
Integrating formal approaches in Human-Computer Interaction
methods and tools: an experience

Patrick Girard1, Mickaël Baron1, Francis Jambon2

1 LISI/ENSMA, 1 rue Clément Ader, Téléport 2,
BP 40109, 86961 Futuroscope Cedex, France

{girard,baron}@ensma.fr
2 CLIPS-IMAG, 385 rue de la bibliothèque,

BP 53, 38041 Grenoble cedex, France
Francis.Jambon@imag.fr

Abstract: Formal methods are increasingly used by HCI researchers. Nevertheless, their usage in actual
interactive developments is not so common. In this paper, we describe the use of a specific formal method from
two viewpoints. On the one hand, we demonstrate how it is possible to use a formal method on real development
from specification to actual code. Doing so, we notice that HCI concepts, such as architecture models, may have
to be adapted. On the other hand, we show how it is possible to bring more usability to formal methods by the
way of a complete integration into HCI tools. We conclude in eliciting the lessons learned from these works.

Keywords: Formal methods, HCI tools, interactive development

1. Introduction
Software engineering (SE) methods are well known to
be relatively far from Human Computer Interaction
(HCI) methods and tools. From the HCI point of
view, we can say that beyond use case models in
UML, task-based approaches are not really in use in
most projects. From the SE point of view, HCI tools
and methods remain partial and somewhere
“anecdotal”.

In this contribution, we would like to introduce
our experience in attempting to incorporate formal
methods (issued from SE point of view) in interactive
design and development. Doing so, we try to elicit
the points that make all the difficulty of actually
realizing our goals.

Our approach is based on the use of the formal B
method in HCI, in order to address security in critical
interactive applications, such as traffic air control or
nuclear power plant supervision. We do not intend to
focus on the use of this particular formal method.
Adversely, we only use this experience to illustrate
the gap between the two fields.

In the next part –part 2– we give a short list of
formal approaches that have been used in HCI, and we
give several points that explain their poor usage in
that field. In part 3, we relate the first attempts in

applying the B method in interactive design. We
particularly focus on architectural problems, which
might constitute a solid bridge between SE and HCI.
In part 4, we show how actual HCI tools might
incorporate secure development methods by the way
of leaning on formal semantics all along the HCI
design and development. Last we conclude on
discussing the lessons learned in these works.

2. Formal approaches in HCI
Formal specification techniques become regularly
used in the HCI area.

On the one hand, user-centred design leans on
semi-formal but easy to use notations, such as MAD
(Scapin and Pierret-Golbreich, 1990) and UAN (Hix
and Hartson, 1993) for requirements or specifications,
or GOMS (Card et al., 1983) for evaluation. These
techniques have an ability to express relevant user
interactions but they lack clear semantics. So, neither
dependability nor usability properties can be formally
proved.

On the other hand, adaptation of well-defined
approaches, combined with interactive models, brings
partial but positive results. They are, for example, the
interactors and related approaches (Duke and Harrison,
1993, Paternò, 1994), model-oriented approaches

- 55 -

Harning & Vanderdonckt

(Duke and Harrison, 1993), algebraic notations
(Paternò and Faconti, 1992), Petri nets (Palanque,
1992), Temporal Logic (Brun, 1997, Abowd et al.,
1995). Thanks to these techniques, some safety as
well as usability requirements may be proved.

However, these formal techniques are used in a
limited way in the development process, mainly
because of three points:

• Few of them can lean on usable tools, which
allow real scaled developments. Case studies
have been demonstrated, but no actual
application has been completely designed with
these methods.

• Formal notations are currently out of the
scope of HCI designers. Their usage by non
specialists it everything but easy.

• Formal studies are currently disconnected from
usual HCI tools. No commercial tool and very
few research one really incorporates
semantically well defined approaches.

