
SUIDT: Safe User Interface Design Tool
Mickaël Baron, Patrick Girard

LISI/ENSMA
1 rue Clément Ader

86961 Chasseneuil Futuroscope Cédex, France
+33 5 49 49 80 70

{baron,girard}@ensma.fr

ABSTRACT
SUIDT (Safe User Interface Design Tool) is a model-based
system that allows building interactive systems with respect
to the formal semantics of functional cores. It implements a
complete cooperation between task models (abstract and
concrete) with both the domain model and the presentation
model, while ensuring the properties of the models. Last, it
maintains all during the design cycle the links between
every part of the system, even the functions of the
functional core (the actual code).

Categories & Subject Descriptors: D.2.2 [Software
Engineering] : Design Tools and Techniques – computer-
aided software engineering, top-down programming, user
interfaces.

General Terms: Design, Human Factors,
Verification.

Keywords: Model-Based Systems, Task
Models.

INTRODUCTION
HCI tools for building interactive software
are numerous. On the one hand, GUI
builders and tools from suites such as
Visual Basic® or JBuilder® do not provide
any way to handle any kind of external
model.
On the other hand, Model-Based tools [3, 4]
deal with models, but are currently not
usable for actual software development.
Often, they cover the design phase of
interactive systems, and they allow the
generation of the system itself. But the
semantic link between model and code is
generally cut during this generation.
Our goal in this paper is to present a system
that preserve this link between models and
code, and that permits to work together with
any model while testing the application. We
believe that this approach may be a solution
to improve the usability of model-based systems.

FIRST STEP: THE SYSTEM SIDE
Our first step was to demonstrate how it is possible to build
a tool that ensures a semantic formal link. We start from a
formally developed functional core. We assume that this
functional core, which has been specified with the B
method [1], delivers services through an API. It is possible
to automatically link such a functional core to a tool that
exploits function signatures and formal specifications to
help building interactive software.
In figure 1, we can see a screen copy of some SUIDT
elements. On the left (tag 1), the animator consists in a
fully generated interface that allows to interactively run the
functional core. Every function of the functional core is
usable through button activation. When parameters are

required, a dialog box appears to allow the user to enter
them. Functions are textually described, and current state of
the functional core can be estimated through the result of
all functions. It is important to notice that all that part is
fully automatically generated. It allows the user to “play”

Copyright is held by the author/owner(s).
IUI'04, Jan. 13-16, 2004, Madeira, Funchal, Portugal.
ACM 1-58113-815-6/04/0001.

1
2



with his/her functional core, and to be aware of functional
core state.

SECOND STEP: THE USER SIDE
The second step of our study consists in focusing on task-
based analysis. We incorporated task-based analysis into
our system by the way of two task models (abstract and
concrete task models) using
the Concurrent Task Tree
(CTT) formalism [2].
In figure 2, we see on the
upper left (tag 1) a view of
the abstract task model.
While CTTE provides a
purely graphical view of
CTT trees, we chose to
draw them in a tree widget.
This avoids many problems
like sizing or beautifying.
The original part of the
study consists in the link
that exists between the
abstract task model and the
functional core. In tools
such as CTTE, we can
animate the task model, in
order to ensure that the
specifications of the system
are consistent. In SUIDT,
we can go one step further.
We can animate the system
itself; we exploit the
possibility to interactively
run the functions of the
functional core, with
respect to the formal
specifications of this one. More, we can also link the pre-
and post-conditions of CTT to functions, in order to
dynamically control the execution. This is shown in the
front window on figure 2 (tag 2).
In order to reach the concrete level of interaction, it is
necessary to add a level. We named this level the Concrete
Task Model (CTM). It consists in a refinement stage of the
Abstract Task Model (ATM), where every interactive or
application task of the ATM is described in terms of
concrete interaction or application objects. Because we are
in the same whole environment, it is possible now to rely
these concrete abstract objects to the concrete GUI level.

CONCLUSION
We can summarize the above presentation of SUIDT
relating to the links between models. Every model in
SUIDT is an executable model. Models can be executed for
inspection, for simulation, or for verification.

The domain model plays a central role in the SUIDT
approach. Every model is in fact related to the it, which
allows to run an actual program each time we execute a
model. This property gives to SUIDT a very high degree of
interactivity. More, while links are always active, the user
never loose the benefits of the modeling and can modify
either part of the application with complete respect to

model properties.

REFERENCES
1. Abrial, J.-R. (1996). The B Book: Assigning Programs

to Meanings. Cambridge University Press.
2. Paternò, F. (2001). Model-Based Design and Evaluation

of Interactive Applications. Springer.
3. Puerta, A. (1996). The MECANO project:

comprehensive and integrated support for Model-Based
Interface development, Proceedings of the Computer-
Aided Design of User interface (CADUI'96), 19-35.
Presse Universitaire de Namur.

4. Szekely, P. (1996). Retrospective and challenge for
Model Based Interface Development. In F. Bodart & J.
Vanderdonckt (Eds.), Eurographics Workshop on
Design, Specification, and Verification of Interactive
Systems (DSV-IS'96) (pp. 1-27). Namur, Belgium:
Springer-Verla

1

2


