge Discovery (DAWAK), pp. 296-306, 2002.

6. L. Bellatreche, M. Schneider, Lorinquer, H. and M. Mohania," Bringing Together Partition-
ing, Materialized Views and Indexes to Optimize Performance of Relational Data Ware-
houses, extented version available at http://www.lisi.ensma.fr/publications.php

7. S. Chaudhuri and V. Narasayya., "An efficient cost-driven index selection tool for microsoft
sql server", in Proc. Int. Conf. on Very Large Databases (VLDB), 1997, pp. 146-155.

8. C. Chee-Yong, "Indexing techniques in decision support Systems", Ph.D. Thesis, University
of Wisconsin, Madison, 1999.

9. H. Gupta et al., "Index selection for olap," in Proc. Int. Conf. on Data Engineering (ICDE),
pp. 208-219, 1997.

10. H. Gupta and I. S. Mumick, "Selection of views to materialize under a maintenance cost
constraint," in Proc. 8th Int. Conf. on Database Theory (ICDT), pp. 453-470, 1999.

11. Informix Corporation, "Informix-online extended parallel server and informix-universal
server: A new generation of decision-support indexing for enterprise data warehouses",
White Paper, 1997.

 12. Nicola, M. ‘’Storage Layout and I/O Performance Tuning for IBM Red Brick Data Ware-
house’’, IBM DB2 Developer Domain, Informix Zone, October 2002.

13. OLAP Council, "APB-1 olap benchmark, release II",
http://www.olapcouncil.org/research/bmarkly.htm.

14. P. O'Neil and D. Quass., "Improved query performance with variant indexes", in Proc.
ACM SIGMOD Int. Conf. on Management of Data, pp. 38-49, 1997.

15. Red Brick Systems, "Star schema processing for complex queries", White Paper, July 1997.
16. A. Sanjay, G. Surajit, and V. R. Narasayya, "Automated selection of materialized views and

indexes in microsoft sql server", in Proc. Int. Conf. on Very Large Databases (VLDB), pp.
496-505, 2000.