In this paper, we relate our studies one model-oriented
approach, the B method (Abrial, 1996), whose one
great advantage is to be well instrumented. But we do
not allege it is the best nor the perfect formal method
to be used. Our claim is that this model-oriented
technique that uses proof obligations can be used with
profit in a HCI context; more, it might be used
together with model checking techniques, where
automatic proofs of properties can be performed.

3. The B method and interactive
design and development

This section presents the different steps that have
been made in the attempt to use the B method in the
field of HCI. Starting from the reduced aspect of
verifying software specifications, we show how it has
been possible to reach the implementation step in a
complete formal development. Then, we focus on
architecture problems. Last, we conclude in analyzing
the difficulty of this extreme approach.

3.1. Using B for HCI specifications
In (Aït-Ameur et al., 1998a, Aït-Ameur et al.,
1998b), the authors use for the first time the B
method for the verification of interactive systems.
Lying on a pure interactive case study (see below),
these works suggest formally based solutions which
allow solving difficulties that are inherent to
interactive systems specification, such as reachability,
observability or reliability.

The case study is a co-operative version of a Post-
It®i Note software. With this case, it is possible to
address highly interactive problems due to the direct
manipulation style, such as drag and drop,
Iconfication/Deiconification, resizing, and so on. A
special attention is paid on mouse interaction.

This use of the B method on a non-trivial case
study has illustrated the capability of B to handle
different aspects of the software life cycle in the area
of interactive systems. The described approach
demonstrates:

• Complete formalisation: the approach is
completely formalised and most of the proof
obligations are automatically proved. The
other ones need only few steps of manual
proof.

• Property checking: it is possible to check
properties on specifications, thanks to the
weakening of preconditions.

• Reverse engineering aspects can be handled
with this approach and the specifications of
already existing programs can be used to
develop new ones. Therefore, reusability
issues appear.

• Incremental design: the specifications are
incrementally. Indeed, programming in the
large operator allows to compose abstract
machines and therefore to build more complex
specifications. Yet, this process needs to
follow a given methodology issued from the
area of interactive system design.

name

Iconify Bloc Detach Post-It

Text

Iconify Drag Kill

Text

Resize

Close

Figure 1: From the left to the right, The Post-It®

block, the three icons (Post-It® block, User, and Post-
It®), and the Post-It® Note itself.

One can object that this case study is situated at a
too low level for the interactive viewpoint. Properties
such as keeping the mouse pointer into the screen are
not relevant in current graphical systems where this is
ensured –or supposed to be ensured– by the operating
system. In fact, this emphasizes the problem of using
formal methods in actual interactive environments. Is
it acceptable to use formal techniques when we lean
on graphical layers that are not formally defined? One

i “Post-it” is a registered trademark of 3M

- 56 -

Closing the Gap: Software Engineering and Human-Computer Interaction

INTERACT 2003 Submission Style Guide

solution, as described in this work, might be to make
a reengineering analysis of such tools.

The first step reached by this study is the one of a
complete specification of an interactive system, with
respect to some interactive properties. As many
works in the field of formal methods in HCI, it is
possible to concentrate on some properties, but two
drawbacks can be given:

• Because of the strong relation to the coding
activities, interactive properties are not related
to the user activity;

• Formally ensuring that specification are
consistent, and respect properties, does not
ensure that the actual code will respect
specification, without a link between
implementation and specification.

One of our major goals in exploring the usage of
formal methods in the context of HCI design and
development was to ensure that other people than
pure formal methods specialists could use the method.
So, with help of B tools, we tried to realize the whole
development of an interactive application, from high-
level specifications to running code. We first propose
a architecture model to assist the designer (3.2), and
then define heuristics to implement this model (3.3).

3 . 2 . Formal development versus
software architecture models

The case study is here a control panel for a set of
three rechargeable batteries. It is an elementary safety-
critical process-control system: the operator can
control side effects on hardware –the switches–
whereas the hardware state –the batteries levels– is
altered asynchronously. Both safety and usability
properties have to be ensured. This required first step
of the design process consists in modeling the battery
control panel requirements with the B language. Three
kinds of requirements must be fulfilled:

• The system must be safe, i.e., the system
must avoid shortcuts and it must not be
possible to switch on an empty battery.

• The system must be honest, i.e., the user
interface widgets must display exactly the
batteries levels and switches positions.

• The system must be insistent, i.e., the
system must warn the operator when a
battery is going to be empty.

Our first idea for designing such a system was to
use a well-known multi-agent model, such as MVC
(Goldberg, 1984) or PAC (Coutaz, 1987), because
acceptability of formal methods is greatly influenced
by using domain standard methods. The interactive
system specifications must however stay in the

boundaries of the B language constraints. We selected
three kinds of constraints that relate to our purpose.
These main constraints are:

• Modularity in the B language is obtained
from the inclusion of abstract machine
instances –via the INCLUDES clause– and,
according to the language semantics, all these
inclusions must build up a tree.

• The substitutions used in the operations of
abstract machines are achieved in parallel. So,
two substitutions –or operations– used in the
same operation cannot rely on the side effects
of each other.

• Interface with the external world, i.e. the user
actions as well as the updates of system state,
must be enclosed in the set of operations of a
single abstract machine.

Classic software architecture models such as PAC
or MVC are not compliant with these drastic B
language constraints. That is why we proposed a new
hybrid model from MVC and PAC to solve this
problem. The design of this new software architecture
model –CAV– cannot be detailed here. The reader
should refer to (Jambon et al., 2001) for a more
detailed description of the model design.

Control

Abstraction View

data
ac

tio
ns

co
m

m
an

ds

st
at

us

Figure 2: The three components of the Control-
Abstraction-View software architecture model

The CAV model uses the external strategy of
MVC: the outputs of the system are devoted to a
specific abstract machine –the View– while inputs are
concerned by another one –the Control– that also
manages symmetrical inputs from the reactive system
which is directed by the third abstract machine –the
Abstraction. The Control machine synchronizes and
activates both View and Abstraction machines in
response to both user and reactive system events.

Among the usability properties, the system is in
charge of warning the user if a battery is going to be
empty. This usability requirement has to be specified
as: if the battery switch is in position ON and the
level is below or equal 10%, a warning message must

- 57 -

Harning & Vanderdonckt

be shown. This is specified in the INVARIANT
clause of the View. As a consequence, the operations
of the View must be specified to fulfil this invariant
whatever the way they are computed. This insistence
property specification is restricted to the View
abstract machine. So, it is fairly easy to handle. On
the contrary, the Conformity property requires the
Control mediation between Abstraction and View. Its
specification is similar to the specification of safety
below.

Among the safety requirements, we detail now the
prevention of user error: the operator must not be able
to switch on an empty battery. At first, this safety
requirement deals with the functional core of the
system, i.e., it must be specified in the Abstraction.
Moreover, this requirement is not a static but a
dynamic property: the battery can become empty
while switched on, but an empty battery must not be
switched on. This requirement is not static predicate,
so, it cannot be specified in the invariant clause of the
abstract machine. In the B language semantics, this
category of requirement must be specified in a
precondition substitution of operations.

In fact, we delegated to the Control abstract
machine –that includes the Abstraction– this safety
requirements, i.e. the Control is in charge of the
verification of the semantic validity of the parameters
when it calls the operation of the Abstraction abstract
machine. We name this technique the delegation of
safety. This generates two consequences: (1) The
operator cannot be aware of the fact that a battery
could not be switched on ; (2) An action on a
pushbutton can be generated with a empty battery
number as parameter, so some required proofs
obligations cannot be proved.

The first consequence is easy to set up. We have
to improve the interface layout and to update the state
of the button: enabled or disabled. Of course, if a
button is disabled, it is well known that this button
cannot emit any action event. This assertion may
seem to be sufficient to solve the second consequence
above. That is not exact: the B semantics cannot
ensure that a disabled button cannot emit events
because the graphic toolkit is not formally specified.
So, the Control abstract machine must filter the input
events with the button states specified in the View
abstract machine. This is required by the formal
specification. The benefit of this consequence is that
our system is safe whether the user interface is
defective.

3 . 3 . From formal specifications to
implementation

The final program must be a set of software modules
in which some of them are formally specified and
implemented, and some others are developed with
classic software engineering methods. In order to
dissociate these two antagonist types of modules,
interfaces have been inserted in between. So, at the
implementation step, the CAV architecture supports
some add-ons as shown on figure 3. We now focus on
these three types of modules: secure code, interface
and native modules.

NativeEvents

Events

CtrlBatt

AbstBatt ViewBatt

Batteries Graphics

NativeBatteries NativeGraphics

Manual code (unsecure)

Generated code (secure)

Manually modified code (unsecure)

CAV Model

Control

ViewAbstraction

Figure 3: The CAV software architecture with interface
and native modules

3.3.1. Secure Code
The core of the interactive system has been specified
in three B abstract machines. These machines specify
the minimum requirements of the system but do not
give any implantation solution. To do so, the B
method uses implementation machines that refine
abstract machines. The implementation machines are
programmed in BØ pseudo-code that shares the same
syntax with the B language, and is close to a generic
imperat ive programming language. In
implementation machines, the substitutions are
executed in sequence. BØ pseudo-code can be
automatically translated into C code.

As implementation machines refine abstract
machines, they must implement all the operations of
the abstract machines. Moreover, the B method and
semantics ensure that the side effects on variables of
the implementation machine operations do respect the
invariant as well as the abstract machine operations
they refine. Providing the proof obligations are

- 58 -

Closing the Gap: Software Engineering and Human-Computer Interaction

INTERACT 2003 Submission Style Guide

actually proved, the implementation machines respect
the safety and usability requirements. So, the code is
secure providing the specifications are adequate.

3.3.2. Native Code and Interfaces
A working program cannot be fully developed with
formal methods because most of graphic widgets and
hardware drivers libraries are not yet developed with
formal methods. As a consequence, the battery control
panel uses three native modules:

• The NativeGraphics software module
controls the graphic layout of the user
interface. It uses the GTk library.

• The NativeBatteries software module
simulates the batteries with lightweight
processes. It uses the POSIX thread library.

• The NativeEvents software module is in
charge of merging the events coming from
the user or the hardware and formats them to
the data structure used by the BØ translator.

These three modules are not secure. However, the
modules can be tested with a reduced set of test
sequences because the procedures of these modules are
only called by the secure code that does respect the
formal specification. For example, the bar graph
widget of NativeGraphics module is to be tested with
values from 0 to 100 only because the secure modules
are proved to use values from 0 to 100 only.
Abnormal states do not have to be tested.

The interfaces module roles are to make a
syntactic filtering and translation between native
modules and secure code:

• The Events software module receives integer
data and translates them to 1..3 or 0..100
types. This module is secure because it as
been specified and fully implemented in BØ
but is called by non-secure modules.

• The Graphics and Batteries modules are
specified in B and the skeleton of the
modules is implemented in BØ and then
manually modified to call the native
modules NativeBatteries and NativeGraphics
respectively.
3.3.3. Programming Philosophy

At last, the project outcome is a set of C source files.
Some of these files are automatically generated from
the BØ implementation, while others are partially
generated or manually designed. The formal
specification and implantation require about one
thousand non-obvious proof obligations to be
actually proved. All these proof obligations can be
proved thanks to the automatic prover in a few dozen
of minutes with a standard workstation.

The core of the system is formally specified and
developed. The programming philosophy used is

called the offensive programming, i.e., the
programmer does not have to question about the
validity of the operations calls. The B method and
semantics ensure that any operation is called with
respect to the specifications. Most of the dialogue
controller as well as the logic of the View and the
Abstraction are designed with this philosophy. As a
consequence, most of the dialog control of the system
is secure.

On the opposite, the events coming from the real-
word –user or hardware– have to be syntactically and
semantically filtered. This programming philosophy
is defensive. On the one hand, the syntactic filtering
is done by the Event module that casts the parameter
types –from integer to intervals. On the other hand,
the semantic filtering is achieved by the Control
module, which can refuse events coming from
disabled buttons. So, the system is resistant to
graphic libraries bugs or transient errors with sensors.
This filtering is required by the proof obligations that
force upon the operation calls to be done with valid
parameters.

There is no need to use the defensive
programming philosophy in native modules. The
procedures of these modules are called only by secure
modules, so the parameters must be valid anytime.
Neither verification nor filtering is necessary. The
programming philosophy looks like the offensive
philosophy except that the native modules are not
formally specified but must be tested, so we name
this philosophy half-offensive. As a consequence the
development of high-quality native code can be
performed with a reduced programming effort.

3.4. Formal method in HCI: what
kind of user?

As we write upper, one of our first goals was to
ensure that other people than pure formal method
specialists could use the method. Did we succeed?

We must admit that this goal is not reached today.
In our first attempts on the Post-It® case study, even
if the B tool automatically demonstrated most proofs,
it remained some of them to be demonstrated by hand.
This task cannot be made by non B specialists.

In the second case, for the battery case study, we
obtained a fully automated process with the B tool.
But it required to pay strong attention on condition
writing; more, despite of the smallness of the study,
the number of generated proof obligation let us think
that a much more example might “explode” the tool.

4. Incorporating formal methods
in HCI tools

- 59 -

Harning & Vanderdonckt

Another way to allow cooperation between SE and
HCI is to lean on formal semantics while building a
tool for HCI. We describe in this section such an
approach, and show how it can bring different
solutions.

In section 4.1, we shortly review the area of HCI
tools, mainly GUI-Builders and Model-Based tools.
Section 4.2 describes the fundamentals of our
proposal: connecting directly and interactively a GUI-
Builder to a functional core, by the way of formal
semantics. Section 4.3 relates how to incorporate
task-based analysis in this process.

4.1. A glance at HCI tools
HCI tools for building interactive software are
numerous. In the meantime, few of them handle
formal approaches.

On the one hand, GUI builders and tools from
suites such as Visual Basic® or Jbuilder® do not
provide any way to handle any kind of formal method.
Code generation is another difficulty, because it
enforces a code organization that does not conform to
good SE practices.

On the other hand, Model-Based tools (Puerta,
1996, Puerta et al., 1999) deal with models, but are
currently not usable for actual software development.
Some research tools such as Petshop (Ousmane,
2001) incorporate formal methods, for some parts of
software development.

Our goal is to try to incorporate
formal methods in HCI tools in a
deep way, with respect to usability
for HCI user.

4 . 2 . A semantic link
b e t w e e n t h e
functional core and
the HCI tool

The basic idea of our approach is to
build HCI tools that lean on formal
semantics to ensure that properties
are maintained all along the
development process. At the same
time, we do not expect the user to
become a formal method specialist

Our first step was to demonstrate
how it is possible to build a tool that
ensures a semantic formal link. We
start from a formally developed
functional core. We assume that this
functional core, which has been
specified with the B method, delivers
services through an API. It is
possible to automatically link such a

functional core to a tool that exploits function
signatures and formal specifications to help building
interactive software.

In figure 4, we can see a screen copy of the
GenBUILD tool. On the left, the animator consists in
fully generated interface that allows to interactively
run the functional core. Every function of the
functional core is usable through button activation.
When parameters are required, a dialog box appears to
allow the user to enter them. Functions are textually
described, and current state of the functional core can
be estimated through the result of all functions. It is
important to notice that all that part is fully
automatically generated. It allows the user to “play”
with his/her functional core, and to be aware of
functional core state.

In the right part of the figure, we can see the GUI-
Builder view, where widgets can be dropped to build
the concrete user interface. In the center, as in any
GUI-Builder, we can see a property window, which
allows the user to finalize the presentation. Below
this window, the last window permits associating
events to functions from the functional core.

The great two originalities at this point are: first,
at any time, we can switch from design mode to test
mode where functional core can be called from either
the presentation or the animator (the context of the
functional core remains consistent); second, the

Figure 3: the GenBUILD system

- 60 -

Closing the Gap: Software Engineering and Human-Computer Interaction

INTERACT 2003 Submission Style Guide

system leans on formal specifications from the
functional core to ensure that calls are correct.

This study demonstrates that it is possible to
incorporate formal approaches in interactive tools.
The benefit is not very important at this stage,
because interactive model is poor: we assume that the
link between widgets and functional core is direct. In
the next part, we show how it is possible to enhance
this model.

4.3. Linking task based analysis and
formal semantics

The second step of our study consists in focusing on
task-based analysis. We incorporated task-based
analysis into our system by the way of two task
models (abstract and concrete task models) using the
CTT formalism (Paternò, 2001). In figure 5, we see
on the upper left a view of the abstract task model.
While CTTE (Paternò et al., 2001) provides a purely
graphical view of CTT trees, we chose to draw them
in a tree widget. This avoids many problems like
sizing or beautifying. The original part of the study
consists in the link that exists between the abstract
task model and the functional core. In tools such as
CTTE, we can animate the task model, in order to
ensure that the specifications of the system are
consistent. In GenBUILD, we can go one step further.
We can animate the system itself; we exploit the
possibility to interactively run the functions of the

functional core, with respect to the formal
specifications of this one. More, we can also link the
pre- and post-conditions of CTT to functions, in order
to dynamically control the execution. This is shown
in the front window on figure 5.

We do not illustrate here the concrete task model,
which allows the same kind of links, but on the
presentation (widget) side (Baron and Girard, 2002).

With GenBUILD, we use formal specifications in
an interactive way that allows non-specialists to take
advantage of formal methods without heavy learning
or careful usage.

5. Lessons learned
5.1. Consideration about methods

Our studies bring partial solutions in the field of
formal methods for HCI. On the one hand, they
demonstrate how formal methods are really usable in
HCI design. In the meantime, their usage is restricted
to specialists that come to grips with mathematical
fundamentals. Automatic proving is not possible in
real developments. “Manual” proving is mandatory.
Incorporating formal approaches into HCI tools may
bring a solution: hiding formal language complexity
allows HCI designers to use these methods in a blink
mode.

On the other hand, we did not work on a global
method to build application with such tools. We

assumed that functional cores have
to be designed first. In many cases,
this is not the best way to work.
In some cases, task analysis may
turn up new needs. Modifying the
functional core and its formal
specifications to rebuild a new
solution might be difficult. Is the
opposite way possible? Is it
possible to start form task
analys is , to des ign the
presentation, and then to develop
the functional core, with respects
to properties that might be
enforced in the functional core by
strong formal methods?

5.2. What is the user
One of the strongest questions that
have been raised by these studies
is: what kind of user for formal
methods in HCI?

O n e t h e o n e hand,
manipulating formal methodsFigure 5: task-based aspects of GenBUILD

- 61 -

Harning & Vanderdonckt

themselve is often hard. Complete formal
development is very difficult, and formal tools such
as “Atelier B” are not really able to manage real scaled
applications.

On the other hand, manipulating formal methods
through HCI tools seems very interesting. But wher
is the place for formal development? And who might
make it?

All these points are to be discussed, and solutions
to be bring by further work.

6. References
Abowd, G. D., Wang, H.-M. and Monk, A. F. (1995) A

Formal Technique for Automated Dialogue
Development, in DIS'95, Design of Interactive
Systems (Eds, Olson, G. M. and Schuon, S.) ACM
Press, Ann Arbor, Michigan, pp. 219-226.

Abrial, J.-R. (1996) The B Book: Assigning Programs to
Meanings. Cambridge University Press.

Aït-Ameur, Y., Girard, P. and Jambon, F. (1998a) A
Uniform approach for the Specification and Design
of Interactive Systems: the B method, in
Eurographics Workshop on Design, Specification,
and Verification of Interactive Systems (DSV-
IS'98), Vol. Proceedings (Eds, Markopoulos, P.
and Johnson, P.), Abingdon, UK, pp. 333-352.

Aït-Ameur, Y., Girard, P. and Jambon, F. (1998b) Using
the B formal approach for incremental
specification design of interactive systems, in
Engineering for Human-Computer Interaction,
Vol. 22 (Eds, Chatty, S. and Dewan, P.) Kluwer
Academic Publishers, pp. 91-108.

Baron, M. and Girard, P. (2002) SUIDT : A task model
based GUI-Builder, in TAMODIA : Task MOdels
and DIAgrams for user interface design, Vol. 1
(Eds, Pribeanu, C. and Vanderdonckt, J.) Inforec
Printing House, Romania, Bucharest, pp. 64-71.

Brun, P. (1997) XTL: a temporal logic for the formal
development of interactive systems, in Formal
Methods for Human-Computer Interaction (Eds,
Palanque, P. and Paternò, F.) Springer-Verlag, pp.
121-139.

Card, S., Moran, T. and Newell, A. (1983) The
Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates.

Coutaz, J. (1987) PAC, an Implementation Model for the
User Interface, in IFIP TC13 Human-Computer
Interaction (INTERACT'87) North-Holland,
Stuttgart, pp. 431-436.

Duke, D. J. and Harrison, M. D. (1993) Abstract
Interaction Objects. Computer Graphics Forum,
12, 25-36.

Goldberg, A. (1984) Smalltalk-80: The Interactive
Programming Environment. Addison-Wesley.

Hix, D. and Hartson, H. R. (1993) Developping user
interfaces: Ensuring usability through product &
process. John Wiley & Sons, inc., Newyork, USA.

Jambon, F., Girard, P. and Aït-Ameur, Y. (2001)
Interactive System Safety and Usability enforced
with the development process, in Engineering for
Human-Computer Interaction (8th IFIP
International Conference, EHCI'01, Toronto,
Canada, May 2001), Vol. 2254 (Eds, Little, R. M.
and Nigay, L.) Springer, Berlin, pp. 39-55.

Ousmane, S. (2001) Spécification comportementale de
composants CORBA. PhD of Univ. Université de
Toulouse 1, Toulouse.

Palanque, P. (1992) Modélisation par Objets Coopératifs
Interactifs d'interfaces homme-machine dirigées
par l'utilisateur. PhD of Univ. Université de
Toulouse I, Toulouse.

Paternò, F. (1994) A Theory of User-Interaction Objects.
Journal of Visual Languages and Computing, 5 ,
227-249.

Paternò, F. (2001) Model-Based Design and Evaluation
of Interactive Applications. Springer.

Paternò, F. and Faconti, G. P. (1992) On the LOTOS use
to describe graphical interaction, Cambridge
University Press, pp. 155-173.

Paternò, F., Mori, G. and Galimberti, R. (2001) CTTE:
An Environment for Analysis and Development of
Task Models of Cooperative Applications, in
ACM CHI 2001, Vol. 2 ACM Press, Seattle.

Puerta, A. (1996) The MECANO project : comprehensive
and integrated support for Model-Based Interface
development, in Computer-Aided Design of User
interface (CADUI'96) (Ed, Vanderdonckt, J.) Presse
Universitaire de Namur, Namur, Belgium, pp. 19-
35.

Puerta, A. R., Cheng, E., Ou, T. and Min, J. (1999)
MOBILE : User-Centered Interface Building,
ACM/SIGCHI, Pittsburgh PA USA, pp. 426-433.

Scapin, D. L. and Pierret-Golbreich, C. (1990) Towards a
method for task description : MAD, in Working
with display units (Eds, Berliguet, L. and
Berthelette, D.) Elsevier Science Publishers,
North-Holland, pp. 371-380.

- 62 -

Closing the Gap: Software Engineering and Human-Computer Interaction

